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using in vitro assays and computational modeling approaches 
(Locke et al., 2017). 

Several large-scale projects aiming to develop high through-
put in vitro tests for toxicological evaluations have generated da-
ta sets for substantial collections of chemicals. The Tox21 pro-
gram aims to identify specific mechanisms leading to adverse 
effects in humans (Collins et al., 2008; Tice et al., 2013), with 
more than 50 assays conducted on around 9000 chemicals. The 
Environmental Protection Agency’s (EPA) ToxCast program fo-
cuses on evaluating biological responses relevant to human ad-
verse effects with high throughput assays (Judson et al., 2014; 
Richard et al., 2016). To date, it has completed evaluations 
of more than 2000 chemicals regarding a range of cellular re-
sponse and signaling pathways. As a follow-up to the Connec-

1  Introduction

The increasing need to perform toxicological evaluations on a 
large collection of drug candidates and other chemicals efficient-
ly has led to widespread awareness of the inadequacies of ani-
mal-based testing. A promising development in addressing this 
problem is the emergence of high throughput in vitro assays (Ka-
vlock and Dix, 2010; Tice et al., 2013). Combined with in silico 
predictions, high throughput in vitro assays have been proposed 
as potentially useful for generating a detailed toxicological pro-
file of a chemical to be used in risk assessment. This paradigm 
has been discussed in two National Research Council (NRC) re-
ports (NRC, 2007, 2017). It is also compatible with the increased 
societal preference for reducing animal use whenever possible 
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In this paper, we demonstrate the power of integrating mech-
anistic knowledge with high throughput in vitro assays in evalu-
ating and predicting toxicity potential, using drug-induced liver 
injury (DILI) as an example. The focus is less on model devel-
opment for DILI and more on the potential of integrating AOPs 
with in vitro assays. We demonstrate that, even though still under 
development, available AOPs (augmented with literature) could 
be used to interweave diverse data types from multiple sources 
like DrugBank, Tox21, L1000, and LTKB. This method also pro-
vides a convenient mechanism for dimension reduction for high 
throughput data and greatly simplifies predictive modeling. The 
resulting predictive model for DILI achieved excellent accuracy 
with a high level of simplicity. This portends well for further in-
tegration of AOPs and high throughput in vitro assays for better 
risk evaluations, with various applications.

2  Materials and methods

2.1  Data sets
DILI ranking and drug properties
DILI risk categories and drug properties were obtained from 
LTKB and Chen et al. (2016). The drugs were classified in-
to three categories (most-DILI-concern, less-DILI-concern or 
no-DILI-concern) based on FDA labels. Table S1 in Chen et al. 
(2016) contains DILI risk categories, daily doses, lipophilic-
ity (logP), and reactive metabolite (RM) formation for 354 
drugs (124 most-DILI-concern, 162 less-DILI-concern, 68 no- 
DILI-concern). We used this data set for subsequent analysis. 
The daily dose (mg/day) was transformed to the log10 scale in the 
predictive model. The data for drugs used in our analysis is re-
produced in Table S11 of the supplementary data.

AOPs 
AOPs were obtained from the AOPwiki website2. Note that a 
proportion of these AOPs is still under development and could 
undergo modifications before being accepted by the Organisation 
for Economic Co-operation and Development (OECD). To sup-
plement the description of AOPs related to DILI in building pre-
dictive models, we also incorporated proposed AOPs from sever-
al published papers on hepatic steatosis, liver fibrosis, cholesta-
sis, and liver tumors (Vinken, 2013; Mellor et al., 2016; Horvat et 
al., 2017; Gijbels and Vinken, 2017). 

Drug targets and enzymes from DrugBank
Molecular targets and metabolizing enzymes for each drug were 
obtained from the DrugBank website3.

Tox21 assay endpoints
Tox21 endpoints were downloaded as part of the ToxCast data-
base (invitroDBv34). The results of Tox21 assays were reported 

tivity Map (CMap; Lamb et al., 2006) project, the L1000 project 
has developed a high throughput transcriptomic assay using 978 
“landmark” genes from human cells (Subramanian et al., 2017). 
Whole transcriptome profiles for multiple cell lines have been 
generated in response to around 20,000 small molecule pertur-
bagens, thus providing an excellent resource for studying chemi-
cal toxicity at the transcriptome level. These are just a few prom-
inent examples of high throughput data sets that could be used 
for toxicological evaluations in conjunction with bioinformatics 
approaches.

