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excretion (ADME) of chemicals (xenobiotics), has transformed 
our understanding of in vivo pharmacology. Toxicokinetics (TK) 
is defined as the quantitation of the time course of toxicants in 
the body during the processes of ADME or clearance of toxi-
cants. In other words, toxicokinetics is a reflection of how the 
body handles toxicants as indicated by the plasma concentration 
of that xenobiotic at various time points. When the toxicokinetic 
processes lead to a “biologically effective” dose of toxicant in 
the system, an adverse event is produced (Fig. 1). 

Astonishingly, some areas of regulatory toxicology still do 
not require information on kinetics, although this significantly 
improves our understanding of the human relevance of toxicology 
findings. Kinetic phenomena, i.e., how the chemical becomes 
bioavailable to the cells as redistributions and transformations 
occur, are also of importance in in vitro models. However, 
although computational models of xenobiotic kinetics, such as 
physiologically-based pharmacokinetic (PBPK) models, rely on 

1  Introduction

Paracelsus, hailed as the founding father of toxicology, is known 
for the quote: “All things are poison and nothing is without 
poison; only the dose makes a thing not a poison.” Today, we 
have refined this notion: The portion of the dose that interacts 
with the target in the body – the biologically active internal dose 
– is critical. Also, we know that this rule has exceptions, i.e., the 
dose-response relationship does not explain some phenomena 
in toxicology such as idiosyncratic toxicity, which is frequently 
driven by individual immune responses. These insights have rev-
olutionized in vivo toxicology, especially drug development, but 
other areas that have not yet embraced them and still base their 
assessments on hazard only, such as the ingredients of industrial 
chemicals and food ingredients, are straggling.

Pharmacokinetics (PK, also most recently termed biokinetics), 
i.e., the assessment of absorption, distribution, metabolism, and 
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input from in vitro models, the in vitro kinetics are sometimes 
overlooked when the models are built and when the results are 
interpreted. Another area that has been left behind is in vitro 
toxicology. While in vitro models of metabolism and biological 
barriers have existed for close to two decades, until recently most 
in vitro toxicology neglected metabolism and for the most part 
did not routinely trace or understand the fate of substances in the 
culture dish, i.e., the in vitro PK or biokinetics (Fig. 2). However, 
since kinetic phenomena can skew the in vitro results, they need 
to be considered to make any useful in vivo predictions. 

Computational models are increasingly playing the role of a 
bridge between in vitro data and in vivo predictions, increasing 
the predictive abilities of the in vitro results. There were signif-
icant advances in recent years in the area of structure-based in 
silico modeling of ADME properties (Moroy et al., 2011; van 
de Waterbeemd and Gifford, 2003). This resulted in a multitude 
of commercial and free in silico ADME prediction tools1. While 
hazard generally is a yes/no attribution of a property, it should 
be linked to some dose/response-relationship, because the kinet-
ics of a substance are highly dynamic. This prompts the need for 
dynamic modeling of toxicokinetics, which is regularly used to 
explain adverse events in preclinical regulatory toxicology, but is 
also increasingly used to support predictive toxicology. Reverse 
biokinetics, i.e., quantitative in vitro to in vivo extrapolation (QI-
VIVE), is critically important for predicting in vivo exposures 
corresponding to active concentrations on a cell and tissue level 
(and, thus, for making predictive use of in vitro findings). This 
information represents the complement to hazard identification 
and characterization by cellular models in developing a systems 
toxicology approach. The ultimate goal of QIVIVE (Blaauboer, 
2010) or building a systems toxicology approach (Hartung et al., 

2012) clearly requires integration of in silico and in vitro tools that 
combine hazard assessments with ADME property predictions.

In the context of developing a roadmap for animal-free 
systemic toxicity testing, an expert workgroup discussed the 
contribution of kinetics (Basketter et al., 2012), which was 
further considered at two stakeholder forums in Brussels and 
Washington (Leist et al., 2014). Some key conclusions were:
– Kinetics is not a stand-alone test, but a necessary complement 

to in vitro tests.
– Mainly in silico approaches are in use, but they need further 

optimization.
– There is a need for more quality control in data collection and 

the incorporation of in vitro data into in silico models.
– There is a need for bioavailability and urinary excretion 

models.
– Overall, the reliable and predictive in vitro and in silico tools 

are within reach, with reasonable investment of time and 
resources.

This Food for Thought … article details the state-of-the-art of 
ADME in toxicology as well as the challenges and opportunities.

2  What is ADME?

When developing new chemicals, scientists, clinicians, toxicolo-
gists and regulators aim to alleviate a disease (pharmaceuticals), 
increase crop production (pesticides) or improve physical ap-
pearance (cosmetics), thus expecting a new chemical substance 
(xenobiotic) to change the physiological state of an organ or a 
pathway. This ability of the new chemical to alter biology nor-
mally abides by dose-response rules and is termed pharmacody-

1  See https://www.click2drug.org/ is a comprehensive database o available computational ADME/QSAR/docking tools, 
maintained by the Swiss Institute of Bioinformatics.

Fig. 1: The toxicological process

https://www.click2drug.org/
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that validating and adopting early ADME assays may provide 
a competitive advantage and mitigate costly risks of failure  
in late clinical development. And it appears that this strategy has 
paid off: Changing the drug development strategy by employ-
ing early in vitro ADME screens (Kassel, 2004) has played a  
key role in reducing failures in clinical trials for PK reasons by 
allowing researchers to optimize ADME properties early, thus 
reducing the probability of PK surprises such as a lack of ef-
ficacy or unexpected and sometimes fatal toxicity in the clinic 
(Arrowsmith and Miller, 2013). In the last decade, attention has 
focused on preventing adverse events and improving predic-
tive ability and reproducibility of efficacy models – the major  
reasons for drug failure in the clinic (Kaitin and DiMasi, 2011). 
A multitude of mechanistic in vitro assays have been devel-
oped that address mechanisms of human toxicity2. However, 
we would like to return our attention to ADME and ask if we 
have indeed “solved” the ADME problem and can now return to  
addressing toxicity. 

