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tiation) and non-genotoxic (including both initiation and propa-
gation phases). Both categories are comprised of several more 
specific modes of action (MoA). 

Over the last two decades there has been much debate about 
the “Hallmarks of Cancer”, highlighting the need to better un-
derstand the biological mechanisms underlying cancer onset and 

1  Introduction 

The current thinking is that there are three main stages of carci-
nogenicity: initiation, promotion and progression, and that the 
mechanisms by which chemicals cause carcinogenicity can fall 
into two broad categories: genotoxic (a mechanism causing ini-
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Relevant in vitro assays are briefly described such that, with re-
spect to the 3Rs test methods and assessment strategies, relevant 
in vitro Organisation for Economic Cooperation and Develop-
ment (OECD) Test Guideline (TG) development for chemical 
hazard assessment will be stimulated.

2  What are non-genotoxic carcinogens?

Carcinogens can be categorized as either predominantly geno-
toxic or non-genotoxic according to their specific pathogenic 
mechanism. Genotoxic carcinogens, also known as DNA-reac-
tive carcinogens, interact directly with DNA through the forma-
tion of covalent bonds, resulting in DNA-carcinogen complexes. 

NGTxC are substances that act through secondary mecha-
nisms that do not involve direct interaction with DNA; they do 
not induce mutation in (short term) eukaryotic and prokaryotic 
mutation assays nor do they induce direct DNA damage in the 
target organ. They also include “epigenetic” carcinogens, where 
the term “epigenetic” is sometimes used to encompass the full 
spectrum of transcriptional regulatory processes that appear to 
mediate environmental influences and change a cellular state 
to reflect past and current (chemical) exposures (Greally and 
Jacobs, 2013). Here we consider that epigenetic changes com-
prise changes in chromatin (DNA methylation and/or histone 
modifications) and non-coding RNAs, including microRNAs. 

progression (reviewed in Hanahan and Weinberg, 2000, 2011; 
Smith et al., 2015). Initially six hallmarks were described in 
2000: sustained proliferative signaling; evasion of growth sup-
pression; resisting cell death; replicative immortality; induced 
angiogenesis; and activated invasive metastasis (Hanahan and 
Weinberg, 2000). To this set, further hallmarks have been added, 
including dysregulation of cell metabolism and avoidance of im-
mune destruction. Genetic instability and chronic inflammation 
underlie these hallmarks, as do epigenetic perturbation mecha-
nisms, particularly changes in DNA methylation (Moggs et al., 
2004; Thomson et al., 2012, 2014; Miousse et al., 2015), see 
Figure 1. Whilst this evolving somatic mutation theory of cancer 
is widely but not universally accepted (Sonnenschein and Soto, 
2013), it provides a useful grouping format to assist with the 
clustering of relevant assays for the biological processes asso-
ciated with cancer initiation, promotion/progression, and tumor 
formation for regulatory test method development and integrated 
approaches to testing and assessment (IATA) purposes. It also 
accommodates the growing body of information about the bio-
logical processes underlying each of the hallmarks; clearly there 
are a number of different pathways underlying each.

Here we examine what non-genotoxic carcinogens (NGTxC) 
are, the current European and also international chemical regu-
latory requirements and difficulties with respect to NGTxC, and 
how an IATA could be explored and a framework ultimately be 
developed to assist regulators in their assessments of NGTxC. 

Fig. 1: Hallmarks of cancer with associated modes of action (MoA) and existing assays that address particular aspects  
of certain hallmarks 
(adapted and modified from Goodson et al., 2015) 



    Jacobs et al.

ALTEX 33(4), 2016 361

Both non-genotoxic and genotoxic substances can trigger oxida-
tive stress (Ellinger-Ziegelbauer et al., 2005), see also Table 1, 
which can also lead to adverse outcomes other than cancer. One 
of the main pathways related to oxidative stress is orchestrated 
by p53. The modulation of p53-downstream genes controls cell 
cycle and apoptosis. These two endpoints may or may not be re-
lated to cancer onset and progression. However, a string of p53-
signaling pathway-dependent genes are directly related to angio-
genesis and metastasis, including the master gene TSP1, which 
plays an important role in bladder cancer (Mitra et al., 2006). 
The modulation of different genes in the p53-signaling pathway 
can also lead to different fates of cells affected by oxidative 
stress damage, which may proceed through apoptosis or to steps 
leading to DNA damage (Filomeni et al., 2015). Oxidative DNA 
damage may be critical in carcinogenesis if it results in extensive 
enough changes to induce gene mutations. However, the induc-
tion of oxidative stress may also regulate gene expression either 
directly through activation of gene transcriptional pathways or 
indirectly through hypomethylation (Nishida and Kudo, 2013; 
Casey et al., 2015; Vaccari et al., 2015; Wu and Ni, 2015). Epi-
genetic mechanisms in relation to regulatory needs are reviewed 
by Greally and Jacobs (2013) and Marczylo et al. (2016), and In-
ternational Agency for Research on Cancer (IARC) cancer clas-
sification by Herceg et al. (2013). Taken together, these reviews 
demonstrate the major roles that such epigenetic mechanisms 
can play in tumor formation, often in combination with other 
mechanisms, and how this understanding can start to be applied 
for OECD and IARC purposes. A mechanism-based approach 
provides valuable insights with respect to the test method combi-
nations that could be developed, also employing current OECD 
TGs (as Tab. 1 suggests), in order to obtain an IATA for NGTxC. 
Table 2 provides examples of molecular regulators of the ver-
tebrate epigenome and Table 3 provides molecular epigenomic 
choices (Greally and Jacobs, 2013).

Of these, the three principle mechanisms DNA methylation, 
histone modification and miRNA are particularly promising 
with respect to assay development and augmentation for de-
tecting NGTxC, as they are often key elements of many of the 
cancer hallmarks (as indicated on the right side of Fig. 2). Rel-
evant information about DNA methylation, RNA and miRNA 
expression studies and chromatin structure and modification 
data can already start to be derived from the literature, together 
with analyses to identify markers for detection of NGTxC with 
epigenetic activity. This information can be used in combina-
tion with the key event assay blocks identified in Table 1, spe-
cific examples being endocrine receptor (Zhang and Ho, 2011, 
reviewed in Greally and Jacobs, 2013) and xenobiotic receptor 
activation (Lempiainen et al., 2011). One of the major chal-
lenges when studying epigenetic changes inferred by NGTxC 
is to link these epigenetic changes to adverse outcomes. Pre-
liminary review suggests that association of NGTxC exposure 
with miRNA’s may contribute to the WoE for downstream ad-
verse outcome pathway (AOP) linkages, but specific epigenetic 
machinery may differ between adverse outcomes. Taking the 
male germline as an example, we can relate an MIE such as an-
drogen receptor (AR) activation with a negative correlation to 

NGTxC can act via epigenetic mechanisms, as reviewed by 
Thomson et al (2014). Additionally, NGTxC can also act via 
other well-known mechanisms, many of which underlie the 
hallmarks shown in Figure 1, such as: peroxisome prolifera-
tion; immune suppression; receptor-mediated endocrine modu-
lation; inhibition of intercellular communication; induction of 
tissue-specific toxicity; inflammatory responses; disruption of 
cellular signaling or structures by changing the rate of either 
cell proliferation or of processes that increase the risk of genetic 
error; disruption of certain negative cell feedback signals that 
can enhance proliferative signaling (e.g., the oncogenic effect of 
mutations in the Ras gene stem from disruption of its negative 
feedback system) (Hanahan and Weinberg, 2011); and muta-
tions in tumor suppressor genes that allow cells to evade growth 
suppression and contact inhibition. 

Thus, NGTxC act through a large and diverse variety of 
different and in some cases specific mechanisms. An over-
view of the major mechanisms is provided in Table 1 and 
Figure 1. This is a living list of NGTxC mechanism exam-
ples. With the recent rapid elucidation of epigenetic mecha-
nisms in the NGTxC process, specific epigenetic mechanisms 
of relevance are increasingly being identified. While genetic 
modifications in tumor cells may initiate and drive malig-
nancy, exposure to NGTxC may affect one or more of the 
biological traits underlying the hallmarks of cancer. NGTxC 
in this paper therefore refer to carcinogens that are negative 
(or produce ambiguous results) in genotoxicity assays per-
formed to measure biological endpoints, including gene mu-
tations and chromosomal damage (chromosomal aberrations, 
micronuclei formation).

There are a large number of pathways and intervention points 
for NGTxC to contribute to cancer initiation and cancer pro-
gression. In addition, there is evidence to support the theory 
that NGTxC can cause alterations that increase the likelihood 
of genetic instability, which would promote the acquisition of 
a fully malignant and invasive phenotype (Ellinger-Ziegelbauer 
et al., 2009). NGTxC exhibit thresholds and may be reversible 
at some early stages; they are strain, species and tissue specific 
and function often at the tumor promotion stage, while they are 
also able to be tumorigenic alone (such as asbestos). 

From the overview of NGTxC mechanisms presented in Table 
1, it should be noted that assays with endpoints capturing early 
key event mechanisms may provide an individual contribution to 
the Weight of Evidence (WoE) – where multiple sources of infor-
mation are assessed in relation to each other – that is relatively 
poor. For example, measurement of proliferation alone does not 
necessary mean that there will be further downstream pathway 
perturbation leading to angiogenesis. 

In other cases, the mechanism may not be purely non-genotox-
ic. A relevant example of a non-genotoxic mechanism is oxida-
tive stress as it is considered to be one of the best documented 
mechanisms for carcinogenesis together with impacts upon cell 
cycle regression. Oxidative stress is one of the mechanisms 
through which environmental pollutants may induce cell dam-
age, triggering an inflammatory response which may evolve into 
chronic inflammation as a consequence of enduring exposure. 
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Tab. 3: Molecular epigenomic assay choices  
(updated from Greally and Jacobs, 2013)

Molecular mediator	 Detection method		  Strengths and limitations of method

Primary (recommended)

DNA methylation	 Bisulfite 	 MethylC-seq	 Nucleotide resolution, can interrogate most 
	 mutagenesis-based	 (Lister et al., 2009)	 cytosines in genome. 
			   Expensive.

		  RRBS	 Nucleotide resolution, relatively inexpensive. 
		  (Meissner et al., 2008)	 Interrogates limited number of cytosines,  
			   focused on CpG-dense regions.

	 Restriction 	 HELP-tagging	 Relatively inexpensive, tests CpG-dense and 
	 enzyme-based	 (Suzuki et al., 2010)	 depleted contexts. 
		  MSCC (Ball et al., 	 Interrogates limited number of cytosines. 
		  2009)	

	 Affinity-based	 meDIP-seq 	 Can test throughout genome. 
		  (Down et al., 2008)	 Quantitative capacity limited in CpG-depleted  
			   regions, interrogates contiguous groups of CpGs.

