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cer therapies (Shen et al., 2012; Thomas et al., 2010; Veiseh et al., 
2010; Weinstein et al., 2009). In Europe only, 550 tons IONs are 
produced annually, which are released into the environment as a 
consequence of both the synthesis and processing of raw materi-
als and the use, the recycling, or the disposal of nanoparticle-con-
taining products. The uptake of IONs might happen at different 
stages of the life cycle (Bundschuh et al., 2018; Gottschalk et al., 
2009; Piccinno et al., 2012; Tolaymat et al., 2017). In this way, 
not only workers but the whole environment is exposed to IONs 

1  Introduction

Iron oxide nanoparticles (IONs) are used in numerous appli-
cations such as medical contrast agents, cosmetics, food addi-
tives, varnishes, coatings, pigmented thermoplastics, biosensors, 
and for cryobiotechnological applications (Gupta and Gupta, 
2005; Kornberg et al., 2017; Lee et al., 2008; Minard and Wind, 
2002; Peng et al., 2008; Semelka and Helmberger, 2001). These 
nanoparticles are also used as delivery vectors for targeted can-
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Abstract
Iron oxide nanoparticles (IONs) are used in a number of applications from food to cosmetics and from medical  
applications to magnetic storage. In spite of the 550 tons produced each year in Europe alone, no effective dose  
limit recommendations are established and the overall risks connected to IONs are still debated. The incorporation 
of IONs in daily life raises a concern about their effects on the environment, on living organisms, and on human 
health. In this study, we used freshwater planarians to assess the nanoecotoxicity of IONs. Planarians are free-living  
invertebrates known for their astonishing regenerative ability. Because of their sensitivity to toxicants, they are often used 
to determine the effects of toxic, genotoxic, and carcinogenic environmental compounds with an approach in line with 
the 3Rs (Reduce, Refine, Replace) principle. Planarians were exposed to IONs at concentrations up to 1 mg/ml and 
their effects were evaluated at the behavioral, morphofunctional, and molecular levels, with a special emphasis on the 
regeneration process. Our results indicate that IONs did not affect the stem cell population dynamics, nor did they induce 
substantial changes in either homeostatic or regenerating planarians. As positive controls, gold nanoparticles coated  
with the pro-apoptotic anti-cancer drug hexadecylmethylammonium bromide and highly concentrated polystyrene 
nanoparticles were used; these all elicited toxic effects. Therefore, we conclude that IONs at environmental concen-
trations are safe for planarians, and that the planarian is a powerful model system that can replace vertebrate animal 
models in nanoecotoxicology research and for nanoecotoxicology studies.

This is an Open Access article distributed under the terms of the Creative Commons 
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Freshwater planarians (Phylum platyhelminthes) are free-liv-
ing invertebrates found in both salty and freshwater ecosystems 
(Reddien and Sánchez Alvarado, 2004). They are known for their 
regeneration ability that hinges on the presence of pluripotent 
stem cells in the adult animal (Wagner et al., 2011). Also for this 
reason, planarians are routinely used as a model to assess toxicity, 
lethality, teratogenesis, and neurotoxicity of chemicals (Best and 
Morita, 1991; Lowe et al., 2015; Zhang et al., 2013), to study de-
velopmental toxicity (Hagstrom et al., 2015), and to investigate 
the effects of environmental pollutants and nanopollutants on 
the stem cell compartment in vivo (Mouton et al., 2011; Kustov  
et al., 2014; Salvetti et al., 2015; Van Roten et al., 2018). Pla-
narians have a relatively simple body plan, without a body cav-
ity but with organs and tissues of high complexity, including a 
highly cephalized central nervous system, a gastrovascular cav-
ity that both absorbs and distributes the nutrients, protonephrid-
ia, and both female and male reproductive organs. Planarians can 
regenerate any body part, including the whole head, and certain 
planarians have lost the ability to reproduce sexually (e.g., the 
asexual strain of Schmidtea mediterranea) and reproduce only by 
binary fission; the missing body structures regenerate in approxi-
mately one week. Remarkably, development and regeneration in 
S. mediterranea occur through very similar processes (Reddien 
and Sánchez Alvarado, 2004). 

The exceptionally short time scale by which regeneration pro-
gresses, the inexpensive husbandry, and the sensitivity to envi-
ronmental pollutants make planarians an alternative model to ver-
tebrates for studying the effects of pollutants in vivo (Stevens et 
al., 2017; Van Roten et al., 2018). In comparison to other alterna-
tive models, like zebra fish larvae and nematodes, planarians are 
capable to react sensitively to several chemicals (Hagstrom et al., 
2015), providing the additional opportunity to study nanotoxicity 
in adult individuals that possess a highly dynamic stem cell pop-
ulation. Planarian regeneration depends on the presence of a large 
population of adult pluripotent stem cells, historically called neo-
blasts. With few exceptions (pharynx pocket, region in front of 
the photoreceptors), these cells are spread throughout the entire 
body and can differentiate into any of the cell types that consti-
tute the animal (Cebrià et al., 2007; Reddien and Sánchez Alvara-
do, 2004; Rink, 2013; Scimone et al., 2014; Tran and Gentile,  
2018; Wagner et al., 2011). The neoblasts are the only dividing 
cells in planarians. After injury, they migrate, proliferate, and dif-
ferentiate into the missing structures, under the control of com-
plex gradients of morphogens secreted in turn by the cells at the 
wound and by the cells of the muscle layers (Owlarn et al., 2017; 
Scimone et al., 2014; Vogg et al., 2014; Witchley et al., 2013; 
Wurtzel et al., 2017).