It is expected that by combining these data sources for high 
throughput assays with those for organism level phenotypes 
(e.g., ToxRefDB, Liver Toxicity Knowledge Base (LTKB)), we 
will be able to build predictive models for organism level tox-
icity. On the other hand, achieving this goal poses significant 
challenges. As is the nature of high throughput data, thousands 
of endpoints are potentially available for each chemical. These 
could be cellular, cell free, protein binding, gene expression re-
porter, cell viability, mitochondrial integrity, or other types. 
However, it is of common knowledge in data sciences that blind-
ly increasing the dimension of predictors can lead to models with 
poor performance (e.g., Hastie et al., 2016). This is especially 
challenging in the context of toxicity testing, where an individu-
al problem’s training data usually contains chemicals numbered 
in the hundreds, which is often fewer than the number of poten-
tial predictors (assays). Moreover, as a practical matter, perform-
ing all available assays for all compounds all the time is rarely 
desirable.

On the other end of the spectrum, mechanistic knowledge is 
a critical part of toxicity evaluations. With solid mechanistic 
knowledge of a chemical’s effect on biological systems, one can 
focus on specific entities (genes, proteins, organelles) that are ex-
pected to be perturbed by the chemical and screen out the irrele-
vant assays. This could drastically reduce the number of assays to 
be considered and simplify the modeling problem. One challenge 
here is the difficulty of comprehensively collecting the mecha-
nistic data or knowledge. The adverse outcome pathway (AOP) 
framework provides a convenient way to access the mechanistic 
knowledge concerning toxicity (Ankley et al., 2010; Krewski et 
al., 2010). AOPs are represented as biological maps with a se-
quence of events, consisting of molecular initiating event (MIE), 
key events (KE), and adverse outcome (AO). These describe a 
toxicity pathway by linearly organizing the causal information 
(Allen et al., 2014; Villeneuve et al., 2014; Burden et al., 2015). 
Efforts have been made to map pathways from transcriptome da-
ta analysis to AOPs for biomarker discovery (van der Veen et al., 
2014; Labib et al., 2016) and to accelerate AOP development by 
fusing transcriptomic data and literature knowledge (Bell et al., 
2016; Nymark et al., 2018). However, using AOPs alone to ex-
tract relevant information from data of high throughput assays is 
still a challenging task.

1 doi:10.14573/altex.1908151s
2 https://aopwiki.org/ (accessed October 2018)
3 https://www.drugbank.ca
4 https://www.epa.gov/chemical-research/exploring-toxcast-data-downloadable-data
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in dose-response format, with three replicates at each dose (see 
Filer et al., 2016 for details). To derive a standardized score for 
each chemical, the maximum median response across doses was 
divided by the baseline median absolute deviation.

Expression levels from L1000 
Data for gene expression levels from L1000 assays were ob-
tained from Gene Expression Omnibus5 with the accession num-
bers GSE92742 and GSE70138. The replicate-collapsed z-scores 
(Level 5 data) were extracted with the CMapR package (Enache 
et al., 2019) and further processed using the R statistical software 
(version 3.5.0). The data represent 978 measured landmark genes 
and 9196 inferred genes (83% of the transcriptome). This data set 
includes the expression profiles for multiple cell lines with the 
same chemical perturbagen. For our analysis, experiments using 
the HepG2 cell line were used whenever available. Otherwise, 
data from experiments using the MCF7 cell line were used. If 
multiple experiments were available for the same cell line, the 
experiment designated as “exemplar” by the L1000 team was 
used. Otherwise, the one with the highest transcription activity 
score as defined in the data set was used. The transcriptional sig-
natures used for each drug can be found in Table S11.