	 Microarray-based	 450K Infinium 	 Inexpensive, design targeted to regions of 
		  Methylation BeadChip 	 presumed function. 
		  (Illumina) 	 Interrogates limited number of cytosines,  
		  (Bibikova et al., 2011)	 informativeness depends on design choices.

miRNA	 miRNA-seq 		  Quantitative, can identify previously undiscovered  
			   miRNAs. 
			   Library preparation becoming cheaper and easier.

RNA	 RNA-seq (Nagalakshmi et al., 2008)	 Quantitative, can also generate qualitative data  
			   about transcription such as alternative splicing. 
			   Data analysis approaches still being optimized.

Secondary (alternative)

Chromatin post-translational 	 ChIP-seq (Mikkelsen et al., 2007)	 Tests entire sequenced genome. 
modifications, 			   Resolution limited, not shown to be quantitative. 
chromatin constituents		

Chromatin structure	 DNase-seq (Song and Crawford, 2010)	 Identifies important regulatory regions not located  
			   at annotated promoters. 
			   Not shown to be quantitative.

Tab. 2: Examples of molecular regulators of the vertebrate epigenome 
(from Greally and Jacobs, 2013)

Molecular mediator	 Example	 References

Histone post-translational modifications	 Histone H3 lysine 9 trimethylation 	 Hiragami-Hamada et al., 2009 
	 (H3K9me3), a repressive mark	

Histone variants	 Histone Macro H2A.1	 Bernstein et al., 2008

Nucleosome positioning	 Nucleosome-free regions at gene promoters	 Hartley and Madhani, 2009

Chromatin looping	 Kit regulation by Gata1/Gata2	 Jing et al., 2008

DNA modifications	 Cytosine methylation	 Klose and Bird, 2006

DNA structural variation	 R-loop formation	 Roy et al., 2008

RNA-mediated	 Antisense RNA transcription	 Beiter et al., 2009
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pathways with other toxicity or AOPs. It will therefore be impor-
tant to consider the paradigm of pathway-based responses in the 
discrimination between genotoxic and non-genotoxic chemicals, 
together with understanding the causality of exposures in induc-
ing cancer versus other possible outcomes.

3  Current regulatory requirements and difficulties 
with respect to non-genotoxic carcinogens

Regulatory requirements for carcinogenicity testing of chemicals 
vary from legislation to legislation and region to region; however, 
a standard approach starts with a battery of genotoxicity tests. 
Positive in vitro genotoxicity assays trigger in vivo genotoxicity 
assays, and if these are also positive, they can trigger further more 
involved mammalian testing. Positive in vitro genotoxicity assays 

miRNA-34c (Ostling et al., 2011), altered regulation is noted in 
infertile men (Wang et al., 2011), and it is known that miRNA 
plays a critical role in cleavage in mammalian spermatogenesis 
(Liu et al., 2012), but neither have been reported so far to be 
associated with adverse clinical outcomes in prostate cancer. 
However, there is an adverse association with the downregu-
lation of miRNA-4723 and miRNA 338-3p in prostate cancer 
(Arora et al., 2013; Bakkar et al., 2016). 

A recent review of IARC monograph Volume 100 found that 
this volume identified specific epigenetic substances with non-
genotoxic carcinogenic potential and a recommendation is made 
to identify a priority set of potential epigenetic, non-genotoxic 
carcinogens (Herceg et al., 2013; see also Tab. 4). These exam-
ples illustrate the complexity of the processes leading to carci-
nogenicity, such that chemicals acting through one mechanism 
can trigger another, as well as the complex interaction of cancer 

Fig. 2: Preliminary conceptual overview of an IATA for NGTxC 
The upper left side of this figure shows the chemical independent AOP and existing information source factors (in blue) that can feed 
the NGTxC IATA, whilst the lower left side shows the chemical dependent factors, which include (Q)SARS, read-across and chemical 
categorization, exposure considerations, Absorption, Distribution, Metabolism and Excretion (ADME) factors, TG generated data and other 
possible factors (in purple).
The right hand side of the figure depicts the suggested levels of organization for the NGTxC IATA, with increasing levels of complexity that 
the hallmarks of NGTxC, shown in Figure 1, sit within, underpinned in many cases by epigenetic machinery, as indicated in the epicenter of 
the NGTxC hallmark wheel.
The underlying blue lines with connecting nodes are symbolic of the NGTxC AOP causality network, where key events (KE) and key event 
relationships (KER) can be identified on the basis of the mechanisms and MoA identified in Table 1. As work on the IATA progresses, these 
nodes will be completed as KE, KER and relevant in vitro assays for both the IATA and as potential OECD TGs are identified and assessed 
for relevance and readiness.



Jacobs et al.

ALTEX 33(4), 2016370

studies were actually performed, as from the 2010 deadline. As 
they are rarely performed, few NGTxC might be identified via the 
assessment of these in vivo studies. 

Published final decisions of ECHA can be found at http://
echa.europa.eu/information-on-chemicals/dossier-evaluation-
decisions. The REACH regulation permits registrants to adapt 
the standard testing regime to fill data gaps using existing data, 
weight of evidence, (Quantitative) Structure Activity Relation-
ships ((Q)SAR), in vitro methods, and grouping of substances and 
read-across (ECHA, 2008, 2014). The issues regarding existing 
models and approaches with respect to the acceptance of in silico 
data for NGTxC chemical regulatory purposes are discussed in 
more detail in Section 5.4. 

As there are no (OECD approved) in vitro screening methods 
for NGTxC, it appears likely that many NGTxC remain unidenti-
fied. Consequently the risks they may pose to human health will 
not be managed. 

The situation appears to be similar in other regulatory frame-
works in OECD member countries, i.e., that there is no specific 
chemicals legislation in place to address the NGTxC mode of 
action directly. As part of the regulatory evaluation process, 
further carcinogenicity studies can be requested if deemed nec-
essary. In the United States, guidance is given on how to use 
MoA data (US EPA, 2005; Corton et al., 2014), as available, 
to determine if the substance is genotoxic or not, and inform 
the dose response relationship characterization. Similarly in the 
US, Canada and Japan, for cancer risk assessment, examina-
tion of the various indicators that can be seen within an OECD 
TG study that may alert to a potential NGTxC (e.g., estrogen 
agonists, overt cytotoxicity or cellular proliferation, etc.) is con-
ducted, but there is no specific structured guidance for NGTxC 

can also trigger Globally Harmonized System (GHS) 2 classifica-
tion for mutagenicity. If any of the in vivo genotoxicity tests are 
positive, then under several regulatory schemes a lifetime rodent 
cancer bioassay (RCB) may (or may not) follow. The RCB is the 
standard comprehensive in vivo test for the detection of carcino-
gens, including detection of NGTxC, but the bioassay will seldom 
be performed for chemicals. 

Whilst it has been estimated that 10-20% of recognized human 
carcinogens classified as Class 1 by IARC act by NGTx mecha-
nisms (Hernandez et al., 2009) there are no specific requests to ob-
tain information on NGTx mechanisms of carcinogenicity in sev-
eral chemical regulatory frameworks in OECD member countries. 
As already noted, the current approach to classification of carcino-
gens is based on the results of the in vivo RCB. For example, with 
respect to chemicals entering the European Registration, Evalua-
tion and Authorization and Restriction of Chemicals (REACH)1 
registration process, there is a general requirement that all avail-
able information on the registered substance needs to be submit-
ted in the REACH registration dossier. Moreover, the legislation 
does indicate that when hyperplasia and/or pre-neoplastic lesions 
are observed in repeated dose studies and the substance has a 
widespread use or there is frequent or long-term human exposure, 
further carcinogenicity studies could be considered. However, 
the requirement to perform a carcinogenicity study is conditional 
(see Annex X of REACH Regulation for details). In practice, new 
carcinogenicity bioassays are seldom proposed by the registrants, 
and ECHA rarely requests such data. ECHA reports that only two 
proposals to conduct the RCB have been submitted to ECHA 
(ECHA, 2014). At the REACH registration deadlines of 2010 and 
2013 substances that are manufactured at more than 100 tons per 
annum (tpa), have been registered, and only two carcinogenicity 

1 https://echa.europa.eu/regulations/reach/

Tab. 4: Epigenetic mechanisms and other recognized mechanism(s) of human chemical carcinogens and lifestyle factors  
(adapted from Herceg et al., 2013; IARC, 2012) 

Human chemical 	 Epigenetic mechanisms		  Main recognized mechanism(s)  
carcinogens and 		   
lifestyle factors		   
	 DNA 	 Histone	 miRNA 
	 methylation	 marks		

Arsenic	 X	 X	 X	 DNA repair inhibition, oxidative damage, aneu-/polyploidy

Asbestos	 X		  X	 Free radicals-induced genotoxicity, aneu-/polyploidy,  
				    inflammation

Beryllium	 X			   Genotoxicity, oxidative stress

Cadmium	 X		  X	 Disturbance of DNA repair and tumor-suppressor protein 

Chromium VI		  X		  Genotoxicity

Cyclophosphamide			   X	 Genotoxicity

Diethylstilbestrol (DES)	 X	 X	 X	 Estrogen receptor-dependent pathway

Nickel	 X	 X		  Disturbance of DNA repair, genotoxicity, inflammation

Tobacco smoking	 X	 X		  Mutagenicity, genotoxicity inflammation, oxidative damage

Alcohol consumption	 X	 X	 X	 Oxidative stress, estrogen and androgen increased level,  
				    folate deficiency

http://echa.europa.eu/information-on-chemicals/dossier-evaluation-decisions
https://echa.europa.eu/regulations/reach/
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4  Examples of the role of NGTxC events 
in the tumor development process

In rodents the liver is the target organ that is most commonly 
affected by carcinogens, thus one of the first experimental can-
cer models to highlight the role of non-genotoxic events in the 
tumor multistep process was hepatocarcinogenesis. Hepatocar-
cinogenesis is a progressive process, starting with focal lesions 
of inflamed liver. The neoplastic transformation of hepatocytes 
is a consequence of the accumulation of genetic damage in hy-
perproliferative cells such that inflammation and cell prolifera-
tion are then considered among the initial steps in the liver tu-
mor process. 