3  ADME properties leading to toxicity: 
Lessons from the pharmaceutical industry

The high attrition rate of drugs entering human trials has con-
cerned the pharmaceutical field for many years (Hartung et 
al., 2013). By 1997 it was reported (Kennedy, 1997) that poor 
ADME properties and toxicity accounted for 60% of failures of 
chemicals in the drug development process. It turned out that 
many failures could be attributed to differences in kinetics be-
tween animal models and humans (Hann and Simpson, 2014; 
Lin, 1995; Martignoni et al., 2006; Lin, 1995; Musther et al., 

namics (PD). When a new chemical enters the body, however,  
the body identifies it as foreign and as a potential toxicant and, 
thus, engages systems in many organs to resist its absorption, 
limit its distribution, and metabolize/transform it into a form  
that is easily eliminated/excreted from the body in urine or feces. 
All this is done by a human, animal, or plant in order to avoid  
potential toxicity – hence, ADMET, or ADME-Tox. These in-
sights have been a part of chemical development for over a cen-
tury. The associated research is frequently referred to as pharma-
codynamic (PD), pharmacokinetic (PK) and toxicokinetic (TK) 
studies (Fig. 2). 

Formerly, all these studies, aimed at understanding what a  
body would do to a new chemical, or xenobiotic, were performed 
in experimental animals, since at the time these were the only 
PK and toxicity models available. Reliance on animal models to 
make predictions about the human response requires species ex-
trapolation, and that has been proven to be rather complex and  
unreliable (Chu et al., 2013; Hatton et al., 2015; Smirnova et 
al., 2014). In the last decade it was widely recognized that ex-
perimental animal models need to be improved upon, not only 
for reasons of ethics and predictive value, but also for economic 
reasons. As pharmaceutical industry profits fell, industry and 
academic researchers analyzing the research and development 
process realized that deficiencies in the low predictive abilities 
of tests prior to clinical trials in humans are a serious problem. 

However, thanks to molecular and cell biology as well as high-
throughput screening technologies, which made human proteins 
and tissues available and in vitro testing feasible, scientists,  
beginning at the end of the last century, began to develop in vitro 
technologies for evaluating human ADME properties of chemi-
cals. The pharmaceutical industry led the way, quickly realizing 

Fig. 2: The toxicological paradigm

2  In Vitro Toxicity Testing: Technologies and Global Markets – PHM017E. Retrieved February 15, 2015,  
from http://www.bccresearch.com/market-research/pharmaceuticals/in-vitro-toxicity-phm017e.html

http://www.bccresearch.com/market-research/pharmaceuticals/in-vitro-toxicity-phm017e.html


Tsaioun eT al.

ALTEX 33(4), 2016346

4  ADME: Where basic and regulatory  
science meet

Regulatory authorities have relied on in vivo testing to predict 
the behavior of new molecules in the human body since the 
1950s. Bioavailability, tissue distribution, pharmacokinetics, 
metabolism, and toxicity are typically assessed in one rodent 
and one non-rodent species (dog or nonhuman primate) prior to 
administering a drug to a human to evaluate pharmacokinetics 
and exposure in a clinical trial (Phase 1). The standard required 
methodology for biodistribution assessment uses radioactively 
labeled compounds. This is time- and resource-intensive both in 
terms of synthesizing sufficient amounts of radioactively labeled 
compound and of performing the animal experiments (Oldendorf, 
1970). Therefore, these assays are implemented rather late in the 
preclinical development process when more resources are released 
to study the few molecules that have advanced to that stage.

With advances in cell and molecular biology, high-throughput 
screening, and miniaturization technologies in the 1990s, as well 
as stem cell-derived models at the beginning of this century, 
early in vitro ADME studies have been developed to predict 
in vivo animal and human results at a level of speed and cost-
effectiveness appropriate for the early discovery stage. This 
progress in the science of ADME has created a new paradigm for 
advancing compounds from hit to lead, from lead to advanced 
lead, and on to nominated clinical candidates. Drug discovery 
programs using human enzymes and human-origin cells early in 
the discovery phase provide highly actionable information about 
the drug-likeness of new molecules, the potential to reach target 
organ, and indications of known human mechanisms of toxicities. 
ADME assessment of varying complexity is routinely performed 
on compounds that have shown in vitro efficacy in conjunction 
with, or just prior to, demonstrating early proof of principle in 
vivo (Tsaioun et al., 2009). 

The efficacy of test compounds is now routinely assessed using 
a battery of in vitro models such as target binding or phenotypic 
screening followed by confirmation through in vivo efficacy 
models in an appropriate animal model. The predictive abilities 
of these tests depend largely on the therapeutic area and the 
animal model (Veazey, 2013; Tan et al., 2013). Understanding 
the relationship between drug plasma and tissue concentrations 
(PK) and efficacy (PD), termed PK/PD relationship, is crucial 
in supporting efficacy results and defining therapeutic and safety 
windows. 

In vivo PK studies in a variety of animal models are routinely 
used for lead optimization to assess drug metabolism and 
absorption. It is important to note that there are significant 
differences in absorption and metabolism among species 
that cause conflicting predictions of degradation pathways of 
new chemical entities (NCEs). It is a standard practice in the 
pharmaceutical industry to use primary hepatocytes (Shih et al., 
1999) and other models (Khetani et al., 2013) from different 
species to understand species differences in metabolism, identify 
metabolites that are uniquely human, and select species for 
preclinical development that are most relevant to the target 
organism. Table 1 lists the major assays used for prediction of 
ADME properties that underlie safety evaluation. 

2014; Shanks et al., 2009). Tackling these issues, it should be 
noted, has reduced the number of failures caused by ADME  
pro blems over the years (Kola and Landis, 2004): in 1991, ad-
verse pharmacokinetic and bioavailability results were the most 
significant cause of attrition (about 40%) (Kubinyi, 2003), 
drop  ping to less than 10% in 2000. The availability of high-
throughput and in silico techniques in drug metabolism and 
pharma cokinetics were critical in causing the reduction (van 
de Waterbeemd, 2002; van de Waterbeemd and Gifford, 2003; 
Dearden, 2007). 