In this study, we investigated the effects of IONs on both regen-
eration and homeostasis in the planarian S. mediterranea. The use 
of the planarian model system allowed us to study the effects of 
nanopollutants in a highly dynamic stem cell system and to push 

(Wang et al., 2016). Research in the field of nanoecotoxicology 
has provided high-quality information about behavior, fate, and 
ecotoxicity of nanomaterials, but some knowledge gaps remain, 
mainly owing to the high variability of the end product and the en-
vironmental conditions that could modify the uptake (Lead et al., 
2018). The biological impact of engineered nanomaterials (NMs) 
in general and IONs among them largely depends on their physi-
cochemical features (e.g., size, surface charge, solvents used) and 
the transformations they undergo (e.g., aggregation, corrosion, 
dissolution). Moreover, depending on the type of interactions that 
NMs have with the environment, (e.g., the proteins to which they 
are associated that form the so-called corona, which can be “soft” 
or “hard”) (Casals et al., 2010, 2011), they may acquire a different 
biological identity, and thus have different effects on living or-
ganisms (Casals et al., 2012; Casals and Puntes, 2012; Ding et al., 
2013; Lynch et al., 2007; Podila et al., 2012).

Relevant in vivo studies suggested that pulmonary exposure to 
IONs may induce inflammation (Park et al., 2010, 2015; Sadeghi 
et al., 2015; Srinivas et al., 2012; Szalay et al., 2012), pulmonary 
fibrosis (Zhu et al., 2008), genotoxicity (Ishino et al., 2015; Tot-
suka et al., 2014), and extra-pulmonary effects (Zhu et al., 2009). 
Chamorro and colleagues reported accumulation of IONs in the 
liver, spleen, and duodenum of growing chickens when adminis-
tered orally in the low-dose range (chronic exposure) (Chamorro 
et al., 2015). Cohort studies on workers exposed to IONs during 
the production of iron oxide pigments showed an increase in ox-
idative stress biomarkers in exhaled breath condensate (Pelclo-
va et al., 2016). Andujar and colleagues identified welding-relat-
ed nanoparticles in lung tissue sections from welders (Andujar et 
al., 2014). 

In contrast to in vitro studies that reported no cytotoxic ef-
fects from ION exposure up to 100 µg/ml (Coricovac et al., 2017; 
Freyria et al., 2012), others reported macrophage dysfunction in 
a concentration range of 6.25 to 12.5 µg/ml (Kodali et al., 2013), 
DNA damage induced by 10 µM IONs (Sighinolfi et al., 2016), 
and mitochondrial oxidative stress for doses between 10-50 µg/ml  
(Dwivedi et al., 2014). An IC50 range of 6.4-23 µg/ml was de-
termined for several human cell lines after 72 hours exposure to 
IONs (Namvar et al., 2014). Oxidative stress is likely the conse-
quence of the release of free iron ions after cell internalization 
(Andujar et al., 2016; Wang et al., 2016; Xing et al., 2015). 

Ferric iron is a common water pollutant near coal and hard 
rock mines (Cadmus et al., 2018). Therefore, the ecotoxicity of 
IONs has been studied in several aquatic organisms along the 
food chain. Adverse effects have been detected in all aquatic 
models (algae, daphnia, mussel, carp) (Baumann et al., 2014; 
García et al., 2011; Lei et al., 2016; Magro et al., 2018; Remya et 
al., 2015; Taze et al., 2016). Most of these studies reported an in-
crease in the production of reactive oxidative species (ROS) and 
DNA damage. However, there is still a lack of information about 
the effects of IONs on the stem cells.

 

Abbreviations 
DCFDA, 2’,7’-dichlorofluorescin diacetate; DPI, days post-injection; ICP-MS, induced coupled plasma-mass spectroscopy; IONs, iron oxide nanoparticles; NPs, nanoparticles; 
PAM, planarian artificial media; PSNP, polystyrene-nanoparticle; ROS, reactive oxygen species; RT-QPCR, real-time quantitative polymerase chain reaction; TEM, transmissi-
on electron microscopy; TMAOH, tetramethylammonium hydroxide; XRD, X-ray diffraction
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forward the adoption of research strategies in line with the 3R 
(Reduce, Refine, Replace) principle (Russell and Burch, 1959), 
where the substitution of vertebrate models with invertebrate or 
in vitro models is encouraged. In order to gain a comprehensive 
picture of the ways IONs could affect aquatic life, we incubat-
ed planarians with IONs under waterborne conditions or injected 
IONs directly into the gastrovascular system. Our results indicate 
that IONs up to 1 mg/ml neither affect planarian homeostasis nor 
regenerative capability, suggesting that IONs have no adverse ef-
fect on planarians, even at high concentrations similar to those 
found in polluted mining sites (Appiah-Adjei et al., 2019).