The sequence of these events is considered to be mimicked 
in experimental carcinogenesis models. However, tumor forma-
tion in treated animals depends on dose, which should be suf-
ficiently high, and time span, which should be sufficiently long. 
Moreover, the induction of cell proliferation is often required. 
This can be achieved by performing hepatectomy, or by repeat-
edly administering a “tumor-promoting” agent, such as pheno-
barbital, which serves as an inducer of both chemical bioacti-
vation, by stimulating Phase-1 enzymes, and clonal expansion 
of pre-neoplastic cells. A single administration of a genotoxic 
chemical, such as N-nitrosodiethylamine (DEN), often requires 
a very long time to induce the tumor. Tumor formation is also 
strain, sex and age-dependent and it is poorly reproducible. For 
this reason, several experimental models have been developed 
to improve the sensitivity and reproducibility of the in vivo as-
say to study hepatocarcinogenesis in order to highlight the key 
steps leading to the adverse outcome. The experimental models, 
ranging from two-stage studies to xenograft models, however, 
show several limitations. Even if the sequence of events in ex-
perimental models can be considered similar to the tumor pro-
cess in humans, the molecular changes are often of no or low 
significance in humans. As an example, H-Ras mutations in-
duced by the treatment of DEN as a key event leading to tumor 
formation, is a late event in humans, related to the formation of 
metastasis and poor prognosis (Heindryckx et al., 2009). Based 
on the accumulated evidence from data reported in the literature 
over the last 40 years, NGTxC may trigger hepatocarcinogen-
esis through different mechanisms, including the activation of 
Phase-1 enzymes via binding the Constitutive Androstane Re-
ceptor (CAR) (e.g., phenobarbital and some polychlorinated 
biphenyl congeners), binding the Aryl-hydrocarbon Receptor 
(AhR) (dioxin and dioxin-like compounds), or by inducing 
peroxisome proliferation via the Peroxisome Proliferator-Ac-
tivated Receptor (PPARα) (e.g., hexachlorobenzene) (see Fig. 
3). Peroxisome proliferation, however, is another example of 
a species-specific event, whose role in human carcinogenesis 
is debated and generally considered not relevant to humans in 
regulatory evaluations.

On the basis of these mechanisms together with results from 
in vitro assays and two-stage in vivo studies, IARC provided 
a first list of non-genotoxic hepatocarcinogens in 1992, which 
was expanded in the IARC evaluations reported in 2013. The 
lists are included in Tables 5.1-5.4. These substances are known 

identification. Consequently, NGTxC is not well covered/ad-
dressed under the different OECD regulatory jurisdictions.

For GHS purposes, information regarding the type of le-
sion and species affected is an important element to forming 
the conclusions regarding classification for sufficient or limited 
evidence for carcinogenicity. The GHS classification is mainly 
based on the evaluation of complex in vivo long term and carci-
nogenicity data, and the GHS criteria indicate that information 
in two species is often needed to conclude as to whether a sub-
stance is a category 2 or category 1B carcinogen. In this regard, 
it is important to note that several retrospective analyses of car-
cinogenicity data generated in rats and mice have raised doubts 
about the need for two-species testing and revealed that mouse 
studies have not been of substantial added value in regulatory 
decision-making (Billington et al., 2010; Annys et al., 2014). 
Therefore systematic analysis of the GHS category 1 criteria 
for multi-species carcinogenicity will be needed to adequately 
identify NGTxC (Gray et al., 1995), whilst also some uncer-
tainties of this test method in terms of reliability and relevance 
are recognized (Gottmann et al., 2001; Alden et al., 2011). Ad-
ditionally, critical MoA information providing insights into the 
human relevance may be missing (Meek et al., 2014; WHO, 
2007), and this is discussed further below.

As with REACH, there are no formal NGTxC regulation 
procedures to follow in several other chemical regulatory 
frameworks, whilst information on the effect level and/or dose 
response curve and information on the Classification and Label-
ling form an essential step in the risk management of chemicals. 
With a strong international drive to reduce animals testing and 
costs, it is essential that proper and robust methods for address-
ing NGTxC modes of action are developed and put in place. 
This is particularly stimulated by recent discussions between 
OECD member countries on difficulties as to how to meaning-
fully apply individual in vitro tests, such as the Cell Transforma-
tion Assay(s) (CTA), for NGTxC assessment.

At a meeting of the Working Group of the National Coordina-
tors of the OECD Test Guidelines Programme (WNT) in April 
2014, the CTA using Syrian Hamster Embryo (SHE) cells was 
not accepted as a Test Guideline (TG) but was proposed and 
then accepted as a Guidance Document (GD) (OECD, 2015a). 
Therefore, it does not fall under the  Mutual Acceptance of 
Data (MAD) Decision, under which data generated in the test-
ing of chemicals in an OECD member country, or a partner 
country having adhered to the Decision, in accordance with 
TGs and Principles of Good Laboratory Practice (GLP), can be 
accepted in other OECD countries (and partner counties hav-
ing adhered to the Decision), for the purposes of assessment 
and the protection of human health and the environment. This 
greatly reduces the testing that needs to be done for different 
regulatory jurisdictions. A GD only provides guidance as to 
how to use a test. 

At the WNT April 2014 meeting, it was also again recognized 
that no single test can currently demonstrate and predict NGTxC 
(OECD, 2012b). So, appropriate integrated approaches to detect 
and manage these NGTxC are not yet in place. The construction 
of an IATA could be a primary way to address this crucial gap.
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to inform regulatory decision regarding potential hazard and/
or risk and/or the need for further targeted testing and there-
fore optimising and potentially reducing the number of tests that 
need to be conducted” (OECD, 2015b). When applying IATA, 
the hazard information together with the exposure information 
would be used to determine which data gaps exist, and what 
testing if any would be most appropriate to undertake in order 
to elucidate the hazard profile of that substance for a given use 
context. Thus the extent to which testing approaches are needed 
depends on the problem formulation, which in turn is defined 
by the end purpose under consideration and the scientific con-
fidence needed (OECD, 2015b). The IATA should be as simple 
as possible but as complex as necessary, and it is necessary to 
provide regulators with the understanding of the assumptions on 
which the IATA is based (OECD, 2015b).

to modulate cell growth and cell death and exhibit dose response 
relationships between the initial stages of exposure and the lat-
er stages of tumor formation. While the exact MoAs of these 
substances on the process of neoplastic cell formation have not 
been established, changes in gene expression and cell growth 
parameters appear to be paramount.

5  IATA for NGTxC

The OECD working definition of an IATA is as follows: “a 
structured approach used for hazard identification (potential), 
hazard characterization (potency) and/or safety assessment (po-
tential/potency and exposure) of a chemical or group of chemi-
cals, which strategically integrates and weights all relevant data 

Fig. 3: Liver multistep carcinogenesis with liver nuclear receptor -P450 transcription factors 
(with modification from Jacobs et al., 2003)
Hepatocellular carcinoma is strongly associated with chronic liver diseases, including chronic hepatitis and cirrhosis,  
which are characterized by a prolonged inflammatory condition.  The P450 transcription factors can be MIEs that may  
ultimately contribute to liver tumor development in vivo shown in Figure 3.
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Tab. 5: Examples of groups of chemicals that may trigger mechanisms involved in non-genotoxic carcinogenesis 
The current approach to classification of carcinogens is based on the results of the rodent bioassay. As already noted, most of 
the chemicals target the liver in these models.

Tab. 5.1: Pesticides classified as non-genotoxic hepatocarcinogens* by IARC

				                           Classification of carcinogenesis

CAS no	 Name	 IARC	 IARC	 Dir 67/548/EEC1	 Reg 1272/20081,2	 US-EPA3	 NIH Report  
		  source			   (this replaces Dir 		  (NTP, 2014) 
					     67/548/EEC from  
					     1 June 2015)

15972-60-8	 Alachlor	 (Vainio, 1992) 	 –	 Carc Cat 3, R40	 C2 (not approved)	 NA	 –

309-00-2	 Aldrin	 (Vainio, 1992) 	 3	 Carc Cat 3, R40	 C2 (banned)	 B2	 Reasonably**

2425-06-1	 Captafol	 (Vainio, 1992) 	 2A	 Carc Cat 2, R45	 C1B (banned)	 B2	 –

86-74-8	 Carbazole	 (Vainio, 1992) 	 2B	 –	 –	 –	 –

57-74-9	 Chlordane	 (Vainio, 1992) 	 2B	 Carc Cat 3, R40	 C2 (banned)	 B2	 –

50-29-3	 p,p’-DDT	 (Vainio, 1992) 	 2B	 Carc Cat 3, R40	 C2 (banned)	 B2	 Reasonably** 

60-57-1	 Dieldrin	 (Vainio, 1992) 	 3	 Carc Cat 3, R40	 C2 (banned)	 B2	 –

	 Hexachlorocy-	 (Vainio, 1992) 	 2B	 –		  Not assessed	 – 
	 clohexanes

67747-09-5	 Prochloraz	 (Vainio, 1992) 	 –	 –	 Declassified and	 –	 – 
					     approved 2011	

60207-90-1	 Propiconazole	 (Vainio, 1992) 	 –		  Included in Annex 1	 Not assessed	 –

55219-65-3	 Triadimelon	 (Vainio, 1992) 	 –	 –	 –	 –	 –

1582-09-8	 Trifluralin	 (Vainio, 1992) 	 3	 –	 C2 (not authorized)	 Not assessed	 –

organ and individual organism levels that occur in response to a 
molecular initiating event (MIE; a direct interaction of a chemical 
with its molecular target) leading to an adverse outcome (AO). 
Linkages between adjacent MIEs, KEs and AOs are described in 
key event relationships (KERs). For further information on OECD 
activities in relation to AOPs please see http://www.oecd.org/env/
ehs/testing/adverse-outcome-pathways-molecular-screening-and-
toxicogenomics.htm (accessed 5 April 2016). 

With respect to AOP information quality, an IATA can be grad-
ed as follows: 
–	 Correlative: a simple format, where the AOPs / MoAs have only 

qualitative or limited quantitative understanding of one or two 

An IATA therefore represents an approach to integrate and 
weigh all available data for hazard and risk purposes. This includes 
a wide variety of regulatory needs that range from simple hazard 
identification for priority setting or support for category formation 
and read-across to complex quantitative-based risk/safety assess-
ments. An IATA is usually comprised of several elements, and the 
selection of these can be based on an AOP, where an AOP de-
scribes existing knowledge on the toxicity mechanisms at differ-
ent levels of biological organization that lead to an adverse human 
and/or environmental health effect (Ankley et al., 2010; OECD, 
2013; Tollefesen et al., 2014; Villeneuve et al., 2014). It depicts 
biological changes, defined as key events (KEs), at cellular, tissue, 

Tab. 5.2: Drugs and dyes classified as non-genotoxic hepatocarcinogens* by IARC

				                           Classification of carcinogenesis

CAS no	 Name	 IARC	 IARC	 Dir 67/548/EEC1	 Reg 1272/20081,2	 US-EPA3	 NIH Report  
		  source			    		  (NTP, 2014)

492-80-8	 Auramine (4,4’-	 (Vainio, 1992)	 2B	 Cat 3, R40	 C2	 – 	 – 
	 carbonimidoyl-						       
	 bis[N,N -dimet-						       
	 hylaniline])	

144-02-5	 Barbital 	 (Vainio, 1992)	 –	 –	 –	 –	 –

637-07-0	 Clofibrate	 (IARC, 1996)	 3	 –	 –	 –	 –

68-89-3	 Dipyrone 	 (Vainio, 1992)	 –	 –	 –	 –	 –

97-77-8	 Disulfiram	 (Vainio, 1992)	 3	 –		  –	 –

938-73-8	 Ethenzamide	 (Vainio, 1992)	 –	 –	 –	 –	 –

50-06-6	 Phenobarbital	 (Vainio, 1992) 	 2B	 –	 –	 –	 –

http://www.oecd.org/env/ehs/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm
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Much of the available information about AOPs, MIEs, KEs, AOs 
and chemical initiators is being collected and will be linked in 
the AOP Knowledge Base (AOP-KB, https://aopkb.org), an on-
going OECD initiative. The number of AOPs being developed by 
the scientific community internationally, both for human health 
and ecological effects, is steadily increasing. As more AOPs are 
developed and successfully peer reviewed, networks of AOPs 
will arise that are interlinked by sharing one or more KEs and/
or KERs. In this way the AOP concept provides a framework to 
organize and communicate scientific knowledge on toxicologi-
cal mechanisms that may be highly informative for regulatory 
decision-making and IATA construction. An IATA can also be 
developed in an empirical manner, based upon predictivity and 
reproducibility, as expected from a TG, and can so also contain 
elements that are not informed by an AOP, particularly intended 
use and exposure, toxicokinetics and -dynamics, etc. 