The cost of drug approvals has crossed the $1 billion per 
drug mark, and the cost of advancing a compound to Phase 1 
trials can reach $100 million, according to the Tufts Center for 
the Study of Drug Development (DiMasi et al., 2003). Given 
these huge expenditures, substantial savings can accrue from 
early recognition of problems that would alert to a compound’s 
potential to cause adverse effects leading to attrition (Caldwell 
et al., 2009; Kola and Landis, 2004). The costs associated with 
withdrawing a drug from the market after approval are even 
greater. Terfenadine, for example, is a potent hERG cardiac 
channel ligand, but it is metabolized by the liver enzyme 
CYP 3A4. If terfenadine is administered as a mono-therapy, 
it is metabolized by CYP 3A4 into fexofenadine, which is 
not a hERG inhibitor. In real clinical situations, however, 
terfenadine was frequently co-administered with the CYP 3A4 
inhibitors ketoconazole or erythromycin (Honig et al., 1993). 
Blocking the metabolism of terfenadine caused over-exposure 
of patients, leading to increases in plasma terfenadine to levels 
that caused cardiac toxicity (Honig et al., 1992). The resulting 
withdrawal of the drug from the market (FDA, 2009) cost an 
estimated $6 billion. Another example is the broad-spectrum 
antibiotic trovafloxacin, which was introduced in 1997 and 
soon became Pfizer’s top seller. The drug was metabolically 
activated in vivo and formed a highly reactive metabolite that 
caused severe hepatotoxicity (Ball et al., 1999). Trovafloxacin 
received a black box warning from the FDA in 1998 (Mandell 
and Tillotson, 2002) costing Pfizer $8.5 billion in lawsuits. 
With the development of technologies to measure the impact 
of new molecules on cardiac ion channels such as hERG and 
other important ADME parameters early in the discovery and 
development process, such liabilities are now recognized earlier, 
allowing for safer analogs to be advanced to more expensive 
preclinical and clinical stages.

The drug discovery industry is experiencing dramatic struc-
tural change and is no longer just the domain of traditional large 
pharmaceutical companies. Venture capital-funded startups, 
governments, venture philanthropy, and other nonprofit and 
academic organizations are important participants in the search 
for new drug targets, pathways, and molecules. These organiza-
tions frequently form partnerships, sharing resources, capabili-
ties, risks, and rewards of drug discovery. Thus, it is becoming 
increasingly important to ensure that the money from investors, 
donors, and taxpayers is used efficiently to develop safe drugs 
for unmet medical needs. ADME profiling has been proven to 
play a crucial role and has demonstrated effectiveness in accel-
erating the discovery process and preventing poor drug candi-
dates from entering clinical development. 
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and was designed to regulate the manufacture, import, mar-
keting, and use of industrial chemicals, including ingredients 
used for formulations otherwise regulated, such as pesticides 
and cosmetics. Manufacturers, importers and downstream us-
ers must demonstrate that the manufacture, import, and use of a 
substance does not adversely affect human health and that risks 
are adequately controlled (Hartung, 2010b; Sacco and Vezzoni, 
2004). The need for determining the toxicokinetics (TK) pro-
file is listed in Annex I (Section 1.0.2) of the legislation, but in 
Annexes VII-X it is not specifically required and its considera-
tion is needed only if these data are available (Annex VIII-X). 
However, REACH does provide guidance (Guidance on infor-
mation requirements and chemical safety assessment, Chapters 
R.7C and R.8) on the use of TK for selection of dose, route of 
administration, and test species, as well as on route-to-route ex-
trapolation in the derivation of a no-effect level (DNEL). Each 
chemical should be registered with ECHA, along with infor-
mation on properties, uses, and safe handling practices. While 
REACH regulation challenges the chemical industry to develop 
rapid, relevant, cost-effective in vitro assays to reliably predict 
human toxicity, it does not require ADME data, nor does it pro-
vide guidance on efficient new methods validation or acceptance 
by the agency. This is causing delays in the successful imple-
mentation of these assays, as chemical manufacturers want to 
use the validated assays that will get their products to the mar-
ket faster (Hartung and Rovida, 2009). Thus, European REACH 
legislation has no requirement for ADMET data, and European 
cosmetics registration guidelines also do not mandate its use (al-
though kinetics data are required). 

In June 2016, President Obama signed into law the Frank R. 
Lautenberg Chemical Safety for the 21st Century Act6, which 

It is standard practice for pharmaceutical companies to include 
the drug-drug interactions (DDI) information in investigational 
new drug (IND) submissions, which help agencies evaluate human 
metabolism and potential safety of drug candidates. For example, 
in vitro DDI studies may now be conducted under the guidance 
from FDA3, 4 and EMA5. The guidance documents outline meth-
ods for conducting CYP-450 inhibition and induction and P-glyco-
protein (P-gp) and other transporter interaction studies. 

5  Chemical safety testing and ADME 

While ADME assays and principles remain the same, the ap-
plication of these principles is unique to each industry and in-
fluenced by its regulatory environment, target market, route of 
exposure, type of exposure, safety margins, commercial factors, 
and other parameters. Correspondingly, the importance and im-
plementation strategy of the various ADME assays are based 
upon the specifics of the industry. ADME assays can also be cat-
egorized into those that are routine and those reserved for more 
advanced profiling. This division is also a function of cost effec-
tiveness and the need for specific information in development of 
a particular chemical. For instance, the prohibitive cost of some 
in vitro ADME assays, such as those using primary hepatocytes, 
are forcing the chemical and cosmetic industries to develop in 
silico prediction tools that allow them to model ADME proper-
ties based on cost-effective physico-chemical inputs. 