2  Animals, materials, and methods

2.1  Animals
The sexual strain of planarian Schmidtea mediterranea was used 
in this study. Planarians were maintained at 18-20°C in planarian 
artificial media (PAM, Cebrià and Newmark, 2005) with a 12 h  
light/dark cycle, as previously described (Cebrià and Newmark, 
2005). Animals were fed with veal liver twice a week and starved 
for one week before ION treatment in order to minimize the ef-
fects of feeding on the stem cells. Animals used for the experi-
ments had a size of 2-4 mm.

Planarians are excluded from the current legislation regulating 
scientific research on animals. The animal husbandry was none-
theless in accordance with current best practice; all individuals in-
volved with the care and the use of the animals were trained prop-
erly. Planarians used in this study were treated with respect and 
handled only when necessary, in order to keep the stress low. No 
unnecessary harm was inflicted that was not required to conduct the 
experiments. The minimal number of animals able to give statisti-
cally relevant data was calculated based on previous experience.

2.2  Chemicals
Iron (II) chloride (FeCl2.4H2O, 98%), iron (III) chloride (FeCl3, 
 ≥ 98%), tetramethylammonium hydroxide (TMAOH, 1.0 M in 
H2O), sodium hydroxide (NaOH, ≥ 98%), DMEM, high glu-
cose, GlutaMAX™ supplement, pyruvate, penicillin-streptomy-
cin (10,000 U/ml), and foetal bovine serum, qualified, E.U.-ap-
proved, South America origin were all purchased from Sigma- 
Aldrich (Munich, Germany) and used before their expiration date.

Polystyrene nanoparticles (PSNPs) of an approximate size of 
80 nm (PlasmaChem GmbH, Berlin, Germany) and hexadecyl-
trimethylammonium bromide-coated gold NPs (CTAB-AuNPs), 
with an average size of 8.43 ±0.85 nm and a ζ-potential of +31.2 
±2.86 mV were used for the experiments at concentrations of 0.1, 
1, and 10 mg/ml (PSNPs) and 0.01 mg/ml (AuNPs). 

2.3  Synthesis of iron oxide nanoparticles
TMAOH-stabilized, 7 nm mean diameter IONs were synthesized 
based on Massart’s method (Massart, 1981), with modifications. 
IONs were synthesized in the aqueous phase, using milli-Q grade 
water. 5 or 10 mmol FeCl3 were dissolved in 50 ml deoxygenated 
water and added dropwise to 50 ml deoxygenated 1M TMAOH. 
After 30 min of vigorous stirring under nitrogen stream, the 

Fe3O4 precipitate was washed by soft magnetic decantation and 
redissolved in 100 ml of 10 mM TMAOH to obtain the final sta-
ble colloidal solution of IONs.

2.4  Physicochemical characterization 
of iron oxide nanoparticles
In order to study the stability of IONs in PAM, IONs were in-
cubated in PAM for 1 h and then sonicated for 10 s. Afterwards, 
stock and PAM solutions of IONs were characterized using differ-
ent techniques: UV-visible  spectrophotometry (UV/Vis), dynam-
ic light scattering, laser-Doppler-microelectrophoresis, transmis-
sion electron microscopy (TEM), X-ray diffraction (XRD), and 
induced coupled plasma-mass spectroscopy (ICP-MS).

UV-Vis spectroscopy
UV-visible spectra were acquired with a Shimadzu UV-2401 PC 
spectrophotometer. A Fe3O4 NP solution was placed in a cell in 
a 5% dilution (v/v), and spectral analysis was performed in the 
300-800 nm range at room temperature. 

Dynamic light scattering
A Malvern ZetaSizer Nano ZS instrument (Malvern Instruments, 
UK) operating at a light source wavelength of 532 nm and a fixed 
scattering angle of 173° was used to measure ION size. One mil-
liliter of 5% (v/v) IONs was placed in a cell.

ζ-potential measurement
A Malvern ZetaSizer Nano ZS instrument (Malvern Instruments, 
UK) was used for ζ-potential measurement. The samples were 
prepared by diluting the native ION suspension 1:10 in ultrapure 
water or PAM. For ζ-potential measurements, the diluted samples 
were analyzed in a Zeta cell DTS 1060C. All measurements were 
carried out at 25°C. The ζ-potential reported herein was obtained 
as the average of three independent measurements (100 repeti-
tions per measurement) performed on each sample.

Transmission electron microscopy (TEM)
Images were acquired with a FEI Tecnai G2 F20 S-TWIN HR(S) 
TEM equipped with an energy-dispersive X-ray spectroscopy 
(EDX) detector, operated at an accelerated voltage of 200 kV. 
A droplet of the sample was drop cast onto a piece of ultrathin 
carbon-coated 200-mesh copper grid (Ted-pella, Inc.) and left to 
dry. More than 200 particles were computer-analyzed and mea-
sured to calculate size distributions.