2.2  Matching drug information in DrugBank to AOPs
DrugBank was queried with 354 FDA labeled drugs (from Chen 
et al., 2016); information for drug targets and metabolizing en-
zymes was retrieved for each drug. The drug targets and enzymes 
were then used to query AOPwiki to retrieve any AOPs including 
these terms in the description of any of its KEs or MIE. Individu-
al AOPs with shared events were merged to form AOP networks. 
By covering the available possible biological contexts and mech-
anisms of a toxicity pathway, AOP networks likely expand the 
relevant mechanistic information of a chemical pathway. These 
networks were then visualized and analyzed with Cytoscape6 and 
the R statistical software.

2.3  Building predictive models for DILI
Combined data set
AOPs related to drug-induced liver injury were collected from 
AOPwiki and published literature as described above. Potential 
predictors of DILI (gene expression, nuclear factor binding, cel-
lular response) were extracted from the description of MIEs and 
KEs for these AOPs. Data regarding these potential predictors 
were then extracted from the Tox21 and L1000 data sets perti-
nent to the drugs in Chen et al. (2016). Not all assays were per-
formed for all drugs; the data set contained a subset of predictors 
and drugs, which we describe in the Results section. This set of 
Tox21 and L1000 data was combined with daily doses, logP, and 
RM (reactive metabolite formation) in Chen et al. (2016) to form 
the final predictor set. The corresponding data for DILI risk cate-
gories served as the response variable in our model. 

Logistic regression with elastic net penalty 
To build a predictive model for assessing DILI risk, we se-
lected drugs labeled as no-DILI-concern and most-DILI-con-
cern, which were represented as y = 0 (no-DILI-concern) or  
y = 1 (most-DILI-concern), respectively, in our model. Using x 
to denote the vector of predictors, we have the logistic regres-
sion model:

where β0 and β are regression coefficients. We applied an elastic 
net penalty (Zou and Hastie, 2005) for regularization of the mod-
el fitting as the number of predictors was still high relative to the 
sample size after the AOP-based selection. Specifically, the re-
gression coefficients were estimated as:

 

Here N represents the number of drugs, ‖β‖2
2 and ‖β‖1 represent the 

ridge and Lasso penalties, respectively. The parameter α, which 
modulates the relative strength between the ridge and Lasso pen-
alties, was set to 0.9 in our analysis. The parameter λ specifies 
the magnitude of penalties, selected by leave-one-out cross-val-
idation. The fitting of the elastic net regulated logistic regression 
was performed with the glmnet package (Friedman et al., 2010) 
and custom R scripts.

The elastic net method is used here as a means to prevent over-
fitting, which would reduce the generalizability of the model 
beyond the data on which the model is fitted. Once the regres-
sion coefficients have been estimated, the standard interpre-
tation for logistic regression still applies, i.e., the log odds of a 
drug being most-DILI-concern is defined by the linear predictor  
β0+βT x. The linear predictor is a linear combination of the mea-
surements from in vitro assays. As it represents the log odds of 
being most-DILI-concern, it can be used as a score for DILI po-
tential. More details about logistic regression can be found in 
Kleinbaum and Klein (2010) and other sources.

3  Results

To illustrate the utility of AOPwiki as a knowledge source for 
DILI and to demonstrate the potential to use AOPs in predictive 
modeling, we report the results from two different approaches. 
In the first approach, we used known properties of drugs (tar-
gets and enzymes retrieved from DrugBank) to query AOPwi-
ki. With this approach, we aimed to evaluate the potential of us-
ing existing AOPs as a knowledge repository to discover adverse 
outcomes (DILI in particular) while having partial information 
about the drug. In the second approach, the AOPs are used to 
guide selecting potential predictors (gene expression, nuclear re-