The European Chemicals Agency (ECHA) manages the 
technical, scientific, and administrative aspects of the Registra-
tion, Evaluation, Authorisation and Restriction of Chemicals 
(REACH) regulation. REACH came into effect in June 2007 

3  http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf
4  FDA (2006). Guidance for industry. Drug interaction studies – study design, data analysis, and implications for dosing and labeling.  
Draft Guidance. http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf
5  EMA (2012). Guideline on the Investigation of Drug Interactions, CPMP/EWP/560/95/Rev. 1.  
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
6  https://www.epa.gov/sites/production/files/2016-06/documents/bills-114hr2576eah.pdf

Tab. 1: ADME assays that inform toxicity at different stages of drug discovery and development

Stage of the Program Absorption Distribution Metabolism

Hit-to-lead Physicochemical properties Plasma protein binding Efficacy species and human liver 
 (solubility, LogP)   microsomal stability, the constitutive  
 parallel artificial membrane  androstane receptor (CAR) and  
 permeability assay (PAMPA)  pregnane X receptor (PXR) trans- 
   activation assay

Lead optimization CaCo-2 colon epithelial In vivo tissue distribution (rodent) Efficacy species, toxicology species 
 permeability test  and human primary hepatocyte 
 Madin-Darby canine kidney cells  stability and metabolite identification,  
 transfected with the human MDR1  Cytochrome P450 (CYP) inhibition,  
 gene (MDCK-MDR1) permeability   CYP induction 
 assay  
 In vivo PK (rodent)  
 Major transporters (MDR-1, BCEP)  

IND-enabling studies In vivo PK (rodent and non-rodent) In vivo tissue distribution CYP inhibition, CYP induction 
 Comprehensive transporter panel   (rodent and non-rodent)  

http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf
http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm292362.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf
https://www.epa.gov/sites/production/files/2016-06/documents/bills-114hr2576eah.pdf
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tion (EC) 1107/20099. PPPs that are designed to control pests are 
toxic by definition and are normally actively introduced into the 
environment. Therefore, extensive testing before any decision on 
authorization is mandatory. Testing requirements for the assess-
ment of active substances with respect to possible human health 
effects include a battery of in vivo tests (acute, subchronic, and 
chronic tests, and reproductive toxicity) in Annex II to Directive 
91/414/EEC, while Annex III lists testing requirements for the 
final plant protection product. 

Recently, a roadmap to integrate in silico and in vitro ap-
proaches in the area of safety assessment of food and food in-
gredients was published (Blaauboer et al., 2016) in which the 
emphasis was also on the kinetic behavior of the compounds 
under study.

7  The critical role of ADME for  
the future of in vitro toxicology

7.1  Well-established uses  
of ADME in in vitro toxicology
Prediction of metabolites
A broad variety of cellular and subcellular models of metabolism 
of xenobiotics are available (Costa et al., 2014; Donato et al., 
2008; Gómez-Lechón et al. 2003; Gordon et al., 2015; Vermeir 
et al., 2005; Williams, 2014). Many focus on liver metabolism 
because of the extensive metabolic capacity of that organ, its 
central role in blood circulation, and as an important elimination/
detoxification organ. Moreover, marked differences between 
species in liver metabolism confound the in vivo extrapolations.

There are still some challenges for predicting in vivo metabo-
lism from in vitro data (Anderson et al., 2009), though at least 
hepatic clearance can be predicted well by scaling in vitro data 
(Barter et al., 2007; Brown et al., 2005; Carlile et al., 1999; Grif-
fin and Houston, 2005; Houston and Kenworthy, 2000). Recent 
developments with hepatic models include the emergence of 
stem cell-derived liver cell models (Szkolnicka and Hay, 2016), 
broad access to primary human cells via commercial vendors, 
and cell lines with some metabolic capacity, such as HepaRG 
cells, derived from human hepatocellular carcinoma (Anders-
son et al., 2012; Guillouzo et al., 2007). Hence, increasingly, 
the in vitro data is relied upon for prediction of the in vivo me-
tabolism of xenobiotics (Rostami-Hodjegan and Tucker, 2007).

Biological barrier models 
Barrier models have advanced significantly since the first  
description of the intestinal barrier CaCo-2 cell model by  
Artursson (1990). Models of the outer epithelia of the human 
body – the skin, the intestine and the lung – have found appli-
cations in both research and industrial settings as solid alterna-
tives to animal testing (Sexton et al., 2011; Gordon et al., 2015). 
A variety of approaches to modeling these barriers are currently 
employed in fields ranging from the utilization of ex vivo tissue to 

amends the Toxic Substance Control Act (TSCA) of 1976. The 
new law includes much needed improvements, including a man-
datory requirement for EPA to evaluate existing chemicals with 
clear and enforceable deadlines; new risk-based safety stand-
ards; increased public transparency for chemical information; 
and consistent sources of funding for EPA to carry out its respon-
sibilities under the new law. It requires that decisions for testing 
and assessing chemicals should be based on the weight of the 
scientific evidence. However, the exact role ADMET data will 
play in the new TSCA is not yet clear. Although ADME is not 
specifically mentioned in the document, it is implied throughout 
when in vitro, alternative, computational, and toxicity prediction 
methods are mentioned. While most toxicologists would agree 
that ADME needs to be thoroughly understood to predict safety 
and kinetics of chemicals in target organisms, there are concerns 
that if it is not mentioned in the regulatory document, indus-
tries will de-prioritize it in their safety testing. In line with the 
NAS 2007 Report “Toxicity Testing in the 21st Century: A Vision 
and a Strategy”7 a range of papers appeared within the ILSI/-
HESI program “RISK 21” (Beaumont and Smith, 2009; Doe et 
al., 2016; Embry et al., 2014; Pastoor et al., 2014), whereby an 
integral part of schemes predicting toxicity of compounds is the 
study of ADME.

The area in which kinetics is particularly important is 
nanotoxicology (Hartung, 2010a). The size of the particle, its 
composition and the kinetics of release of the active molecules 
are adding to the complexity of studying the ADME and 
toxicity of nanomaterials. Subsequently, we are only starting to 
understand the dramatically altered kinetics of nanomaterials 
and their biological consequences in vivo and in vitro (Hartung 
and Sabbioni, 2011). 