Depending on the purpose of the risk assessment, the expo-
sure assessment may need to emphasize certain areas in addi-
tion to quantification of exposure and dose, for example, the 
number of people exposed and the duration and frequency of 
exposure(s). However, the methodology and guidance for ex-
posure assessment considerations are not being included at this 

cause and effect linkages between KEs or a KE and the AO. 
These pathways are often based on a few stressors tested in a 
limited number of assays with a low level of confidence in the 
AOP. 

–	 Qualitative: where AOPs / MoAs have qualitative understand-
ing of critical components of the AOP / MoA. Pathways are 
often based on one or a few well-studied stressors where there 
is experimental evidence for the most critical KEs and the AO. 
The level of confidence in the AOP is moderate. 

–	 Semi-Quantitative: where AOPs / MoAs have, in addition to 
qualitative understanding of the entire AOP / MoA, semi-quan-
titative understanding of some of the KEs. Pathways are based 
on multiple compounds and/or stressors evaluated at several 
KEs and the AO. The level of confidence in the AOP is moder-
ate to high.

–	 Quantitative: where AOPs / MoAs have, in addition to quantita-
tive understanding of critical components of the AOP, empirical 
data across the spectrum of KEs and AO. These pathways are 
based on many compounds evaluated for all KEs and the AO, 
so in vitro effects can be scaled to in vivo effects for risk as-
sessment. The level of confidence in the AOP is high (OECD, 
2015b).

* Note that carcinogenicity endpoints other than hepatocarcinogenicity may have also been included in some of these classifications. 
** Reasonably anticipated to be human carcinogen according to NTP classification
*** Known to be human carcinogen

1 Annex I of Directive 67/548/EEC by Dir ENV. This was repealed from 1 June 2015, and replaced by Regulation (EC) No 1272/2008,  
with substantial modifications, including the introduction of the Globally Harmonised System of Classification and Labelling of Chemicals 
(GHS)
2 according to Classification, Labelling and Packaging (CLP) Regulation (CE) 1272/2008 (extract from Table 3.1 of annex VI), 6th ATP
3 Chemicals known to the state to cause cancer or reproductive toxicity February 3, 2006 (State of California Environmental Protection 
Agency)

Tab. 5.3: Hormone, hormone-like and endogenous metabolites classified as non-genotoxic hepatocarcinogens* by IARC

				                           Classification of carcinogenesis

CAS no	 Name	 IARC	 IARC	 Dir 67/548/EEC1	 Reg 1272/2001,	 US-EPA3	 NIH Report  
		  source			   		  (NTP, 2014)

 57-63-6	 17α Ethinyl	 (Vainio, 1992) 	 – 	 –	 –	 –	 – 
	 oestradiol	

117-81-7	 DEHP 	 (IARC, 2013) 	 2B	 Repr Cat 2, R60-61	 R1B	 B2	 Reasonably** 
							        
		

Tab. 5.4: Miscellaneous compounds classified as non-genotoxic hepatocarcinogens* by IARC

				                           Classification of carcinogenesis

CAS no	 Name	 IARC	 IARC	 Dir 67/548/EEC	 Reg 1272/2008	 US-EPA3	 NIH Report  
		  source			   		  (NTP, 2014)

94-59-7	 Safrole	 (Vainio, 1992) 	 2B	 Carc Cat 2- R45	 C1B – M1	 –	 Reasonably** 
				    Mut Cat 3 –R68	

62-55-5	 Thioacetamide	 (Vainio, 1992) 	 2B	 Carc Cat 2 R45	 C1B	 –	 Reasonably**

51-79-6	 Urethane	 (Vainio, 1992) 	 2A	 Carc Cat 2 R45	 C1B	 Not assessed	 Reasonably**

111-42-2	 Diethanolamine	 (IARC, 2013) 	 2B	 Carc NC			   Inadequate

1746-01-6.	 2,3,7,8 TCDD 	 (IARC, 2012)	 1	 – 	 –	 –	 Known 
							       carcinogen*** 
							       Clear evidence 
							       (NTP, 2006)

https://aopkb.org
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the use of safety assessment factors varies according to differ-
ent regulatory frameworks. Assessment factors may be better 
formulated scientifically as probability distributions (mean ± 
SD) (e.g., Jaworska et al., 2011; WHO, 2014) rather than de-
terministic (e.g., factor 100), in which case on a human popula-
tion level no deterministic threshold for whatever type of effect 
can be defined, be it GTx or NGTx (see e.g., Vermeire et al., 
1999). The current common regulatory practice is to use large 
assessment factors or probabilistic thresholds for GTx carcino-
gens (e.g., residual tumor probability of 10-6), but standard as-
sessment factors and deterministic thresholds for NGTx effects. 
This perhaps reflects the differing confidence in the reliability 
and relevance of the GTx and NGTx testing methods rather than 
a biological concept, and as such could be a useful consideration 
in the WoE analysis within an NGTxC IATA.

5.2  Requirement of consistent evidence  
of adversity
When we consider the possible mechanisms through which 
NGTxC affect the carcinogenesis process, it is important to 
appreciate that not all of these mechanisms are always related 
to adversity. For example, oxidative stress, cell death and im-
mune system evasion are three strictly interconnected cancer 
hallmarks (they share several molecular targets and pathways). 
However, cell death is also a mechanism of cell defense, and the 
immune system has a counterbalancing role to play that recent-
ly has been described as a yin/yang response (Khatami, 2008; 
Biswas and Mantovani, 2010), depending upon the affected 
pathway, as the body attempts to recover from a toxic insult 
and tries to restore balance. Among these three mechanisms, 
oxidative stress is directly linked to adversity, but for the other 
mechanisms, disturbance of the immune system could also lead 
to serious adverse effects, depending upon whether the balance 
is disturbed and equilibrium is not quickly restored. Since it is 
possible to measure only the endpoint (molecular target, bio-
marker) that is related to the mechanisms, but not necessarily 
to adversity, a substance cannot be considered to be a positive 
NGTxC simply on the basis of a single mechanistic in vitro test, 
or only one mechanism, particularly if this mechanism cannot 
be unequivocally related to adversity.

5.3  One IATA NGTxC cancer model or many?
When it comes to building an IATA for NGTxC, it is very like-
ly that while there may be mechanistic blocks or common KE  
elements and KERs that occur in many different types of can-
cers, there can also often be specific influences and signaling 
pathways as first indicated in Table 1 that are more relevant to a 
particular tissue and organ. It is therefore unlikely that a global 
“one size fits all” model will be sufficient. Here we suggest 
three initial examples of the natural history of tumor progres-
sion scheme: liver (Fig. 3), colon (Fig. 4) and lung (Fig. 5), 
utilizing the AOP format that might provide the basis for IATA 
approaches for NGTxC to prioritize testing regimes. These first 
examples are developed to highlight the role of inflammation 
and related oxidative stress as steps that trigger NGTxC in 
the multistep carcinogenesis process. Inflammation is a major  

early stage, since these are outside the scope of the intrinsic haz-
ard profile. The reader is referred to more authoritative sources 
for the conduct of an exposure assessment, e.g., Embry et al. 
(2014).

The governance of IATA activities is in development under 
the auspices of the OECD. The intention is that at least core 
elements of IATAs can be developed that will also fall under the 
Mutual Acceptance of Data (MAD) principle that underpins the 
OECD Test Guideline Programme (Section 3), such that they 
are mutually accepted in member countries. 

Here, we explore the basis for the development of an IATA for 
NGTxC, aiming first to address hazard identification and how 
this can start to be approached internationally in a harmonized 
manner (and under the auspices of the OECD). There might be 
a need for several “purpose” levels within an IATA for NGTxC, 
or there might be a need to develop different and separate pur-
pose driven IATAs for NGTxC. These ideas and concepts are in 
very early development, and here we are not able to make con-
crete and definitive suggestions as to a final IATA for NGTxC, 
but we do examine how to start synthesizing the approaches 
that would be acceptable at the OECD level. Figure 2 provides 
a conceptual bird’s eye view and provisional structure in which 
to synthesize the elements that can inform an IATA for NGTxC, 
as described within this paper.

5.1  Thresholds 
NGTxC chemical substances exhibit temporal and threshold 
characteristics frequently requiring repeated treatment to pro-
duce carcinogenicity. While NGTxC are carcinogenic alone, 
they are generally considered to impact upon the promotion 
stage of the cancer process. As such, they synergize with geno-
toxic agents and/or DNA damaging events, triggering the mul-
tistep carcinogenic process. Co-exposure and interactions occur 
constantly in real life, and promoting effects might be worth 
considering in the regulation of chemicals for cancer preven-
tion. The AOP construct can be very useful to discriminate 
between the adaptive response and the adverse responses, so 
identifying the reference dose that is the point of departure (i.e., 
benchmark dose (BMD)) for the calculation of the acceptable 
exposure levels (Chepelev et al., 2015).

Within current regulatory frameworks up to now the existence 
of thresholds for NGTxC has been generally accepted. However, 
due to the possible interactions with GTxC, and in the context 
of probabilistic, population-based limit value derivation (WHO, 
2014), the concept may need refinement for the purpose of plan-
ning, design and interpretation of an NGTxC IATA, and therefore 
a brief consideration on the threshold issues is presented here. 

The variability of data points within each experimental data 
set could be used to derive a no adverse effect level including its 
confidence interval, i.e., a BMD approach. In other words, there 
is a probability that at concentrations much below the BMD the 
effect size should still be considered as adverse. In addition to 
“within experimental uncertainty”, there is extrapolation un-
certainty – from animals to humans and between humans. Dif-
ferences between animals and humans, and furthermore differ-
ences between humans vary for each individual chemical, and 
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colorectal cancer (Liu et al., 2016). It can also occur as a spo-
radic form where APC is hypermethylated as a consequence of 
environmental exposures (i.e., diet, alcohol consumption) and 
also as a consequence of inflammation in chronic diseases or 
due to pathogenic bacteria (Viljoen et al., 2015). Inflammation 
also plays the main role also in the early steps of sporadic colon 
tumors. 