X-ray diffraction (XRD)
Data were collected on a PANalytical X’Pert diffractometer us-
ing a CuKα radiation source (λ = 1.541 Å). In a typical experi-
ment, the 2θ diffraction (Bragg) angles were measured by scan-
ning the goniometer from 25° to 90°. The samples were prepared 
by centrifugation of the slurry containing the NPs at 40,000 x g, 
to precipitate the NPs. The supernatant was discarded and sam-
ples were dried at room temperature to avoid further NP trans-
formations. Peak positions and their full width at half maximum 
(FWHM) were determined using the X’Pert HighScore program 
after baseline correction.
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verse-transcribed to cDNA using the High Capacity Reverse 
Transcription Kit (ThermoFisher, Dreieich, Germany). Real-time 
PCR analysis was performed on a QuantStudio 6 Flex Real-Time 
PCR System (ThermoFischer, Dreieich, Germany) using the 2x 
Taqman Master Mix (ThermoFisher, Dreieich, Germany) and a 
20x primer and probe mix (IDT, Leuven, Belgium). The follow-
ing genes were quantified: pcna, smedwi1, p53, agat1, NB321g, 
HB1911g, myhc, and gapdh as reference gene. Each sample was 
run in technical triplicates. Relative gene expression was calcu-
lated with the double delta cycle threshold (ΔΔCT) method, as 
previously reported (Boiani et al., 2005; Livak and Schmittgen, 
2001) The sequences of the oligonucleotides used in this study 
are provided in Table S11.

2.8  Cell viability, reactive oxygen species (ROS),  
and cell population analysis
Planarians were dissociated into single cells and these were 
stained for flow cytometry as previously described (Moritz et al., 
2012). 

Cell viability was assessed by Calcein-AM / propidium iodide 
double staining (0.05 µg/ml / 1 µg/ml, respectively; Sigma-Al-
drich, Munich, Germany). 

The production of ROS was assessed using the DCFDA Cel-
lular ROS detection kit (Promega, Mannheim, Germany). Cells 
were incubated with 20 µM DCFDA for 30 min at RT. Cells were 
then assessed by flow cytometry at 485/535 nm (FL2, 488 nm). 
ROS production was determined by the change in percentage of 
fluorescent signals compared to control samples. 1 mM H2O2 was 
used as positive control.

The planarian cell sub-populations were analyzed as previous-
ly described (Scimone et al., 2014). Briefly, cells were incubated 
with 10 µM Hoechst 33342 (ThermoFisher, Dreieich, Germany). 
Sub-population data were acquired on a FACS Aria III (BD, Hei-
delberg, Germany) by plotting the blue emission of the dye (FL1, 
405 nm) in function of the red emission indicating cell size (FL6, 
800 nm). In this way, stem cells (X1) in the S/G2/M phases of the 
cell cycle have the highest signal in the blue channel, compared 
to either stem cells in G0 and progenitor cells (X2) or differenti-
ated cells (Xin). Xin cells, with a relatively large cytosol, have 
the highest signal in the red channel. Data are shown as the aver-
age of three independent experiments, where cells from four ani-
mals were pooled for each sample.

2.9  Statistical analysis
R studio and GraphPad Prism 5.0 were used for the statistical 
analysis. Percentage of live cells, different cell populations, and 
ROS production levels obtained by flow cytometry analysis are 
expressed as mean ± SD. Relative gene expression is expressed 
as mean ± SEM. Student’s t-test was used to analyze flow cytom-
etry data. ANOVA was used to compare the variance of qPCR 
data, followed by Tukey’s post-hoc test. The Prcomp function of 
R was used for the principle component analysis of gene expres-
sion data. 

Induced coupled plasma-mass spectroscopy (ICP-MS)
The samples for ICP-MS measurement were prepared as follows: 
first, the colloidal solution containing the NPs was centrifuged at 
40,000 x g for 45 min. The supernatant and the pellet were ana-
lyzed separately. Each part was heated in concentrated aqua regia 
for complete dissolution of the metals and further diluted to an 
optimal concentration for ICP-MS. The treated pellet and the su-
pernatant were analyzed on the NexION 300 ICP MS (Perkin El-
mer). The concentration of Fe in the supernatant was 0.464 mg/ml,  
while in the pellet it was 11.2 mg/ml. This indicated a 96% rate 
conversion of the Fe used into NPs.

2.5  ION exposure and injection
Two particle exposure pathways were investigated during this 
study: waterborne and diet-borne. For waterborne exposures,  
planarians were exposed to Fe3O4 in PAM at different concen-
trations (0.1 mg/ml and 1 mg/ml) for 14 days in 6-well plates, 2 
animals in each well. 

For the diet-borne exposure, IONs were injected directly in-
to the gastrovascular cavity of planarians using a Nanoject II 
(Drummond, Pennsylvania, USA) and borosilicate glass capil-
laries with filaments (BF120-94-10, Science Product, Hofheim, 
Germany) under the microscope (Nikon SMZ745T, Düsseldorf, 
Germany). Working solutions were freshly prepared at the mo-
ment of injection by sonicating the stock solution for 10 s, and  
diluting it with PAM to achieve the desired nominal concentra-
tions of 0.1 mg/ml and 1 mg/ml. Three injections of 92 nl each on 
three consecutive days were administered. 

2.6  Morphological analysis and assessment 
of the regeneration ability
Homeostatic animals were assessed with regard to the animals’ 
survival rate, the viability of the different cell populations, the 
production of ROS, and the gene expression of ION-treated intact 
animals after 14 days exposure. Animal behavior was assessed 
as the ability to quickly escape light when exposed to the light 
source of the microscope (negative phototaxis response). 