5 https://www.ncbi.nlm.nih.gov/geo/
6 https://cytoscape.org/
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Fig. 1: AOP networks formed by AOPs with hits by most-DILI-concern drugs 
The green nodes are MIEs, the red nodes are AOs, and the yellow nodes are KEs. AOPs were retrieved from AOPwiki.
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formation from DrugBank. Similarly, queries using 68 no- 
DILI-concern drugs resulted in hits on 17 different AOPs, of 
which six are related to liver and are shared with those identi-
fied by most-DILI-concern drugs. Not surprisingly, some path-
ways involved in a wide range of metabolisms are also hit by 
no-DILI-concern drugs, though at a lower frequency than that of 
the most-DILI-concern drugs. AOPs related to “long term AhR 
receptor activation driven direct and indirect gene expression 
changes”, and “activation of Cyp2E1 in the liver” were among 
the examples. In contrast, the AOP with the MIE “inhibition of 
bile salt export pump (ABCB11)” was found to be consider-
ably less common (only ~4%) for no-DILI-concern drugs ver-
sus most-DILI-concern drugs (~41%). The frequencies of hits on 
the most common liver AOPs are illustrated in Figure 2 for both 
most-DILI-concern and no-DILI-concern drugs. In the supple-
mentary data1, we also provide code for an R-Shiny application7, 
with which users familiar with the R statistical software can ex-
plore the AOP networks related to DILI and examine drugs con-
nected to each AOP. Figure S11 illustrates the hits on AOPs that 
do not have liver related adverse outcomes.   

3.2  Develop predictive model for assessing DILI risk
To build a predictive model for DILI risk, we utilized drug prop-
erty data from LTKB (daily dose, logP, and RM formation), nu-
clear receptor binding activities from Tox21, and gene expres-
sion data from L1000. To select a suitable subset of Tox21 and 

ceptor binding, cellular functions) to build a predictive model us-
ing predictors from multiple data sources. This demonstrates the 
potential of AOPs to serve as the backbone for data integration 
from diverse sources as well as being a means of dimension re-
duction for effective modeling.

3.1  Matching DrugBank information with AOPs
Using the list of 124 drugs categorized as most-DILI-concern in 
Chen et al. (2016), we were able to match the drug targets and en-
zyme information in DrugBank to the MIEs or KEs of 23 AOPs 
in AOPwiki. Of these, 10 AOPs are liver related (defined as those 
with liver related adverse outcomes). As some of the events are 
shared among AOPs, these AOPs form seven distinct AOP net-
works. Figure 1 illustrates the AOP networks related to DILI. De-
tailed information regarding these AOPs is given in Table S21. 
The number of drugs that potentially perturb these seven differ-
ent pathway networks varies. The pathway with the MIE “long 
term AhR receptor activation driven direct and indirect gene ex-
pression changes” was found to be the one with most hits by 
most-DILI-concern drugs (~ 43% of 124 drugs), followed by 
the pathway with the MIE “inhibition of bile salt export pump  
(ABCB11)” (~ 41%). Similarly, about 35% of the most-DILI- 
concern drugs investigated have a hit on the pathway “activation 
of Cyp2E1 in the liver” as the MIE. 

In total, 64 drugs in the most-DILI-concern category have ap-
parent associations with liver related AOPs solely based on in-

Fig. 2: Frequency of hits  
on some of the common AOPs 
with liver related AOs  
by most-DILI-concern and  
no-DILI-concern drugs 
The AOPs are labeled by their 
MIEs. The percentage was based 
on 124 most-DILI-concern and  
68 no-DILI-concern drugs.

7 https://shiny.rstudio.com/reference/shiny/1.1.0/
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to the imbalance in the data (92 most-DILI-concern, 54 no- 
DILI-concern), resulting in an accuracy of 0.63. Combining se-
lected L1000 variables with the three drug properties increased 
the accuracy to 0.90, while adding selected Tox21 variables re-
sulted in a slight further improvement to 0.91. Including a ran-
dom set of molecular predictors did not improve the performance 
appreciably. To evaluate the utility of the model’s predictions for 
drugs that were not in the model, leave-one-out cross-validation 
was performed using the same model fitting procedure, with the 
result reported in Table 2B. Under cross-validation, the model ob-
tained a sensitivity of 0.88 and a specificity of 0.72, with an ac-
curacy of 0.82. Without the AOPs as guides, the accuracy was 
reduced to 0.73. We also fitted weighted versions of the logistic 
model; the results suggest that the accuracy is not overly sensitive 
to the proportion of positives and negatives in the data. It is, how-
ever, possible that the performance might differ for target popula-
tions with very skewed ratios of positives to negatives. 