The third example is lung cancer. For lung cancer, inflam-
mation is the first adverse effect following the exposure to 
environmental oxidative stressors (such as smoking and air-
borne environmental pollutants). Inflammation is supported 
by the immediate immune response, through the production of 
chemokines and activation of alveolar macrophages. Figure 5 
maps the key events in the natural history of tumor develop-
ment and progression leading to the adverse outcome of lung 
cancer. 

5.4  Acceptance of in silico data for  
regulatory purposes
Generally, in silico approaches have been utilized for many 
years by regulatory organizations such as the US EPA, but the 
routine use of such tools has not been consistent (Lo Piparo et 
al., 2011), often due of a lack of in-house expertise but also, with 
respect to carcinogenicity, due to a lack of appropriate models. 
However, the implementation of REACH, which aims to fill in-
formation gaps for a large number of chemicals and strongly 
encourages the minimization of animal testing, has provided an 

pathological condition that provides suitable conditions for fur-
ther evolution of the multistep process.

Whilst there are for NGTxC many mechanisms and modes of 
action leading to an adverse outcome, one can start to map the 
AOP utilizing current understanding of tumor natural histories, 
and therefore elucidate the key assay blocks that would be re-
quired for an organ specific IATA for example.

These may therefore form a basis for the IATA specific com-
partments from which an IATA framework for NGTxC will be 
able to draw out mechanistic KE commonalties for assay selec-
tion and development, and the KE differences that would need 
specific attention.

The first example is that for hepatocarcinogenesis. Figure 3 
shows major nuclear receptor -P450 transcription factors in-
volved in xenobiotic metabolism that can be MIE, which may 
ultimately lead to liver tumor development in vivo. This figure 
depicts the natural history of tumor development and progres-
sion leading to the adverse outcome of liver cancer. 

A second example is that for colon cancer. Figure 4 shows 
such a scheme for colon cancer. It is known that colon cancer 
can be initiated by inherited damage, e.g., an encoding large 
multidomain protein that antagonizes the Wnt signaling path-
way, called mutated adenomatous polyposis coli (APC), is 
known to be the main causative gene responsible for familial 
adenomatous polyposis (FAP). This is an autosomal dominant 
disorder characterized by the development of many hundreds to 
thousands of colonic adenomas, and thus an increased risk of 

Fig. 4: Colon multistep carcinogenesis 
Colon cancer can be initiated by inherited damage or mutated APC in FAP families, as a sporadic form, where APC is hypermethylated 
as a consequence of environmental exposures (diet, alcohol consumption) and as a consequence of inflammation in chronic diseases or 
inflammation stimulated by pathogenic bacteria. Inflammation plays the main role also in the early steps of sporadic tumors.
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properties of substances. SAR models only use (sub)structure 
information and can therefore be seen as a more formal way of 
performing read-across with a given reference set of data, as the 
property of one or more substances is directly used to predict 
the property of the substance of interest. It is noted that con-
ceptually (Q)SARs should be developed utilizing a large, good 
quality database using robust scientific and statistical concepts 
and as such should represent the most formalized non-testing 
approach. In contrast, read-across has the disadvantage of rep-
resenting a much less formalized and therefore more subjective 
non-testing approach, but it may provide more specific informa-
tion. In the future a combination of (Q)SARs with read-across, 
i.e., a local validity analysis of the models, may be of greater 
reliability for decision making. VEGA2, for example, explicitly 
supports this. Such an approach may improve possibilities to 
yield robust information on the type of effect (tumor) and the 
dose levels at which effects occur. This information is crucial 

impetus to employ in silico models for the safety assessment of 
chemicals (EC, 2008). Non-testing methods to assess genotoxic 
or carcinogenic hazard to humans encompass (Q)SARs as well 
as chemical grouping for read-across approaches. The principle 
of the latter is that endpoint or test information for one or more 
chemicals is used to predict the same endpoint or test for an-
other chemical, which is considered to be similar by robust sci-
entific justification (Wu et al., 2010; OECD, 2014). Crucial for 
this approach are the quality of the existing data and definitions 
of the similarity, and with a drive to improve the transparency 
and consistency in the utilization and evaluation of read-across, 
ECHA have recently developed a Read-Across Assessment 
Framework (ECHA, 2015). Read-across approaches are more 
frequently applied for cancer hazard assessment than (Q)SAR 
methods (ECHA, 2014). (Q)SAR models predict the biologi-
cal activity of a given chemical using quantitative parameters 
describing structure but also physico-chemical and/or reactivity 

Fig. 5: Lung multistep carcinogenesis 
Inflammation is the first adverse effect following exposure to environmental oxidative stressors (smoking, environmental pollutants). 
Inflammation is supported by the immediate immune response through the production of chemokines and activation of alveolar 
macrophages.
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are considered more important than structural alerts (Silva Lima 
and Van der Laan, 2000), but these can be combined. A few 
models describing a number of structural alerts and/or charac-
teristics of several types of NGTxC, such as PPARα activators 
and inducers of oxidative stress, have been developed (Woo and 
Lai, 2003; Benigni et al., 2013). 

Thus, for structural alerts for receptor mediated interactions 
(e.g., ER, AR, PXR, CAR, PPAR, GR and AhR, where the 
receptors are considered MIEs that may induce cancer indi-
rectly via hormonal imbalance), (Jacobs et al., 2003; Jacobs, 
2004; EFSA, 2013, 2014, and references therein; OECD 2015c  
and references therein), oxidative stress and DNA methylation 
(Benigni, 2012; OECD 2015c), application of in silico methods 
in sequential/ step-wise approaches (combining relevant and 
reliable expert systems or (Q)SAR models), can contribute to 
the WoE. Overall, for MIE endpoints, such as receptor binding 
and activation, the quality and reliability of the tools are rela-
tively high, but reliability for more complex endpoints has been 
noted to be far less certain (Benigni, 2014; EFSA, 2013, 2014; 
OECD, 2015c). With respect to models built upon the CTA for 
example, as already discussed, regulatory confidence needs to 
be improved, but this is possible when used in a tiered testing 
strategy with the inclusion of relevant new structural alerts for 
NGTxC. 

The OECD has recently published new guidance principles 
for (Q)SAR analysis of chemical carcinogens with mechanistic 
considerations (OECD, 2015c), which include some NGTxC 
mechanisms, though these will need further assessment, whilst 
the US EPA have developed and published a new pathway-
based approach with performance based metrics, using the ER 
signaling pathway as the first example. The approach consists 
in an integrated model of chemical perturbations of a biological 
pathway using 18 in vitro high throughput screening assays for 
the ER, with data generated from the Toxcast/Tox21 program 
(Browne et al., 2015). Kleinstreuer et al. (2013) developed a 
model trained on 232 pesticides from the phase 1 study of the 
Toxcast project for the prediction of rodent carcinogenicity in-
cluding some of the cancer hallmark processes, identified in 
Figure 1. However, there were several false negatives of con-
cern, and the data used to build this model is noted to be limited, 
but the phase 2 study, may overcome some of these data quality 
problems.

For both predictions (positive and negative), the similarity of 
the substance of interest to the substances used in the training 
datasets of the models (the so-called applicability domain of the 
models) is crucial. Although a (Q)SAR model might be able 
to give a prediction for any (organic) substance, if this predic-
tion is far outside of the applicability domain, the reliability of 
the prediction will be low. Amongst the model builders there 
are also different interpretations of the definition of the term 

in risk assessment and will not be delivered by the use of, e.g., 
alert models such as DEREK-Nexus3, or ToxTree4 (Patlewicz 
et al., 2008). Application of such alert models will be more rel-
evant in screening large numbers of substances, and subsequent 
priority setting. A good example of such an approach is the ICH 
M7 guideline for assessment of potentially genotoxic impurities 
in pharmaceuticals (ICH, 2014). According to this guideline, 
a negative result obtained from in vitro bacterial mutagenicity 
(e.g., Ames test) is sufficient to assume lack of genotoxic po-
tential of the impurities under study, and no further testing is 
conducted. 

Indeed the examples for in silico genotoxicity tools are far 
stronger than those for NGTxC mechanisms and MoA. Multiple 
computational models have been established for identifying a 
chemical’s genotoxic potential, triggered over 25 years ago by 
the publication of the Ashby-Tennant alerts in 1991 (Ashby and 
Tennant, 1991), followed by software such as VEGA (Fjodorova 
et al., 2010), ToxTree (Patlewicz et al., 2008), the OECD QSAR 
Toolbox (OECD, 2015c) and LAZAR (Maunz et al., 2013; Lo 
Piparo et al., 2014), which are all available free of charge. Oth-
er, (semi)commercial, models include MultiCASE5, TOPKAT6, 
HazardExpert7, LeadScope8 and DEREK-Nexus3. In general, it 
can be stated that these models, in contrast to those developed 
for predicting NGTxC, are more developed, and cover broader 
chemical space. The knowledge embedded in the various free-
of-charge models, as well as in the commercial models, often 
largely overlaps, as most models derive their knowledge from 
the same set of experimental data, although there are differences 
in the details. Caution is warranted when using multiple theo-
retical models in a WoE approach, as the same outcome from 
different models does not necessarily increase the confidence 
in that prediction. A further distinction should be made between 
models that are “only” alert models, such as the DEREK-Nexus 
expert system, ToxTree, or the profilers in the OECD QSAR 
Toolbox, versus models that also try to correlate the absence 
of genotoxicity or carcinogenicity to specific chemical and/or 
physicochemical properties. The first are considered to give 
only a valid positive prediction, i.e., the absence of an alert is 
not a prediction of the absence of genotoxicity and/or carci-
nogenicity. In contrast, models such as VEGA, TOPKAT and 
MultiCASE give valid predictions of the presence and absence 
of genotoxicity or carcinogenicity, the latter being based on the 
similarity of a substance with the negative (non-carcinogenic) 
substances in their training datasets. 

With the large diversity of chemicals that might interfere with 
the NGTxC mechanisms and the many potential molecular tar-
gets, the establishment of a single (Q)SAR for NGTxC is an un-
realistic goal and the diversity makes development of (Q)SAR 
models for identifying NGTxC a challenging process. Further-
more, NGTxC typical characteristics, such as receptor binding, 

2 http://www.vega-qsar.eu//
3 http://www.lhasalimited.org/products/derek-nexus.htm
4 https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/toxtree  
5 http://multicase.com/ 
6 http://accelrys.com/products/datasheets/qsar-admet-and-predictive-toxicology-with-ds.pdf  
7 http://www.compudrug.com/hazardexpertpro, accessed 5 April 2016. 
8 http://www.leadscope.com/product_info.php?products_id=66

http://www.vega-qsar.eu//
http://www.lhasalimited.org/products/derek-nexus.htm
https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/qsar_tools/toxtree
http://multicase.com/
http://accelrys.com/products/datasheets/qsar-admet-and-predictive-toxicology-with-ds.pdf
http://www.compudrug.com/hazardexpertpro
http://www.leadscope.com/product_info.php?products_id=66
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practice. Will they indicate their substance as being an NGTxC 
on the basis of an IATA primarily based on in silico and in vitro 
data? Or will it still be necessary for regulators to ask for more 
(in vivo) information to come to definite conclusions that are es-
sential for risk management measures? In the spirit of Toxicity 
Testing in the 21st Century (NAS, 2007), an additional ultimate 
goal will be for the IATA to eventually move away from ani-
mal testing altogether, as the KE, KERs and test methods that 
could address those KEs are increasingly identified, confirmed 
and validated. 