6  Food, feed and food additives 
safety testing and ADME

The European Food Safety Authority (EFSA) is an agency whose 
role is to provide independent scientific advice and information 
in the form of opinions and technical reports to support com-
munity legislation and policies and to collect and analyze data 
allowing assessment and monitoring of risks in the food and feed 
sectors. The work of EFSA is mainly carried out in expert pan-
els dealing with food additives, genetically modified organisms, 
food contaminants, transmissible animal diseases, and pesticides 
and their residues. In Directive 2010/63/EU8, the EU Commis-
sion recommended that alternative models should include in vitro 
and in silico methods, as well as reduction and refinement of in 
vivo tests (Hartung, 2010a). Specifically, for ADME determi-
nation, the EU Commission favored the use of in vitro models 
from the same species as those used in pivotal studies and in 
human materials (liver microsomes and intact cell systems). In 
the European Union, risk assessment and authorization of plant 
protection products (PPPs) is carried out according to Regula-

7  https://www.nap.edu/read/11970/chapter/1
8  http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF 
9  http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1107&from=EN

https://www.nap.edu/read/11970/chapter/1
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF
http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1107&from=EN
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and the need for simplicity versus complexity were focuses of the 
discussions. These advances in barrier models were covered in 
one of our recent workshop report (Gordon et al., 2015).

Pharmacokinetic modeling of the in vivo situation 
Pharmacokinetic models can be divided into two general groups: 
data-based experimental (classical) models and physiologically-
based models (Andersen, 1991; Filser et al., 1995). Physiologi-
cally based pharmacokinetic (PBPK) models (Fig. 3), traditional-
ly used in clinical trial design, are now being developed and used 
in earlier stages of discovery and development across industries. 
PBPK models require in vitro ADME data in addition to informa-
tion about the physical and chemical properties of a compound 

reconstructed in vitro models (Muoth et al., 2016) to chip-based 
technologies (Picollet-D’hahan et al., 2016), new generation of  
parallel artificial membrane permeability assays (PAMPA) (Chen 
et al, 2008) and in silico modeling of gastrointestinal absorption 
approaches with validated commercial models (Gozalbes et al., 
2011; Sjögren et al., 2016). An international group of experts in 
the field of epithelial barriers was convened from academia, in-
dustry, and regulatory bodies to present both the state-of-the-art 
of non-animal models of the skin, intestinal, and pulmonary bar-
riers and to discuss research-based, industry-driven, and regula-
tory-relevant directions for both the development of new models 
and the refinement of existing test methods. Issues of model rele-
vance and preference, validation and standardization, acceptance, 

Fig. 3: A conceptual PBPK model used to predict somatic distribution and elimination

Fig. 4: Pharmakokinetic prediction
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mitochondrial toxicity at early stages in drug development 
(Dykens and Will, 2007). Traditionally, mitochondrial toxicity 
testing is performed in immortalized cell lines that have been 
adapted for rapid growth in a reduced-oxygen atmosphere. 
Their metabolism is often anaerobic (glycolysis) despite hav-
ing functional mitochondria and an adequate oxygen supply. 
Because cells normally generate ATP for energy consumption 
aerobically by mitochondrial oxidative phosphorylation, the an-
aerobic metabolism of transformed cell lines is less sensitive to 
mitochondrial toxicants, causing systematical underreporting in 
toxicity testing (Marroquin et al., 2007; Rodríguez-Enríquez et 
al., 2001). To address this issue, HepG2 and NIH/3T3 cell mod-
els that can be grown in media in which glucose is replaced by 
galactose were developed at Pfizer (Dykens and Will, 2007). The 
change in sugar results in the metabolism of the cell possessing a 
respiratory substrate that is both more similar to normal cells and 
sensitive to mitochondrial toxicants without reducing sensitivity 
to non-mitochondrial toxicants.

Environmental chemicals that accumulate in mitochondria 
include polycyclic aromatic hydrocarbons (PAHs) (Backer and 
Weinstein, 1982); some alkylating agents (Wunderlich et al., 
1972); cationic metals, such as lead, cadmium, mercury, and 
manganese (Atchison and Hare, 1994; Castellino and Aloj, 
1969; Gavin et al., 1992); and some organic chemicals, including 
ethidium bromide, paraquat, and 1-methyl-4-phenylpyridinium 
(MPP+) (Mehta et al., 2008). The presence of cytochrome P450s 
in mitochondria (Omura, 2006) can activate chemicals that  
are relatively nonreactive prior to metabolism, such as PAHs  
and mycotoxins (Dong and Lee, 2009; Genter et al., 2006). 
With the simple reproducible glucose/galactose assay in 
transformed cell lines, chemicals now can be easily screened for 
mitochondrial toxicity.

7.3  The emerging role of ADME in  
in vitro toxicology
In vitro toxicology is increasingly developing methods that satis-
fy the information needs of regulatory toxicology as summarized 
on behalf of the European Commission (Adler et al., 2011) and 
confirmed by independent expert review (Hartung et al., 2011). 
Going a step further, a roadmap was developed by expert consen-
sus on achieving animal-free systemic toxicity testing, including 
toxicokinetics (Basketter et al., 2012; Leist et al., 2014).

In vitro pharmacokinetics 
It should be self-evident that in vitro pharmacokinetics should 
be given the same attention as in vivo (Heringa et al., 2004). 
In vitro behavior of an added substance, however, is usu-
ally neglected in favor of nominal concentrations (Kramer et 
al., 2007). Setting aside the fact that the compounds̕ purity is  
rarely verified experimentally, therefore, making even nominal 
concentrations inaccurate, many other factors affect the effec-
tive amount of substance in vitro (Fig. 5). 