The regeneration capability was assessed in animals amputated 
at the pharyngeal level 1 day after the last injection of IONs. The 
two fragments produced were morphologically examined under 
the stereo microscope (Nikon SMZ25, Düsseldorf, Germany) at 
different time points post-amputation over 15 days. 

Assessments were done by placing both homeostatic and re-
generating animals on a petri dish on ice (100 mm x 15 mm) un-
der the stereo microscope to capture their morphology and their 
regenerating ability. Data were generated in a minimum of three 
independent experiments, using three animals per experiment.

2.7  Real-time quantitative polymerase 
chain reaction (RT-qPCR)
Control and ION-treated planarians (2 animals per sample) were  
processed for RNA extraction using a NucleoSpin RNA kit 
(Macherey-Nagel, Düren, Germany). Total RNA quantified with 
a Nanodrop 2000 (Thermo Fisher, Dreieich, Germany) was re-

1 doi:10.14573/altex.1902061s
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ical reactivity, surface charge, aggregation, or disaggregation, 
which ultimately determines their potential toxic effects. A signif-
icant number of biological systems are complex aqueous media 
composed of electrolytes, proteins, and metabolites, which can 
interact with the inorganic surface of the NPs, promoting differ-
ent physicochemical transformations that modify their biologi-
cal effects and may ultimately lead to unexpected (including ad-
verse and toxic) effects (Piella et al., 2017; Reidy et al., 2013). 
The extent of the reactions of NPs is determined by their intrin-
sic properties (material, size, shape, concentration, crystallinity, 
surface charge, and coating) and the medium in which they are 
dispersed (ionic strength, pH) (Piella et al., 2017). Many NPs are 
unstable and tend to form aggregates after exposure to cell cul-
ture media, which modifies the effects they have on biological 
systems as it influences their reactivity and bioavailability. Ow-
ing to the higher percentage of surface atoms and the colloidal 
form, NPs acquire a more stable thermodynamic state at a faster 
time scale than their bulk counterparts (Bastús et al., 2012; Casa-
ls et al., 2012); in turn, this translates into higher rates of aggre-
gation, oxidation, dissolution, and interaction with proteins (Liu 
and Hurt, 2010; Mudunkotuwa and Grassian, 2011; Piella et al., 
2017; Reidy et al., 2013; Wang et al., 2014). Therefore, the size 
distribution profile of the IONs was also determined after incu-
bation in PAM, the medium in which planarians are kept. The 
mean value of intensity in PAM was 5022 ±761.6 nm (PdI 0.264 
±0.045) (Fig. 1D) and the ζ-potential was also negative in PAM 

3  Results and discussion

3.1  Physicochemical characterization 
of the magnetic IONs 
The mean size of the IONs, as determined via TEM, was 11 ±1.8 nm  
(Fig. 1A). The calculated concentration by ICP-MS was 5 x 1015 
NP/ml (0.05 mmol FexOy /ml; 11.7 mg FexOy /ml). UV−Vis spec-
tra of the IONs verified the characteristics of the iron oxide (Fig. 
1B). The XRD spectra of the IONs showed that the prepared mag-
netic nanoparticles were Fe3O4 of high purity (Fig. 1C). Sharp 
diffraction peaks were seen in the X-ray diffraction patterns of 
the prepared magnetic IONs, indicating good crystallization. The 
positions and intensities of the diffraction peaks were identified 
and described by the JCPDS Card No. (79-0417) of crystalline 
magnetite. No extraneous peaks were observed, demonstrating 
that the prepared magnetic IONs were of high purity (Fig. 1C). 
The peaks indexed as planes (220), (311), (400), (422), (511), and 
(440) corresponded to a cubic unit cell, characteristic of a cubic 
spinel structure, confirming the crystalline structure of the mag-
netite nanoparticles. The size distribution profile by intensity of 
the synthesized IONs was measured via dynamic light scattering. 
The obtained mean value of intensity after three measurements 
was 126.7 ±71.7 nm (PdI 0.268 ±0.006) (Fig. 1D). The ζ-poten-
tial was -37.5 ±2.15 mV.

We took into consideration that NPs released into the environ-
ment undergo sequential processes that may change their chem-

Fig. 1: Physicochemical 
characterization of the Fe3O4 
nanoparticles (IONs) 
(A) Representative TEM of the IONs 
used in the study. (B) UV-Vis spectrum 
of IONs before and after dilution in 
planarian artificial medium (PAM).  
The spectrum was taken using  
5% (v/v) IONs in Milli-Q water, after 10 s 
sonication. (C) XRD spectrum of the  
7.0 nm IONs taken in a diffractometer 
using CuKα (λ = 1.54 Å) as a radiation 
source. Reference as magnetite 
taken from Harcourt et al. (1942). The 
standard pattern for JCPDS Card  
No. (79-0417) magnetite – synthetic is 
shown as a blue line. No extraneous 
peaks were observed, demonstrating 
that these were high purity Fe3O4 
magnetic nanoparticles. (D) Size 
distribution profile of the synthesized 
IONs, before and after dilution in PAM. 
The size distribution profile obtained  
by intensity showed a heavy 
aggregation of IONs into clumps owing  
to the ionic strength of the medium.
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concentration (1 mg/ml) of IONs. As shown in Figure 2B, ROS 
production in ION-treated animals was comparable with the  
negative control groups (t0 and solvent alone), while animals 
treated with hydrogen peroxide (H2O2) showed a significant in-
crease (37 ±2.6%, p = 0.018) in the ROS level. 