It will be essential that the IATA is developed in such a way 
that in most cases regulatory decisions can be taken without the 
need of additional animal testing. Otherwise regulatory accept-
ance will be limited due to concern for false negatives on one 
hand or concern for false positives on the other hand, such that 
gains in the 3Rs as well as gains in regulatory testing and as-
sessment throughput will be minimal. Expectations for the time 
frame necessary to develop such an IATA vary between experts 
and in the end depend upon resources that are made available. 
The time frame will also be influenced by how far the IATA can 
accommodate defined testing approaches for specified chemical 
spaces (the “chemical applicability domains” referred to in the 
previous section), for more robustly characterized mechanisms 
of action compared to less well characterized mechanisms, and 
for categorization and read-across based on a larger database 
including other animal data or for specific regulatory areas, 
e.g., those without legal animal data requirements. In any case, 
scrutinizing the reliability and the relevance and potential added 
value of the in vivo testing standards (Gottmann et al., 2001; 
Alden et al., 2011; Basketter et al., 2012; Marone et al., 2014) 
should contribute to the development of robust testing strategies 
(Paparella et al., 2013, 2016). 

5.6  Levels of test information as a 
preliminary step towards the IATA 
A structured approach to building an IATA for NGTxC could be 
usefully organized into different levels of information, and the 
AOP concept provides a suitable starting point for creating such 
an information level framework. Table 6 provides a summary 
overview of such a structure, as described below, and Figure 2 
illustrates how such levels could fit conceptually into an IATA 
for NGTxC.

Level 0 would cover pre-screening of existing information, 
category formation, read-across and (Q)SARs, also indicated 
in Figure 2 as part of the AOP information. Subsequent levels 
would continue to incorporate AOP level concepts, such that: 
Level 1 would be at a subcellular level of very early KE and 
include for example in vitro assays such as receptor binding 
assays that indicate the MIE; Level 2 would be at the cellular 
level, also in vitro, and include both MIEs such as receptor bind-
ing and initial KE such as DNA activation, enzyme activation 
and other further downstream KE (such as disturbance of me-
tabolism and key event relationships); Level 3 would be at the 
organ level, and so include ex vivo assays and in vivo screening 
assays, developing KER further, whilst Level 4 would include 
the whole organism level, but be kept to a minimum, in keeping 

“applicability domain” (VEGA, TOPKAT and MultiCASE all 
have their own definitions), which is confusing for the inexpe-
rienced user. However, in principle, deciding on the applicabil-
ity domain for a (Q)SAR model represents the same challenge 
as deciding on sufficient similarity of substances within read-
across approaches. As outlined below, further improvements are 
expected in future with the integration of such non-testing ap-
proaches with in vitro approaches.

A thorough analysis of the use of in silico information in a 
regulatory setting shows that the number of REACH dossiers 
for which read-across and/or (Q)SAR was used to replace ex-
perimental evidence hovers around 30% (ECHA, 2014). Fur-
thermore, read across/(Q)SAR information was more frequently 
used for substances with lower information requirements in 
comparison to substances with higher information requirements 
(higher production volume) (ECHA, 2014). This could, in part, 
be explained by the fact that more (Q)SARs are available for 
the mechanistically more simple endpoints (irritation, sensitiza-
tion, mutagenicity), which are required to be assessed at lower 
tonnage levels. A similar trend in the use of Q(SAR) predic-
tions can be noted for pharmaceuticals, as the ICH has adopted 
the M7 guideline for assessment of potentially DNA-reactive/
mutagenic impurities in pharmaceuticals (ICH, 2014). The use 
of WoE approaches should further enhance both the application 
and acceptance of in silico information in chemical safety as-
sessment.

5.5  Acceptance of in vitro data for  
regulatory purposes 
Current GHS criteria will not consider in vitro data on their own 
as adequate to classify a substance as a carcinogen, as the defi-
nition indicates it needs to be established in an intact organism, 
as is also the case for many regulatory frameworks with respect 
to endocrine disruptors, but there are signs of improvements in 
flexibility with respect to the term “intact organism.” This is 
also valid for the conclusion as to whether a substance is not 
an NGTxC. Thus NGTxC determination for a chemical can as 
yet not be concluded solely on basis of a single mechanistic in 
vitro test. 

In the development of an IATA for NGTxC, it therefore will 
be important to integrate more than one “adversity” endpoint, so 
that there is more consistent evidence of adversity. For example, 
if a chemical triggers senescence by modulating telomerase, it 
should be tested for genetic instability. In this context, the CTA 
also could be considered to provide the endpoint related to mor-
phological transformation. And another example, if a chemi-
cal blocks the gap junctions or induces oxidative stress, is this 
mechanism related to morphological transformation? Or does 
it occur independently? If both morphological transformation 
and oxidative stress are observed, the level of concentrations 
that are effective on each criterion may inform as to a possible 
link, or not.

The development of test case study examples may help in as-
sisting with such evaluations for practical purposes and applica-
tion to real life risk assessment scenarios. Particular attention 
will need to be paid to how this will be used by stakeholders in 
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results already obtained. This involves an integrative assess-
ment before each level is considered completed. Probabilistic 
approaches are increasingly considered to reflect more realistic 
data interpretation (Jaworska and Hoffmann, 2010; Jaworska et 
al., 2011; Paparella et al., 2013; Rovida et al., 2015).

To further ensure that the key MoA(s) are identified, and not 
missed, all MoAs would need to be tested when one moves from 
one block of MoA tests to the next, if negative in the first block 
tested. That is, testing one MoA will not exclude all other MoAs.

6  Chemical examples

From the list of chemicals that are considered as NGTx hepa-
tocarcinogens by IARC (Tab. 5), with the Table 1 overview of 
key NGTxC mechanisms and the liver tumor model shown in 
Figure 3, it may be helpful to consider actual chemical examples 
that demonstrate how the results from in vitro tests at different 
levels may contribute to overcome the uncertainties related to 
in vivo results. 

These examples all have their limitations and are given here 
not to draw any conclusions but to emphasize the limitations 
of the current approaches in the evaluation of the carcinogenic 
potential of NGTxC (including the role of peroxisome prolifera-
tion), and to provide a starting point for discussion and evolu-
tion of the concept.

A good first chemical example, DEHP, can be given to start 
to suggest minimum information requirements for each level. 
This example is also interesting in that it highlights the fact that 
carcinogenic information generated in vivo can in some cases 
be considered equivocal, species specific and may be better 
detected with key event based testing. This is because the ear-
lier levels, before Level 4, provide the key MOA information, 
whilst the key MOA information often is obscured in Level 4 
in vivo data. 

DEHP, is negative in GTx assays, but is an initiator in ini-
tiation/promotion studies and is considered to be a hepatocar-
cinogen in rodents (IARC, 2013). However, the carcinogenic 
effect in rodents is recognized to be species specific and strictly 

with Toxicity Testing in the 21st Century (NAS, 2007) and only 
be performed if the earlier levels did not provide sufficiently 
strong weight of evidence as required by a regulator/regulatory 
jurisdiction. 

In some cases an assay or diagnostic tool might straddle two 
levels, for example docking studies with chemicals and recep-
tors/P450 can provide very specific molecular mechanisms for 
an MIE and belong in Level 0 ((Q)SAR information) and Level 
1. The CTA’s also might belong to two levels: Level 2 and Level 
3. This is because while the cytoskeleton changes are strictly re-
lated to the acquisition of the malignant phenotype in the CTA, 
cloning of embryonic Syrian hamster cells leads to colonies that 
may acquire a transformed phenotype when exposed to chemi-
cal carcinogens. The morphologically transformed colonies are 
characterized by disorganized growth patterns which mimic 
early stages in the carcinogenic process (OECD, 2015a). Thus, 
in combination with toxicogenomics profiling highlighting the 
CTA mechanisms, the assay could in the future be considered 
a Level 3 assay, as the change in cytoskeleton may be used as 
a hallmark of the cancer microenvironment. This would be in 
keeping with the OECD recommendation (OECD, 2015a) that 
“When SHE CTA results are used as part of a testing strategy 
(not as results from a stand-alone assay) and/or in a weight of 
evidence approach, they may contribute to the assessment of 
carcinogenic potential of test chemicals (Creton et al., 2012).” 

The resolution of the different levels (molecular /subcellular 
– cellular – tissue/organ – organism) may need to be higher, 
depending upon the purpose of the IATA, and this will need 
more discussion. 

Such a structured approach for the scoping of the IATA is nec-
essary, whether it is being developed for prioritization purposes 
for further testing or the purpose is for hazard identification/
characterization to indicate whether a substance is an NGTxC 
or not, for subsequent quantitative risk assessment purposes, or 
both. 

The structure can then also assist in the grouping of differ-
ent types of tests and assays that can be used in identification 
of NGTxC. At each level the decision on the next required test 
to be done would depend on the available information and test 

Tab. 6: Overview of levels of test information as a preliminary step towards the IATA 

Level	 Description

0	 Existing data and non-test information 
	 pre-screening of existing information, category formation, read across and (Q)SARs

1	 Subcellular level: in vitro 
	 very early KEs including for example in vitro assays such as receptor binding assays that indicate the MIE

2	 Cellular level: in vitro  
	 includes both MIEs such as receptor binding and initial KEs such as DNA activation; enzyme activation and other further  
	 downstream key events (e.g., disturbance of metabolism, and KERs)

3	 Multicellular tissue and organ level  
	 includes in vitro, ex vivo assays and in vivo screening assays, developing KERs further 

4	 Whole organism level 
	 only to be performed if the earlier levels did not provide a sufficiently strong weight of evidence required by a regulator/ 
	 regulatory jurisdiction 
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however, this mechanism was considered not relevant to hu-
mans, and the carcinogenic activity of atrazine was questioned 
on the basis of biological plausibility. More recent reports high-
light the transgenerational effect of atrazine exposure (Hovey et 
al., 2011), resembling the next generational behavior of endo-
crine disruptors, such as diethylstilbestrol (DES), via a mecha-
nism that could be of relevance to humans, but for which there is 
no evidence in the standard cancer bioassay. Atrazine and atra-
zine metabolites have MIEs acting via early KEs that include 
steroidogenesis/aromatase, CYP 1A2 induction and binding to 
G protein-coupled estrogen receptor 1 (GPER). Level 2 KEs in-
clude ERK (extra signal-regulated kinases) activation, at Level 
3 the effect observed is delayed mammary gland development 
(initiated in utero), and at Level 4 in rats, mammary gland tu-
mors are reported (Tab. 7). The MoA for mammary gland tumors 
in the rat is species and strain specific (Simpkins et al., 2011) due 
to differences in the modulation of gonadotrophin releasing hor-
mone (GnRH) pulse and impact upon the release of luteinizing 
hormone with alteration of ovulatory cycles – which are mark-
edly different and not of human relevance, as recently concluded 
by the Risk Assessment Committee at ECHA (ECHA, 2015). 