Of note is that the linear predictor, β0+βT x, in Equation (1) can 
serve as a quantitative indicator of DILI risk on a logistic scale. 
We calculated this linear predictor for 286 drugs with complete 
data in Chen et al. (2016), including 140 less-DILI-concern 
drugs in addition to the most-DILI-concern and no-DILI-con-
cern drugs. The results are displayed in Figure 3, and showed 
a good separation of most-DILI-concern and no-DILI-concern 
drugs, while less-DILI-concern drugs occupied a range concen-
trated in the middle.

The regression coefficients of the top eight predictors obtained 
using the penalized logistic regression model with all three data 

L1000 data, information for relevant genes, nuclear receptors, 
and cellular functions was extracted from AOPwiki and litera-
ture, as described in the Methods section. These potential pre-
dictors are listed in Table 1. The genes ATAD5 and ATF6 were 
added as surrogates for DNA damage and endoplasmic reticu-
lum stress as represented by KEs in the network. This resulted 
in a total of 50 potential predictors, of which the data were avail-
able from either Tox21 or L1000 for 41 predictors. These 41 high 
throughput assay endpoints were combined with the three drug 
properties, resulting in a total of 44 predictors forming the ma-
trix of independent variables in the logistic regression model. 
After combining these predictors with the response variable for  
DILI risk (most-DILI-concern or no-DILI-concern), we had a 
data set of 92 drugs labeled most-DILI-concern and 54 drugs la-
beled no-DILI-concern. The values for all the predictors for these 
drugs are provided in Table S31. For predictors derived from 
Tox21 and L1000 data sets, the values were preprocessed, as de-
scribed in the Methods section.

A logistic regression model was then fitted to the data with the 
elastic net penalty; the magnitude of penalty (determined by the 
value of λ) was selected by cross-validation. The result of mod-
el fit is reported in Table 2A; it obtained a sensitivity of 0.96 (88 
of 92 most-DILI-concern drugs) and a specificity of 0.83 (45 of  
54 no-DILI-concern drugs), with an accuracy of 0.91. For com-
parison, fitting the logistic model with three drug properties 
– daily dose, logP, and RM – in Chen et al. (2016) resulted in 
an accuracy of 0.84. Model fit with only Tox21 data or L1000 
data led to models fitting only most-DILI-concern values due 

Fig. 4: Predictors with the largest coefficients in the penalized 
logistic regression model

Fig. 3: The linear predictor in the penalized logistic regression 
model can be used as a quantitative measure of DILI risk
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4  Discussion

The increasing availability of in vitro assays for toxicologi-
cal evaluations (Kavlock and Dix, 2010; Tice et al., 2013) is a 
major 21st century development in the field of risk assessment 
for chemicals and drugs. Researchers can now obtain measure-

sources are plotted in Figure 4. The generation of reactive me-
tabolites (RM) and the daily dose have the largest coefficients, 
followed by ATAD5 (an indicator of DNA damage), SCD-1 (a 
key enzyme in fatty acid metabolism), CYP7A1 (an important 
enzyme in cholesterol metabolism and bile acid synthesis), and 
others.

Tab. 1: Potential predictors using high throughput cellular assays 
These predictors were extracted from AOP descriptions in AOPwiki and the literature. Those with corresponding measurements  
in the L1000 or Tox21 data (indicated in the Source column) were included in building the predictive model. NR, nuclear receptor binding; 
gene, changes in gene expression.