These parameters will change the concentration of free 
substance, which is typically considered available to act on its 
targets (Groothuis et al., 2015). We should keep in mind that 
it is not necessarily the concentration (as peak concentration 
or area under the curve) that matters, but that some lipophilic 

(see example in Fig. 4) to predict the internal dose that will be 
distributed to target organs, and they are increasingly being used 
in risk assessment across industries (McLanahan et al., 2014). 
They can be used for in vitro to in vivo, route to route, and ani-
mal to human extrapolations (Basketter et al., 2012; Espié et al., 
2009; Rietjens et al., 2011). PBPK modeling allows the predic-
tion of the time course of a compound’s concentration in blood 
and target tissues. It also has the potential to address repeated 
dose toxicity testing (Pfaller et al., 2015; Hamon et al., 2015; 
Kramer et al., 2015). Information from other models, such as 
those predicting metabolite formation, are increasingly included 
in PBPK models, rendering results that are more predictive (Lock 
et al., 2012). Some experts argue that PBPK models incorporat-
ing data from quantitative structure-activity relationship (QSAR) 
models, coupled with in vitro assays of tissue/organ toxicity, have 
the potential to replace in vivo animal studies for quantitative as-
sessment of the biological activity of xenobiotics (Blaauboer, 
2010). An ECVAM workshop (Bouvier d’Yvoire et al., 2007) ad-
dressed the state of physiologically-based pharmacokinetic (and 
toxicokinetic) modeling, highlighting needs and opportunities to 
meet the 3Rs agenda. The report was instrumental in establishing 
the EU consortium Predict-IV, which combined PBPK modeling 
with long-term exposures and omics technologies to address re-
peated dose toxicity. The results of the project are summarized in 
a special issue of Toxicology In Vitro, December 2015 (Pfaller et 
al., 2015). 

7.2  Newer ADMET prediction tools
Some of the newer ADMET tools that can aid toxicologists in 
both the pharmaceutical and chemical safety areas capitalize 
on advances in our growing understanding of mechanisms 
underlying human toxicity and the development of tests to 
detect it. 

Mitochondrial toxicity 
One specific example of how the chemical industry can directly 
benefit from the experience of the pharmaceutical industry is via 
knowledge of the mitochondrial function and toxicity and the 
simple cost-effective assay that is now routinely performed to 
predict this mitochondrial toxicity in drugs. 

Over the past decade, enormous strides have been made in 
our understanding of the role that drug and environmental toxic-
ity can play in causing mitochondrial dysfunction. In addition 
to generating ATP and playing a role in apoptosis, mitochondria 
play critical roles in other key processes including calcium, cop-
per, and iron homeostasis; heme and iron-sulfur cluster assem-
bly; synthesis of pyrimidines and steroids; thermogenesis and 
fever response; and calcium signaling (Meyer et al., 2013). Mi-
tochondrial toxicants injure mitochondria by inhibiting respira-
tory complexes of the electron chain, inhibiting or uncoupling 
oxidative phosphorylation, inducing mitochondrial oxidative 
stress, or inhibiting DNA replication, transcription, or transla-
tion (Rodríguez-Enríquez et al., 2001). 

Many drugs that have been withdrawn from the market due 
to organ toxicity have been found to be mitochondrial toxicants, 
which caused the pharmaceutical industry to put resources into 
understanding the mechanism and developing tools to predict 
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8  Assessing human metabolism in vitro

Most in vitro models used to lack metabolic capacities (Coecke 
et al., 2006). One might argue, though, that models with no  
metabolic capacity may be at least as informative as models with 
a metabolism that is substantially different from that of the target 
species (human), as in the case of animal models. How often 
might metabolism by animal species give false assurances of hu-
man safety due to differences in metabolism? At the same time, 
lack of defense mechanisms might be as important as lack of 
activation by metabolism to bias in vitro effects and thus model 
predictivity (Smirnova et al., 2015).

This bottleneck is being actively addressed by a number of aca-
demic and industry groups with liver models such as HepaRG 
cells (Guillouzo et al., 2007), micropatterned co-cultured human 
hepatocytes (Khetani et al., 2013) and others. These models not 
only have the potential to provide information about human me-
tabolites, leap-frogging the uncertainties of extrapolation from 
animal models, but, moreover, can provide information about in-
dividual differences in metabolism, test chronic dosing and allow 
the detection of individual differences in metabolism, entering 
the realm of personalized safety prediction (Skardal et al., 2016).

9  Quantitative in vitro to in vivo 
extrapolation (QIVIVE)

In vitro toxicology ultimately desires to predict the effects of  
a xenobiotic on a whole organism level, and that requires ex-
trapolation (QIVIVE). One of the authors (B.B.) and colleagues 
long ago spearheaded a discussion of integrated testing of in 
vitro, in silico, and ADME information (Blaauboer et al., 1998; 
Blaauboer, 2010; DeJongh et al., 1999; Forsby and Blaauboer, 
2007). Over the years, they and others have developed a num-
ber of successful examples, including neurotoxicity (DeJongh 

substances can accumulate in biological systems, making the 
absolute amount (and thus the proportion of cell culture media 
versus cell mass) a determinant of a substance’s effects.

Another aspect that has received much attention in recent 
years is the difference in the kinetic considerations between 
2-dimensional traditional in vitro systems and in vivo systems. 
In vivo kinetics using any route of administration normally fol-
low the mathematical Bateman function (Garrett, 1994) with 
the xenobiotic plasma concentration time course increasing to 
a peak (Cmax) and then decreasing as a function of distribution 
to the tissues, metabolism and elimination. In this mathemati-
cal model, the necessary simplifications of body processes and 
mathematical principles are applied to the various processes. A 
basic type of model used in pharmacokinetics is the compart-
mental model. Compartmental models are categorized by the 
number of compartments needed to describe the chemical’s be-
havior in the body. There are one-compartment, two-compart-
ment, and multicompartment models. The compartments do not 
represent a specific tissue or fluid but may represent a group of 
similar tissues or fluids. These models can be used to predict the 
time course of drug concentrations in the body. In contrast to in 
vivo kinetics, in vitro the substance typically is added instanta-
neously, and remains in the test tube or multi-well plate for the 
duration of the experiment. The consequences of this are many, 
e.g., the long exposure of the cells to the same concentration 
of the chemical may be responsible for a false-positive toxicity 
result, as in an in vivo situation the realistic exposure would be 
much shorter and to lower concentrations due to distribution and 
elimination processes or induce defense mechanisms that make 
the cell more resilient, as recently hypothesized (Smirnova et al., 
2015). In response to this problem, multiple 3-dimensional and 
“organ-on-a-chip” technologies are being developed that address 
this issue of kinetics, introduce shear stress and otherwise mimic 
the blood flow to the tissue (Jonczyk et al., 2016; Marx et al., 
2016; Oomen et al., 2016; Visone et al., 2016)