The third example, captafol, a pesticide, is not considered 
genotoxic, but displays both hepatic and renal carcinogenicity 
(Rakitsky et al., 2000; IARC, 1991). However, most NGTxC 
that are renal carcinogens are negative in a standard cancer bio-
assay, and thus captafol is an example of a NGTx carcinogen 

related to the peroxisome proliferation in the liver of treated 
animals (Melnick, 2001), and this is not considered relevant to 
humans. Recently, it has been reported to induce liver tumors 
in PPARα-null mice and a different mechanism has been hy-
pothesized, which includes the activation of the human CAR, 
a constitutively expressed xenobiotic receptor that plays a role 
in liver cancer induced by phenobarbital, in structure activity 
relationships (Zhang et al., 2015) and in vivo (Lv et al., 2015). 
The potential for ER dependent and ER independent modula-
tions also has been shown recently in two cell lines (Tanay Das 
et al., 2014).

DEHP can be shown to have the following succession of key 
events: Level 1, MIE/KEs: Receptor binding with PPARα and 
CAR (see Tab. 1), thus two MIEs, followed by KEs also at sub 
cellular level: induction of CYP 4A and CYP 2B, respectively 
(see also Fig. 3); Level 2, KEs: inhibition of apoptosis, per-
oxisome proliferation, inhibition of gap junctional intracellular 
communication; Level 3 KEs: enlarged liver due to peroxisome 
proliferation; and Level 4, AO adverse outcome: hepatocarci-
noma (see Tab. 7). 

Another example, atrazine is the prototype of a class of chem-
icals (triazines) sharing the same MoA supporting NGTxC. 
Triazines represent the first example for which combinations of 
structure-activity considerations and relevant biological and mo-
lecular events were used to support a MoA regulatory approach 
to assess adverse effects (US EPA, 2002). In the following years, 

*Note that with the building of the IATA it may be possible that Level 4 in vivo assay information will no longer need to be generated.

Level 4*

Hepatocarcinoma, cholan-
giocellular tumors in male 
rats (standard bioassay 
male rats and PPARα-null 
mice), cholangiocellular 
carcinoma (PPARα-null 
mice), hepatocarcinoma in 
female rats (standard bioas-
say), increased incidence 
of kidney tumors in rats (ini-
tiation/promotion protocol) 
(Garvey et al., 1987; IARC, 
2013)

Mammary gland tumors  
in Sprague-Dawley rats  
(US EPA, 2002)

 
 
 
 
 
 
Hemangiosarcoma in 
B6C3F1 and CD-1 mice 
(NTP, 2014), hepato- 
carcinoma and renal car-
cinoma in rodent bioassay 
(NTP, 2011)

Level 3

3D liver models  
(Soldatow et al., 2013), 
peroxisome prolifera-
tion in liver of exposed 
animal in standard toxic-
ity assays (Doull et al., 
1999), inhibition of gap 
junctional intercellular 
communication in liver  
of exposed rats and 
mice (McKee, 2000),  
ex vivo assays 

Delayed mammary 
gland development  
(initiated in utero) 
(Hovey et al., 2011) 
 
 
 
 

Liver/nuclear 
pleomorphism, oval-cell 
proliferation, and foci 
of cellular alteration, 
cortical tubular cysts 
lesions (renal system) 
(NTP, 2011)

Level 2/3

Inhibition of  
apoptosis in cultured 
human hepatocytes 
(Goll et al., 1999) 
and SHE cells  
(Maire et al., 2005; 
Pant et al., 2010)  
 
 
 
 
 

ERK activation as 
the consequence of 
atrazine binding to 
GPER (Albanito et 
al., 2015), aromatase 
induction (Albanito et 
al., 2015; Quignot et 
al., 2012; Sanderson 
et al., 2000)

In vitro cell trans-
formation assays 
(Perocco et al., 1995)

Level 1

Induction of  
CYP 2B10  
associated with 
CAR activation 
(Ren et al., 2010) 
 
 
 
 
 
 
 

In vitro liver  
microsomal CYP 
1A2 induction 
(Lang et al., 1996, 
1997) 
 
 
 

Assessment of 
effects on CYP 
1A1 and CYP 2B 
(Rahden-Staron 
et al., 2001)

Level 0

(Q)SAR and  
structure  
activity  
information 
(Benigni, 2012; 
Serafimova et al., 
2007; Zhang et 
al., 2015) 
 
 
 
 

SAR and  
grouping based 
upon mammary 
gland tumor  
induction  
by various s- 
triazine com-
pounds in rats 
(US EPA, 2002)

Existing literature 
data (Rakitsky et 
al., 2000; NTP, 
2008, 2011;  
IARC, 1991)

Chemical

DEHP 
 
 
 
 
 
 
 
 
 
 
 

Atrazine 
 
 
 
 
 
 
 

Captafol

Tab. 7: Minimum information currently available per level from existing data: Three chemical examples
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is important, also low probability of false negatives is critical. 
In this context it will be essential to characterize qualitatively 

and, as far as possible, quantitatively the reliability and rele-
vance of the established animal testing methods as well as the in 
vitro/in silico test methods. We need to take stock of the perfor-
mance of the actual methods in order to define a benchmark that 
new approaches should overcome. Furthermore the animal test 
data often serve as reference for the validation of new methods. 
The weight these animal test data should have within a valida-
tion compared to human data and mechanistic information shall 
depend on the reliability and relevance of all these sources of 
information for the target of evaluation, i.e., human health. It 
will be important to conduct thorough and step by step trans-
parent uncertainty analyses as part of the WoE approach within 
the IATA, particularly for potentially sensitive conclusions on 
positively and negatively identified substances. In this way it is 
possible to reduce uncertainty and remove controversy, so that 
a scientifically robust decision that is acceptable to regulatory 
authorities can be made.

In any case, Level 1, 2 and 3 assays (see below) will require 
validation to the extent that definitive decisions including the 
derivation of acceptable exposure levels can be made.

7.1  Level 0: Existing information and  
in silico approaches
Literature and in silico MoA review information (using for ex-
ample chemical structure information and prior published in-
formation) would guide the selection of the most relevant test 
block in which to first initiate testing the substance. Whilst it 
is too early to devise any precise decision rules at this stage, it 
is recognized that in a final IATA, decision rules or workflows 
would be necessary, together with the considerations described 
in the earlier Section 5.4. In summary, when selecting and in-
terrogating such computational tools, a high level of attention 
needs to be paid to chemistry and biological endpoint data qual-
ity and data cleaning considerations, appropriate selection and 
use of descriptors and statistics. The use of (Q)SAR models, 
expert systems, category formation tools, as well as the inter-
pretation of the results, require expert knowledge, because each 
of these tools have their own level of reliability and chemical 
applicability domain limitations. 

7.2  Level 1: Subcellular level and  
Level 2: Cellular level 
A number of mechanisms have been linked to NGTxC. For 
some of these mechanisms there is an assay that can in principle 
be taken to the OECD Test Guideline Programme and be devel-
oped into an internationally accepted test method. So far this has 
only taken place for endocrine MIEs, such as estrogen receptor 
binding and transactivation, and steroidogenesis. In addition, 
the ToxCast program offers a plethora of high-throughput tests 
that may be very useful as Level 1/2 tests (Judson et al., 2014), 
although the readiness of these assays to be developed into an 
internationally accepted test method needs assessment.

As already noted, many of these mechanisms may be initial 
steps in the NGTxC processes, but their initiation does not mean 

that can potentially be classified as a false negative under cur-
rent regulatory testing paradigms. Furthermore, it is clearly car-
cinogenic only to mouse, inducing liver hepatocarcinomas in 
B6C3F1 mice, hemangiosarcomas in male CD-1 mice, lympho-
sarcoma in both sexes, and harderian gland adenoma in males 
(NTP, 2011, 2014). In rats, captafol also induces renal adeno-
mas and carcinomas, but the incidence is statistically significant 
in males only when the adenomas and carcinomas are combined 
and when considering the positive trend at the highest assayed 
dose after applying the Cochran Armitage test (or equivalent) 
for the trends to the combination. In this example, the carci-
nogenic endpoint effect therefore exists, but the standard RCB 
method is not sensitive enough, on its own, to detect it, prob-
ably due to the NGTxC mechanism. Captafol also induces cell 
transformation in vitro. Most recent reports consider captafol as 
both GTx and NGTxC (NTP, 2008, 2011). The NGTxC activity 
was revealed in initiation/promotion studies, but the possible 
NGTxC mechanisms have not been fully explained. 

7  How could an IATA for NGTxC start  
to take shape? 

Both quantitative and qualitative AOP/MoA IATA elements will 
be required and can be based upon the essential conceptual steps 
of the carcinogenic process, which include initiation (such as the 
early KE in Tab. 1), promotion (differential stimulation, inhibi-
tion or toxicity (as for example with cell proliferation, gap junc-
tion intercellular communication), transformation (from benign 
to malignancy), neoangiogenesis and progression with patho-
genic angiogenesis and neoangiogenesis, shown in the steps in 
Figures 3, 4 and 5 and presented conceptually in Figure 2. 

As already briefly indicated in Section 5.6, to further ensure 
that the key MoA is identified and not missed, all MoAs would 
need to be tested for, when one moves from one block of MoA 
tests to the next, if negative in the first block tested. When we 
consider the possible mechanisms through which NGTxC affect 
the carcinogenesis process, it is important to appreciate that not 
all of these mechanisms are always related to adversity. For ex-
ample, receptor binding and transactivation may not lead to con-
sequential adverse effects at all. As these early MIE/KE often do 
not result in downstream adverse outcomes, an IATA will need to 
examine the specific initiating events for each receptor, and then 
look at the downstream KE that is/are related to all receptors 
with a pivotal role in the adverse tissue/target organ outcome.

When we can see that several mechanisms are interconnected 
and are being affected adversely, then we will start to be in a 
position to make IATA based decisions. For example, oxidative 
stress, cell death and immune system evasion are three cancer 
hallmarks that are strictly interconnected (they share several 
molecular targets and pathways). Three examples of chemical 
case studies specific to tumor models are given in Table 7.