Name Type AOP network Source

MRP3 gene cholestasis L1000

CYP2E1 gene tumor L1000

apoptosis general fibrosis  

PPARgamma NR steatosis Tox21

PPARalpha NR steatosis, tumor  

PPARbeta NR steatosis  

AHR NR steatosis, tumor Tox21

NR1I3 (CAR)  NR steatosis, cholestasis  

HNF4A NR steatosis  

PXR NR steatosis, cholestasis  

NRF2 NR steatosis Tox21

FXR NR steatosis, cholestasis Tox21

SHP NR steatosis, cholestasis  

LXRalpha NR/gene steatosis  

LXRbeta NR/gene steatosis  

PPARgamma NR/gene steatosis L1000

AKT2 gene steatosis L1000

ATAD5 gene fibrosis L1000

ATF6 gene fibrosis L1000

ESR1 NR steatosis Tox21

NR3C1 NR steatosis Tox21

MMP mitochondrial fibrosis Tox21

NFkB NR fibrosis Tox21

RARA NR steatosis Tox21

RXRA NR steatosis Tox21

Tab 2: Performance of the penalized regression model

B. Leave-one-out cross-validation

                      Actual

  No concern Most concern

Predicted No concern 39 11

 Most concern 15 81

Name Type AOP network Source

CD36 gene steatosis L1000

ChREBP gene steatosis L1000

SREBP-1c gene steatosis L1000

FAS gene steatosis L1000

SCD-1 gene steatosis L1000

HSD17B10 gene steatosis L1000

PCK1 gene steatosis L1000

LDLR gene steatosis L1000

CYP1A1 gene steatosis L1000

ACC-1 gene steatosis L1000

FOXA2 gene steatosis L1000

CPT1A gene steatosis L1000

HMGCS2 gene steatosis L1000

HSD17B4 gene steatosis L1000

MTTP gene steatosis L1000

ApoB100 gene steatosis L1000

NTCP gene cholestasis L1000

OATP1B1 gene cholestasis L1000

CYP7A1 gene cholestasis L1000

OSTA gene cholestasis L1000

OSTB gene cholestasis L1000

MRP2 gene cholestasis L1000

UGT2B4 gene cholestasis L1000

CYP3A4 gene cholestasis L1000

SULT2A1 gene cholestasis L1000

A. Model Fit

                         Actual

  No concern Most concern

Fitted No concern 45 4

 Most concern 9 88
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they are expected to improve with the continued refinement of 
AOPs. Some AOPs with adverse outcomes not related to the liv-
er can nonetheless be informative to liver toxicity; however, we 
did not pursue using them in this proof-of-concept study. Despite 
these challenges, our results regarding DILI suggest that AOPs 
are a useful framework and knowledge source for discovering 
potential risks of adverse effects of drug candidates when certain 
molecular properties are present. In the future, both querying of 
AOPs and predictive model building could benefit from more in-
tegration of molecular pathways with AOP networks. Nymark et 
al. (2018) and others have already attempted this. 

Having confirmed the relevance of AOPs in detecting DILI 
risk, we explored a second approach. To build a predictive mod-
el, we used AOPs and knowledge from the literature to identify 
predictors from high throughput assays. With an effective predic-
tive model, one can systematically obtain measurements of rele-
vant predictors and evaluate the risk provocatively. Using AOPs 
to narrow the range of predictors is highly effective in this setting 
because, although high throughput assays like those in ToxCast/
Tox21 and L1000 can provide a comprehensive profile of a bio-
logical state under chemical perturbation, directly using all end-
points is not practical or efficient. 

When different sources of data for in vitro assays need to be in-
tegrated, the problem is even more daunting. To keep the work-
load at a manageable level, we limited the consideration of liver 
toxicity related AOPs to AOPwiki and three recent papers. Fo-
cusing on gene expression, nuclear receptor binding, and cellu-
lar functions, we extracted a total of 50 potential predictors from 
these AOPs. To obtain data for these potential predictors, we fo-
cused on the Tox21 and L1000 projects due to their well-estab-
lished presence in the research community and their wide cov-
erage of drugs. This gave us data on 41 predictors. Also includ-
ed were the three drug properties from LTKB and Chen et al. 
(2016): daily dose, logP, and RM, due to the well-established im-
portance of these variables in DILI risk. The resulting 44 predic-
tors found with all the measurements were of a manageable size 
for our data on 146 drugs. Still, a regularization procedure, in our 
case the elastic net, was needed to achieve optimal performance 
and prevent overfitting. 