Fig. 5: In vitro biokinetics, or possible fate of a molecule 
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processes as integrated systems of many diverse, inter-
acting components. It involves (1) collection of large sets 
of experimental data (by high-throughput technologies 
and/or by mining the literature of reductionist molecular 
biology and biochemistry);  
(2) proposal of mathematical models that might account 
for at least some significant aspects of this data set; 
(3) accurate computer solution of the mathematical 
equations to obtain numerical predictions; and  
(4) assessment of the quality of the model by comparing 
numerical simulations with the experimental data.

This concept is being applied to toxicology (Ekins et al., 2005). 
The move towards systems toxicology and massively parallel 
techniques opens new opportunities while also creating prob-
lems in deriving meaningful information out of the wealth of 
generated data (Hartung et al., 2012). Such data is increasingly 
represented as networks in which the vertices (e.g., transcripts, 
proteins, or metabolites) are linked by edges (correlations, 
interactions, or reactions, respectively). Networks can vary 
in function. Some are undirected graphs that enable only the 
study of structure whereas others, like biochemical networks, 
are characterized by interactions of varying strengths, strongly 
nonlinear dynamics, and saturating response to inputs (Wagner, 
1996).

Network analysis has evolved into a very active, interdiscipli-
nary area of research encompassing biology, computer science, 
and social and information sciences. Many studies are highly 
theoretical, but they may hold a lot of promise to identify sig-
natures (SoT) and pathways of toxicity (PoT) (Adeleye et al., 
2015; Kleensang et al., 2014). Network research has three pri-
mary goals. First, it aims to understand statistical properties that 
characterize the network structure in order to suggest appropri-
ate ways to measure these properties. This is very relevant to 
SoT identification. Second, it aims to create models of networks 
for understanding the meaning of these properties and how they 
interact. Third, it aims to predict the behavior of networked 
systems on the basis of measured structural properties, and this 
can be very useful in elucidating PoT. Given the dose-response 
nature of toxicity and, thus, dependence of hazard assessment 
on exposure, it is natural to start thinking about development of 
the concept of systems ADME-Tox. ADME is moving hazard 
data to a systems level. At the same time, in silico tools such 
as the combination of PBPK and QIVIVE in systems biology 
has improved the prediction of ADME (Ekins, 2016; Rostami-
Hodjegan, 2012), making it feasible to make predictions of hu-
man toxicity using ITS approaches exclusively using in vitro 
and in silico tools. 

Ultimately, systems toxicology aims to model the effects  
of toxicants in metabolic networks (Bugrim et al., 2004; 
Tamaddoni-Nezhad et al., 2007). Integrating cellular 
metabolism into a multi-scale, whole-body model is being 
actively investigated (Krauss et al., 2012) and drug effects 
on these networks, termed systems pharmacology, have been 
proposed (Li et al., 2012). This depends critically on combining 
dynamic and kinetic information. Thus, the avenues toward 
systems toxicology require the development of components for 
ADME prediction. 

et al., 1999; Forsby and Blaauboer, 2007), acute oral toxicity 
and repeated dose toxicity (Gubbels-van Hal et al., 2005), de-
velopmental toxicity (Louisse et al., 2010; Verwei et al., 2006) 
and genotoxicity (Paini et al., 2010). Within the framework of 
the European integrated project Predict-IV (Pfaller et al., 2015) 
work was devoted to pharmacokinetic modeling of in vitro ex-
periments, physiologically based pharmacokinetic (PBPK) mod-
eling, mechanistic models of toxicity for the kidney and brain, 
large scale dose-response analysis methods, and biomarker dis-
covery tools (Hamon et al., 2015). The value of this emphasis 
on biokinetics for evaluating the toxicity of compounds after re-
peated exposure of cellular systems in vitro was clearly shown in 
this project (Kramer et al., 2015; Wilmes et al., 2013).

10  ADME contributions to 
integrated testing strategies

We are increasingly forced to acknowledge that our information 
about the safety of substances cannot be satisfied by single as-
says. At the same time, a simple battery of tests bears the risk 
of accumulating false positives if it is built on a static, limited 
modeling data set. A more intelligent “integrated” combination 
of different tests with in silico tools with machine-learning capa-
bilities promises to optimize resources and achieve better predic-
tivity. This has been termed integrated testing strategies (ITS) or, 
more recently, integrated approaches to testing and assessment 
(IATA) by OECD (Hartung et al., 2013; Tollefsen et al., 2014; 
Kleensang, 2013). It is clear that an ideal ITS includes informa-
tion about ADME to improve the prediction of in vivo results.

The need for knowledge about the PK behavior of compounds 
becomes clear in an example of dermal exposure to cosmetics, 
where the abovementioned shift in toxicology is evident. This 
shift from apical endpoints in intact animals after exposure to a 
certain external dose to mechanistically based descriptions of the 
toxic processes makes it evident that emphasis should be put on 
the estimation of the internal dose in different tissues and cells. 
For these processes, the application of PBPK models is essential 
(Yoon et al., 2015). Thus, there is a need to describe the processes 
of dermal uptake and the consequent distribution of compounds to 
arrive at internal exposure estimates. This will also aid the design 
of in vitro testing, since it will inform the appropriate choice of 
cell and tissue culture systems as well as the relevant range of con-
centrations applied to them. Once the toxicity of the compound 
(and its relevant metabolites) is quantified in the relevant in vitro 
systems, the application of biokinetic modelling in the process of 
reverse dosimetry is just as important (Louisse et al., 2010).