3.2.3  Planarian cell sub-populations
To further investigate possible ION-induced effects at the cellu-
lar level, we focused on the planarian adult stem cell population, 
which is responsible for maintaining homeostasis by guarantee-
ing cellular turnover (Gentile et al., 2011; Rink, 2013). We there-

(-23.7 ±0.36 mV). This was confirmed by the UV-Vis spectrum, 
which presented a decreased intensity owing to particle aggrega-
tion (Fig. 1B). The significant increase in mean size confirmed 
the heavy aggregation caused by the ionic strength of PAM.

3.2  Effects of IONs on planarian homeostasis
Effects induced by IONs on planarian homeostasis were evalu-
ated 14 days after their first exposure to IONs. This part of the 
study included analysis of the survival rate, the behavioral chang-
es, the ROS production, the viability and relative composition 
of the different cell populations, and gene expression. Animals 
treated with IONs were compared to positive and negative con-
trol groups. 

3.2.1  Survival rate and behavioral changes
In order to test ION toxicity in a waterborne exposure scenario, 
animals were exposed to PAM spiked with different ION concen-
trations (0.1 mg/ml, 1 mg/ml). After 14 days of continuous expo-
sure, no significant differences were found between the treated 
and the control groups concerning the overall morphology and the 
survival rate (data not shown). In contrast, all planarians (n = 9)  
exposed to 0.01 mg/ml gold NPs coated with the pro-apoptotic 
anti-cancer drug hexadecylmethylammonium bromide died with-
in 30 minutes (Fig. S11). Also, planarians exposed to IONs did 
not display any behavioral biases modifying their ability to move 
normally and to escape from a light source (negative phototaxis 
response; data not shown).

To simulate the effect of diet-borne IONs taken up through 
the food chain, NPs were injected directly into the gastrovascu-
lar cavity of living planarians three times. Successful injection is  
illustrated with trypan blue in Figure S21. Fourteen days post- 
injection (dpi) planarians administered with either 0.1 mg/ml or 
1 mg/ml IONs showed no behavioral changes. The survival rate 
was 100% (n = 12) in all groups (data not shown). This is in con-
trast to what we observed after injection of highly concentrated 
(10 mg/ml) PSNPs. All the injected animals elicited some mor-
phological defects, like the loss of the photoreceptors (Fig. S4A1) 
or the partial regression (i.e., tissue lysis) of either the head or the 
tail portion (Fig. S4B-E1) .

However, IONs injected into the gastrovascular system distrib-
uted into different organs. In order to assess whether ION accu-
mulation could affect homeostasis at both cellular and molecular 
levels, we further investigated the effects of diet-borne IONs with 
regard to the production of reactive oxygen species, the ratio of 
the cell sub-populations, and gene expression.

3.2.2  Production of reactive oxygen species (ROS)
The generation of ROS is a known consequence of exposure to 
iron (Baker et al., 1997; Li et al., 2009) and has been described 
as a major effector of the toxicity of metal NPs, as it triggers in-
flammation, genotoxicity, fibrosis, and cancer (Dayem et al., 
2017; Shvedova et al., 2012). Oxidative stress is also a crucial 
contributor to the toxicity of environmental toxicants (Leung et 
al., 2008). Since we found no effects of IONs on cell viability, 
regardless of the concentration used (Fig. 2A), we further inves-
tigated ROS production in planarians injected with the highest 

Fig. 2: Effects of IONs on cell viability and ROS production in 
homeostatic planarians
(A) The boxplot displays the cell viability in animals exposed to 
0.0, 0.1, 1.0 mg/ml IONs or the solvent alone (S), as measured 
by flow cytometry. Live/dead ratio was assessed 14 days post-
exposure by staining the cells with Calcein-AM (Ca) and propidium 
iodide (PI). Cells were considered viable if they were Ca+/PI-. 
(B) The dotplot shows the ROS production measured in animals 
exposed to 1 mg/ml IONs after different time points (0-14 days 
post-exposure), compared with both negative (S = solvent alone) 
and positive (H2O2) controls. ROS production was assessed by 
measuring the fluorescence intensity of Carboxy-H2DCFDA, 
following manufacturer’s instructions. The mean and the SD of n = 
3 biological replicates is shown, as well as the trend line over the 
course of the experiment (dashed line). * p ≤ 0.05



Tran et al.

ALTEX 36(4), 2019 589

differentiation rate of the stem cells and the commitment of the 
progenitor cells, resulting in the reduction of the X2 gate in favor 
of the Xin gate.