In this way, the intention would be to overcome current issues 
of insufficient applicability, scope and downstream relevance. It 
will be important to have a conservative approach to such tiered 
test information, and while keeping false positives to a minimum 
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it may still need to be tested in others before that substance can 
move to Level 3 and then 4, i.e., definitive in vivo testing. This is 
because NGTxC may have multiple MoAs, as indicated in Table 
1 and references therein. With multiple MoAs, testing only one 
MoA group is not sufficient, not least because it may not neces-
sarily be the most sensitive one, and so a battery of in silico/vitro 
assays or in vitro assays covering the entire spectrum would be 
preferable. A high-throughput (HTP) setting could potentially 
expedite this. Moreover, testing a wide range of MoAs will be 
preferable to making the decision as to whether or not additional 
testing is required. An additional advantage is that it will yield 
knowledge on adverse outcome and toxicological pathways in 
general, not only on NGTx carcinogenesis. It is important to note 
that quantitative information, such as dose response relation-
ships and points of departure (POD), will be required in order to 
know whether a particular KE will trigger the next KE, and not 
single dose data points, which cannot contribute at the qualita-
tive level of a more comprehensive IATA format.

7.4  Level 3: Multicellular tissue and organ level 
This is the pivotal level at which the cellular changes are suf-
ficient to trigger cytoskeletal, tissue and organ changes, and an-
giogenesis. This level includes in vitro tests such as the CTAs, 
which may also be at Level 2: The SHE assay can be utilized for 
the first steps of the multistep carcinogenic process, whilst the 
Balb 3T3 and C3H10T1/2 CTA assays are designed to address 
the later steps of a carcinogenic process. At this level, also 3D 
liver cell models (Hengstler et al., 2015; Prestigiacomo and Sut-
er-Dick, 2015; Ramachandran et al., 2015; van Grunsven, 2015) 
and isolated organ studies, such as tissue perfusion and histopa-
thology from in vivo repeated dose studies would be relevant.

Pathogenic angiogenesis and neoangiogenesis are the later 
multistep cancer processes following on from endothelial cell 
activation in response to angiogenic factors. This leads to the 
re-organization of endothelial cells to form tubules, which in-
terconnect to form a network by way of: 
1.	 Degradation of the capillary wall by extracellular protein-

ases; 
2.	 Migratory signals; 
3.	 Interconnection of the new tubules to form a network (anas-

tomosis).
Some assays at level 2 will be highly supportive in addressing 
these three network aspects and HTP assays for primary angio-
genic pathway molecular targets are available (Tab. 1). 

Currently organ-on-chip technologies are also being explored 
for applicability in this respect (Marx et al., 2012) but are cur-
rently being developed more for drug discovery applications 
(Bhatia and Ingber, 2014), and the translation from pharmaceu-
tical research and safety assessment to applied chemical hazard 
assessment has often taken longer and been more problematic 
than initially envisaged.

7.5  Potential regulatory use of Level 2/3 assays
Positive histopathology findings such as hyperplasia or neopla-
sia, and neoangiogenesis studies do not have a clear mechanistic 
basis. While they provide useful descriptive data, they are not 

that there are automatically relevant downstream carcinogenic 
events, unless this has been clearly demonstrated in the litera-
ture. Moreover, not all the mechanisms may be related unequivo-
cally (or to the same extent) to adversity (as described above in 
Section 5.2).

Furthermore, with exception of “inhibition of gap junction 
intercellular communication” and “inhibition of senescence 
through activation of telomerase,” a number of the mechanisms/
endpoints listed are not specific to NGTxC: oxidative stress, in-
creased mitogenesis, interference with tubulin polymerization 
and so on, are also mechanisms for genotoxic carcinogens, and 
where negative results are recorded in the mutagenicity/geno-
toxicity assays, these are acceptable for mutagenesis/genotoxic-
ity regulatory purposes. For NGTxC mechanisms, the IATA will 
need to both address and be negative for each principal mecha-
nism, should the IATA be required to indicate that a substance 
is not a NGTxC. However if the IATA is being used solely for 
prioritization for in vivo testing, it will not need to be so rigor-
ous in this regard.

A more holistic way to approaching the creation of relevant 
testing sequences or batteries would mean reducing the focus 
on the MIEs in Levels 1 and 2, and concentrating instead on the 
cellular and tissue events that are pivotal for NGTx cancer out-
comes. There are several examples of such test developments in 
medical research that could be considered for adaptation. Key 
cellular properties that indicate that tumor cells are successively 
accumulating to be included in such test developments are as 
follows:
–	 Disturbed regulation of growth (balance between cell replica-

tion and cell death)
–	 Genetic instability (disturbed DNA repair, quick establish-

ment of mutations = “mutator phenotype”)
–	 Control of micro-environment (establishment of tumor-tis-

sue, angiogenesis)
–	 Cellular senescence (immortality of tumor cells, expression 

of telomerase)	
–	 Metastases (migration, intra- and extravasation, survival out-

side of original tissue) 
This approach could be complemented by toxicogenomic ap-
proaches using in vitro test systems to recognize and group 
chemicals according to specific MoA, as demonstrated by 
Schaap et al. (2012, 2015).

7.3  Potential regulatory use of 
Level 1 and 2 assays
From today’s perspective, once relevant methods are developed 
for NGTxC, the mechanistically based in vitro assays may be 
used for detecting positives. At Level 1 (subcellular), it has been 
proposed to use sequential testing on the basis of mechanistic 
and toxicokinetic understanding for the chemical structure for 
initial hazard identification (OECD, 2015a) (note this is not re-
ferring to formal REACH Classification and Labelling), and se-
quential testing is clearly preferred to battery testing by industry 
for pragmatic reasons such as time and cost.

Assays can be grouped together as key stages of the particular 
NGTx MoA. If a substance is positive for one MoA group, then 
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type of information, if it is not already in a regulatory decision. 
On the basis of this new information a member state could pro-
pose classification and labelling for the substance and/or could 
start other processes but, as already indicated, such requests are 
rare. It is therefore anticipated that use of this type of IATA will 
not increase the number of in vivo studies. In any case, e.g., in 
the REACH Substance Evaluation, any additional standard and 
non-standard methods may be required if they appear to be criti-
cal for a decision.

Human epidemiological evidence should be utilized where 
available for existing chemicals/substances, but of course this is 
unlikely to be the case for new chemicals, except when it may 
be possible to extrapolate by read-across and/or grouping, and 
is also supported by Level 0/1, 2 and 3 data.

The challenge will be how to integrate the differing pieces 
of information and how to ascertain the minimum information 
requirements. For negatives, to ensure that they truly are nega-
tive for agreed key event NGTxC mechanisms, one will need to 
conclude after screening conducted in all the Level 2 tests in the 
IATA, and after each test result use the test result information 
to make an informed decision as to which next test to conduct, 
such that it will contribute the most pertinent information. Thus 
the list of Level 2 tests will need to be 1) sufficiently compre-
hensive in coverage of the hallmarks of cancer, 2) predictive 
of the test endpoints, and 3) the information will need to be 
integrated to guarantee true across the board negative results for 
NGTxC. The conclusion might also be determined in conjunc-
tion with a Level 3 test, which includes initiation, promotion, 
such that the protocol takes into consideration effects at the pro-
motion stage and KERs leading to adversity. When integrating 
a probabilistic Bayesian approach into the decision tree of the 
IATA, decisions as to where the confidence is sufficient to make 
a regulatory decision will require a consensus approach.

8  Future long-term goals

Following through with the vision expressed in Toxicity Test-
ing in the 21st Century (NAS, 2007), in the future information 
derived from test methods and assays performed in silico and in 
vitro (i.e., Level 0/1/2/3) could be sufficiently robust for deci-
sion making. One long term vision may be to define adversity 
on a cellular level and translate the respective in vitro BMD to a 
corresponding in vivo dose by kinetic modelling and classify ac-
cording to potency. Classification essentially could be based on 
adverse cellular effects and respective in vivo potency estimates; 
indeed this may lead to proposals for major rearrangements of 
GHS classification. An important starting point for developing 
such an approach would be an assessment of the validation basis 
for current standard animal tests and the uncertainty inherent 
in defining adverse effects on standard “apical” animal testing 
endpoints compared with the uncertainties that could be consid-
ered acceptable when defining adversity on a cellular level. On 
such a basis, resources could then be targeted towards the TG 
development of the selected in vitro tests.

sufficient in the evaluation of the carcinogenicity of a substance. 
However, taken together with other, more mechanistically based 
data and in a WoE approach, this information may be useful and 
increase the relevance in the evaluation of carcinogenicity. For 
data rich pharmaceuticals, the absence of histopathological data 
combined with information on mutagenicity and hormonal activ-
ity has been shown to correlate well with non-carcinogens (Sis-
tare et al., 2011), and this could also be the case for chemicals. 

Under the REACH Regulation, the sub-chronic toxicity study 
is a standard information requirement above 100 tonnes per an-
num (tpa) and therefore relevant histopathological findings can 
be observed, when present, and used in the evaluation of car-
cinogenicity. In the development of the individual test methods 
and IATA, the aim is to cover the hazard characterization with 
Level 1, 2 and in vitro Level 3 tests as often as possible. Note that 
the concept of this testing does not imply that only in vivo Level 
3/4 tests can give definitive or conclusive test results for regula-
tory purposes. At present, Level 2 and in vitro Level 3 assays, 
as shown in Table 1, may be able to meet regulatory informa-
tion requirements from the information available from the MIE 
together with additional WoE information, e.g., also in the con-
text of category formation and read-across according to REACH 
Annex XI, whereas in vivo Level 3 studies would be considered 
sufficient for Classification and Labelling purposes. Thus, in vivo 
Level 3 information may not be necessarily needed to complete 
the decision making process.

7.6  Level 4: Organism level 
Examples of Level 4 assays from which information relevant 
for an IATA for NGTxC may be derived include:
–	 assays with transgenic rodents
–	 the rodent carcinogenicity bioassay 
–	 chronic toxicity studies (provided that the histopathology 

findings give sufficient evidence of carcinogenicity of human 
relevance)

7.7  Actual regulatory use of Level 4 assays
Currently, information needs to be obtained from whole organ-
isms if insight is required regarding the adverse effects level, 
dose response curve and the type of tumors in the tested species 
(which is essential for the GHS/Classification, Labelling and 
Packaging (CLP) regulatory requirements for chemicals).

Positive evidence from a definitive in vivo study, with no 
controversy about human relevance, can normally be used for 
risk assessment and for CLP, and is dependent upon the regu-
latory context and process. For instance for REACH it is es-
sential that a substance is classified before certain risk manage-
ment procedures come in to effect. However, Level 4 data will 
often not be available for the industrial chemicals. Therefore, 
the IATA should advise the registrants and authorities on mak-
ing an informed decision as to when Level 4 studies should 
be conducted. Some non-conclusive evidence ranging from 
mechanistic/MoA in vitro tests (Tab. 1) to repeated dose stud-
ies might lead to testing the substance at Level 4. The REACH 
Substance Evaluation, for example, enables the request for this 
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place, and it is the construction of an IATA, under the auspices 
of the OECD that will be a primary way to address this crucial 
gap internationally.
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