Due to its critical importance in drug development, DILI risk 
has been extensively studied. Chen et al. (2016) and other pa-
pers have suggested that daily dose, logP, and RM formation are 
valuable indicators for daily risk. Our result confirms this point, 
as the logistic model with these three variables is already use-
ful in separating most-DILI-concern and no-DILI-concern drugs. 
Adding in vitro assay endpoints from AOP-selected L1000 and 
Tox21 assays further improved the model’s performance, result-
ing in an accuracy of 0.91. Without applying existing knowledge 
from Chen et al. (2016) and AOPs, the model with only in vi-
tro assays performs poorly. This demonstrates the importance of 
integrating existing knowledge whenever possible, even in the 
age of data-driven science. On the other hand, the in vitro assay 
data used for the modeling is far from ideal, as the Tox21 and 
L1000 assays were carried out on varying cell lines, using doses 
and treatment conditions that might not be a good match for our 

ments on hundreds of endpoints for various biological functions, 
which raises the prospect of fast, cheap, and less animal-inten-
sive approaches to toxicity testing. However, incorporating di-
verse high dimensional data in toxicity testing, especially with 
the limited sample sizes used in drug development, is no easy 
task. Based on experiences in high dimensional modeling, it is 
well-known that naively including ever-increasing dimensions 
of data will lead to poor predictions (Hastie et al., 2016). It has 
also been demonstrated that, in many cases, parsimonious mod-
els based on concrete biological knowledge can outperform 
complex algorithms (see an example in Banerjee et al., 2017). 
Additionally, a biologically anchored testing scheme involving 
a moderate number of tests is preferable to indiscriminately car-
rying out hundreds of tests each time, for practical and financial 
reasons. In most cases, however, some mechanistic knowledge 
is available but is incomplete. It is thus extremely valuable to 
integrate the diverse sources of high dimensional in vitro assays 
with available mechanistic knowledge in toxicological model-
ing. Here, we present our work in this direction using DILI as an 
example, illustrating the excellent potential, and some challeng-
es, of this approach.

Systematically reviewing mechanistic knowledge usually re-
quires significant expertise and time. The AOP concept provides 
a convenient framework for encoding mechanistic knowledge 
collaboratively and communicating it in a standardized fashion. 
Although many AOPs are still under development, we wanted to 
evaluate the potential of AOPs as the source of easily accessible 
mechanistic knowledge for toxicological evaluations. In the first 
section of our study, we evaluated the utility of AOP networks 
that we queried with molecular properties of drugs in providing 
alerts for DILI risk. The molecular targets and enzyme informa-
tion in DrugBank, though by no means complete, were used to 
perform the queries, as they reflect the typical level of knowledge 
on approved drugs at the molecular level. The results confirmed 
the value of AOPs in providing mechanistic knowledge. More 
than half of most-DILI-concern drugs were linked to AOPs relat-
ed to DILI, with concentrations in well-known pathways such as 
AhR receptor activation and inhibition of bile salt export pump 
(Lee et al., 2010; Stieger, 2010; Morgan et al., 2010; Montanari 
et al., 2016). Thus, simply referencing AOPs could provide in-
sight into potential adverse outcomes. 

On the other hand, the result also points to significant challeng-
es. Nearly half of the most-DILI-concern drugs in this exercise 
were not connected to AOPs related to liver toxicity. The cause 
was likely not an actual absence of connection, but a combina-
tion of incomplete knowledge in the form of DrugBank entries, 
and the difficulty of performing the mapping. Another challenge 
was that only some pathways, such as the inhibition of bile salt 
export pump, are highly specific; some AOPs were matched to 
both most-DILI-concern and no-DILI-concern drugs. This was 
not surprising, given that metabolic pathways are often shared 
by various biological functions, making those AOPs less useful 
for evaluating the DILI risk despite their frequent involvement 
in toxicity. The AOP networks generated from AOPwiki were 
not perfect and could be further rationalized manually, though 
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Fig. S1: Frequency of hits on some AOPs with 
adverse outcomes not related to the liver by both 
most-DILI-concern and no-DILI-concern drugs 

AOP.liver.r and AOP.liver.RData  are the R code and data files  
to run an R-Shiny application for visualization of DILI related 
AOP networks. 
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