3.2.4  Gene expression
Some NPs have been reported to have no effect on the survival 
of animal models but did have effects at the gene expression lev-
el (Bahadar et al., 2016). In order to fully understand the activ-
ity of IONs on homeostatic planarians, we performed real time 
qPCR analysis to investigate whether exposure to IONs could al-
ter expression of the genes involved in the dynamics of the stem 
cell population. In planarian, adult stem cells are very sensitive 
to stress (e.g., irradiation) and respond by activating or shutting 
down genes that regulate the stem cell population (Hayashi et al., 
2006; Eisenhoffer et al., 2008; Van Roten et al., 2018). Therefore, 
changes in the expression of stem and/or progeny cell markers 
could indicate the effects of a downstream cascade of cellular/mo-
lecular mechanisms in response to the stimulus exerted by IONs. 

We selected well-known stem and progenitor cell markers to 
examine the molecular effects of IONs on the stem cell balance, 
using ubiquitously expressed gapdh as a reference gene. Inter-

fore examined whether the presence of IONs affected the balance 
between stem cells, progeny cells, and differentiated cells. Pla-
narians at 14 dpi were dissociated into single cells, which were 
subjected to flow cytometry analysis. Following the proposed gat-
ing strategy (Fig. 3A), three distinctive planarian cell populations 
were detected, X1, X2, and Xin. Actively dividing stem cells in 
the S/G2/M phases are found in the X1 gate; small stem cells in 
the G1 phase are found in the X2 gate together with small progen-
itor cells, while large, non-dividing cells are found in the Xin gate, 
which is by definition extremely heterogeneous (Hayashi et al., 
2006; Reddien et al., 2005). Data showed no significant difference 
in the X1 population upon treatment with IONs: In the control and 
the solvent groups, X1 represented 10.7 ±2.5% and 12.3 ±5.3% 
of the total cells, respectively, where in ION-treated animals they 
were 11.1 ±2.9% and 11.3 ±2.4%, for 0.1 and 1 mg/ml IONs, re-
spectively (Fig. 3B, left). Animals treated with 1 mg/ml IONs 
showed a slight decrease in X2 cells (Fig. 3B, center) compared to 
control, and a corresponding increase in Xin cells (Fig. 3B, right; 
p ≤ 0.05 in both cases). The interaction of the IONs with the gut 
lining could result in physical damage of the tissue, followed by 
the induction of inflammation. In turn, this could increase both the 

Fig. 3: Effects of the gastrovascular exposure to IONs on the planarian cell sub-populations
(A) Hoechst blue / Hoechst red plot displaying the three cell sub-populations (stem cells, progenitor cells, and differentiated cells; X1, X2, 
Xin, respectively) defined by DNA content (blue channel) and size (red channel) in wild-type animals. (B) The boxplots show the proportion 
of X1, X2, and Xin sub-populations in animals injected with 0.0, 0.1, 1.0 mg/ml IONs or the solvent alone (S). Measurements were 
performed at 14 dpi, n = 3 biological replicates. * p ≤ 0.05 
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exposure to IONs. The slight change of balance in the expression 
of stem and progeny cell markers can be also appreciated in the 
radar chart, where the reduction of smedwi1 was counterbalanced 
by the increase of NB321g (Fig. 4C).

Altogether, the gene expression data aligned to the flow cytom-
etry data in supporting the hypothesis that more stem cells under-
go differentiation upon exposure to IONs, as both the X2 gate and 
the expression of the pan stem cell marker smedwi1 decreased 
(Fig. 3B, center; Fig. 4). This could indicate a physiological re-
sponse of the animals aimed to preserve homeostasis in the pres-
ence of the IONs. Such a change, however, did not influence the 
mitotic activity of the stem cell population at both the cellular 
(Fig. 3B, left) and molecular (Fig. 4) levels.

Overall, the data collected on the survival rate, the behav-
ioral changes, the ROS production, the balance among the cell 
sub-populations, and the gene expression strongly suggested that 
IONs up to 1 mg/ml do not have any significant negative effect 
on planarian homeostasis after 14 days of exposure. The mild ef-

estingly, the expression of the pan stem cell marker smedwi1 
(Reddien et al., 2005) roughly halved in ION-treated animals at 
both concentrations used (Fig. 4A; p ≤ 0.05). The other stem cell 
markers considered, pcna and p53 (Orii et al., 2005; Pearson and 
Sánchez Alvarado, 2010), on the other hand, did not change up-
on ION treatment. Also the early (NB321g, HB1911g) and the 
late post-mitotic progeny markers (Eisenhoffer et al., 2008) did 
not show any significant change, although a slight increase in the 
expression of NB321g was consistently observed in ION-treat-
ed animals at both 0.1 and 1 mg/ml concentration (Fig. 4A). 
As a negative control, the expression of the muscle cell marker  
myhc (Hayashi et al., 2010) was also assessed, which showed no 
expression changes (Fig. 4A). 