11  The advent of systems ADME-Tox

The components of the body affected by a toxicant represent a 
network. Systems biology uses the relationships between all el-
ements rather than approaching them separately, and attempts to 
unite biological fields (Hood and Galas, 2003). Systems biology 
is defined as (Duffus et al., 2007; Ferrario et al., 2014):

Study of the mechanisms underlying complex biological 
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of these tools will be applicable to in vitro and in vivo ADME 
study assessment and should be a part of any systematic chemi-
cal safety assessment. EBTC and its methods working group 
will shortly publish Guidance on Evidence-based Toxicology, 
which will describe the process for evaluating in vitro and in 
vivo toxicity assays using evidence-based methods. The guid-
ance will define how evidence-based methods can be used to 
assess toxicological studies transparently. 

Evidence-based methodologies can help improve ADME data 
rigor and validity. Incorporating systematic reviews (Stephens 
et al., 2016) and other aspects of evidence-based approaches 
such as quality scoring (Samuel et al., 2016) into toxicology 
and ADME can help us ensure that our use of these sciences 
to evaluate drugs and chemicals is objective and transparent. 
In summary, ADME data need to be a part of any systematic 
review of chemical safety, and should be part of the process of 
evidence-based toxicology.

13  Conclusions

The critical role of ADME for interpreting in vivo data has been 
shown by the lowering of attrition of drugs in human trials fol-
lowing industry-wide standardization and implementation of 
high-throuput ADME protocols. However, while drug develop-
ment has embraced ADME for predicting and analyzing sub-
stance effects (Singh, 2006; Tsaioun and Jacewicz, 2009; Zhang 
et al., 2012), other fields are not using the ADME information to 
its full potential. For example, the largest regulatory industrial 
chemical program, the European REACH legislation, has no ex-
plicit requirement for ADME. Similarly, cosmetics are typically 
registered in Europe without such data (Hartung, 2008), though 
the ban on animal testing does name kinetics as an information 
requirement under the 2013 legislation. In both cases, kinetics 
information – if incorporated at all – is used for weight of evi-
dence evaluations and to adjust the impact of risk assessment 
hazard. However, as with exposure considerations (which are 
often similarly neglected), the knowledge about bioavailability 
and kinetics of the xenobiotics, could help standardize informa-
tion requirements and adjust safety factors for risk assessments.

The combination of in vivo, in vitro and in silico tools is more 
common here than in many other fields of toxicology. There is 
an enormous need to incorporate in vitro ADME tools in toxi-
cology to improve prediction of human adverse events and 
spare animal lives. To make in vitro data more predictive of the 
whole organism response, we need to address both the kinetics 
of substances in in vitro models and their modeling to extrapo-
late to in vivo predictions. PBPK methods lend themselves to 
such reverse kinetics, but examples of their use for QIVIVE, to 
our knowledge, are not yet generalizable to multiple chemical 
series. The overall premise of PBPK models with their require-
ment for in vitro barrier and metabolism input and their superi-
ority to purely in silico models holds promise for ITS (or IATA) 

12  Evidence-based methodologies and ADME

While ADME studies play an important role in shedding light 
on differences between species, as shown here, understanding 
the kinetics and exposure that underlie toxicity and finding reli-
able ADME data in the literature can be daunting. ADME re-
sults are scattered among hundreds of papers describing experi-
ments performed according to a number of protocols that are not 
always shared in the publications. Finding reproducible results 
that were obtained using the same methods with the same ma-
terials on the same species on the same compound is frequently 
a time-consuming and disappointing exercise. Finding reliable 
data in the literature on the differences between rat and human 
liver metabolism for a particular chemical, for example, can be 
even more challenging. To make useful comparisons, methodo-
logical details, such as the source of a testing material, how it 
is handled, and testing conditions (incubation temperature, con-
trols used, stock, and working concentrations of all reagents, 
and testing time points) need to be required by publishers and 
mentioned explicitly in publications. Differences in these meth-
odologies and equipment used by different laboratories contrib-
ute to the many redundant experiments, leaving us with no easy 
way to compare the results. 

This situation regarding ADME test quality and reliabil-
ity is comparable to how reviews were handled in clinical re-
search before the evidence-based medicine/health care (EBM/
EBHC) movement established systematic reviews as the best 
approach to summarizing all available evidence relating to a 
research question. The need for reproducible, transparent, and 
comprehensive syntheses of the ever-growing volume of medi-
cal evidence triggered the development of rigorous approaches 
to review the literature:  question formulation, literature search, 
evidence selection, and evidence integration. The Cochrane Col-
laboration10 played a key role in fostering this process over the 
past two decades. The systematic reviews that are at the heart of 
evidence-based approaches have become the lifeblood of medi-
cine by evaluating dozens to hundreds of studies involving thou-
sands of patients in different clinical settings to reveal the larger 
trends that smaller analyses may conceal. Incorporating system-
atic reviews and other aspects of evidence-based approaches into 
toxicology and ADME can help us ensure that our evaluation of 
drugs and chemicals is objective and transparent. 

The Evidence-based Toxicology Collaboration (EBTC)11 was 
established in 2011 (Zurlo, 2011) following a conference in 
Como in 2007 (Griesinger et al., 2008) to bring evidence-based 
(EB) methodologies into toxicology (Guzelian et al., 2005; 
Hoffmann and Hartung, 2006; Hartung, 2009; Hoffmann et al., 
2014) and safety sciences. It has a number of multi-stakeholder 
working groups focusing on specific tasks, such as transfer of 
EB methods from medicine to toxicology, literature-based test 
methods comparison and validation, in vitro high-throughput 
methods for comparison and validation, and development of 
risk of bias tools for in vitro and in silico/modeling studies. All 

10  http://www.cochrane.org/
11  http://www.ebtox.org

http://www.cochrane.org/
http://www.ebtox.org
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