The gene expression data were also analyzed via principal 
component analysis (PCA) in order to spot an overall effect of the 
exposure to IONs (Fig. 4B). ION-treated animals clustered sep-
arately from untreated ones, suggesting that, altogether, the ex-
pression of stem and progenitor cell markers was affected by the 

Fig. 4: Effects of gastrovascular 
exposure to IONs on gene 
expression
(A) Expression of genes relative to  
the housekeeping gene gapdh 
(reference) and the untreated control 
(calibrator = 1), as measured by qPCR. 
The analysis was carried out in animals 
at 14 dpi, n = 3 biological replicates  
and n = 2 technical replicates.  
(B,C) Principal component analysis and 
radar chart showing how the analyzed 
samples clustered (B) and how the 
balance between the stem and  
the progeny cells’ genes was influenced 
by the injection of IONs into the 
gastrovascular system (C). * p ≤ 0.05
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A similar scenario was observed in regenerating planarians in-
jected with either 0.1 or 1 mg/ml polystyrene NPs (PSNPs; Fig. 
S31). A slight change in the shape of the anterior edge observed in 
2 tail fragments at 15 dpi (arrowhead in Fig. 5) owed probably to 
the small fragment size. The affected animals recovered normal 
shape after a few additional days.

3.4  Effects of ION agglormerates
NPs in the environment tend to form aggregates of micron size 
(Watanabe et al., 2013), and particle agglomerates were shown to 
have biological effects different from those of individual particles 
(Kornberg et al., 2017). Moreover, agglomeration can potentially 
lead to an inaccurate evaluation of the toxic effect of nano-Fe3O4 
in the environment, since the IONs quickly clump together in sol-
vent media (Sharma et al., 2014) and smaller particles are sug-
gested to display higher toxicity owing to their ability to pene-
trate cells more efficiently (Duffin et al., 2008; Kobayashi et al., 
2009; Shang et al., 2014). 

To assess the effects of “weathered” IONs, we induced ag-
glomeration of IONs and administered them to planarians. We 
compared ION agglomerates in PAM (i.e., without sonication) 
with the free ION-suspensions tested so far (Fig. 2-5). Non-son-
icated IONs, simulating environmental weathered IONs, ag-
gregated once added to PAM (mean size 10149 ±1018 nm,  
ζ-potential -5.58 ±0.52 mV). The agglomeration of nanoparti-
cles is predicted to reduce their penetration through the cell mem-
brane (Oberdörster et al., 2005). On the other hand, larger struc-
tures are more likely recognized by the animal’s immune system, 
which may cause inflammation (Gualtieri et al., 2012). 

We injected non-sonicated IONs into the gastrovascular sys-
tem of planarians, with a similar procedure as the sonicated ones, 
and observed their behavior. No differences were found in the an-
imal survival rate and in cell viability (Fig. S51). Similar to son-
icated IONs, agglomerated IONs at both 0.1 mg/ml and 1 mg/ml  

fects observed at the levels of the cell populations and of the gene 
expression induced by the exposure to IONs were possibly the 
physiological response to the physical presence of particles, ulti-
mately aiming to preserve and maintain homeostasis. 

3.3  Effects of IONs on planarian regeneration
One of the most significant endpoints to test the toxicity of a 
pollutant in planarians is their ability to regenerate after ampu-
tation. Thanks to the broad distribution of the adult pluripotent 
stem cells throughout the mesenchymal space, planarians can re-
generate their whole body from a tiny fragment (Morgan, 1989; 
Wagner et al., 2011). Regeneration is a complex, stepwise pro-
cess in which the stem cells proliferate and differentiate into the 
different cell types. When a body part is lost due to amputation or 
damage, planarians form a non-pigmented tissue called blastema, 
in which stem cells undergo massive proliferation, are patterned 
according to the position within the body, and finally differenti-
ate into the missing tissues and organs. Eventually, re-establish-
ment of the correct body proportions and re-wiring of the new tis-
sues with the old ones take place body-wide (Gentile et al., 2011; 
Rink, 2013).

We assessed whether exposure to IONs during regeneration ex-
erts negative effects not observed in homeostatic animals. We in-
jected IONs at concentrations of either 0.1 or 1 mg/ml and ampu-
tated the animals one day after the last injection, at the pharyn-
geal level. The two fragments produced (hereafter referred to as 
head and tail fragments) were monitored daily over 15 days to as-
sess changes in the regeneration process.

All fragments (n = 16/group) from the 4 groups considered 
(untreated control, solvent alone control, 0.1 mg/ml IONs and 
1 mg/ml IONs) were able to fully regenerate. No morphological 
abnormalities or delays in the regeneration speed were observed 
(Fig. 5), suggesting that exposure to IONs at the concentrations 
tested does not influence the regeneration ability of planarians. 

Fig. 5: Effects of the gastrovascular exposure to IONs on the regeneration capabilities of planarians
The panel shows the morphology of freshly amputated head and tail fragments (top panel) and their regeneration at 14 dpi (lower panel). 
The specimen shown are representative of all the fragments used (n = 16 fragments for each of the 4 conditions considered, 8 head and 8 
tail fragments).
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capabilities. The planarian model, on the other hand, offers such 
a possibility, and recent studies in planarians anticipated the po-
tential of this model organism in ecotoxicology studies aimed to 
assess the environmental safety of nanopollutants (Kustov et al., 
2014; Salvetti et al., 2015). Our data suggests that IONs at con-
centrations relevant for environmental exposure (up to 1 mg/ml) 
do not influence planarian regeneration, demonstrating the bio-
compatibility of IONs with planarians.

In conclusion, planarians represent a suitable aquatic model or-
ganism to study the environmental safety of nanopollutants that 
responds to the needs of experimental animal models in line with 
the 3R strategy. 
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