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format and any workflows involving the public summary data 
in REACH depend on a slow and error-prone process of manual 
extraction.

Here, we seek to demonstrate the extent and diversity of the 
public REACH dataset – a dataset that far surpasses most exist-
ing datasets used for computational toxicology – and show, as a 
case study, how an open-access REACH program would allow 
profound change in the analysis of skin sensitization by chemi-
cal substances. Using REACH data, we were able to find in vivo 
skin sensitization data for thousands of chemicals. To leverage 

1  Introduction

While computational toxicology has recently seen the collec-
tion of several large-scale datasets (e.g., US EPA’s ToxCast, the 
Tox21 alliance of US agencies), the data collected by REACH 
(Regulation (EC) 1907/2006), owing to its legislative nature as 
a central repository for testing data, is the largest collection of 
toxicology data today relating to in vitro and in vivo studies. 
However, REACH dossiers submitted to the European Chemi-
cals Agency (ECHA) are currently not in a machine readable 
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Summary
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This analysis scopes the landscape of chemical skin sensitization, demonstrating the value of large public datasets for 
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this dataset we additionally rely on structure data and incorpo-
rate reaction alert data.

Skin sensitization provides a good case study to demonstrate 
the value of REACH data to computational toxicology. REACH 
requires skin sensitization data for all chemicals produced or 
marketed in Europe at a volume of 1 ton per year or more, the 
threshold of the legislation (REACH Annex VII, REACH An-
nex VIII; Hartung, 2010). This allows the creation of a well pop-
ulated chemical similarity map. Already at the time point of this 
study, 7,697 substances with sensitization studies were avail-
able in the database with several tens of thousands expected by 
2018. We first used ToxTree (Enoch et al., 2007) to develop a 
simple heuristic for skin sensitization prediction (modeling skin 
sensitization as a two class sensitizer/non-sensitizer problem) 
and evaluated its strength relative to a simple k-nearest neigh-
bors (KNN) variant (Altman, 1992). 

Skin sensitization, which clinically manifests in humans as 
allergic contact dermatitis (ACD), is an increasingly common 
concern among both regulators and the general public. Recent 
data indicate that an estimated 15-20% of the general population 
suffers from contact allergy (Thyssen et al., 2007). US Bureau 
of Labor Statistics (BLS) data shows that occupational skin dis-
eases currently account for 10-15% of all occupational illness1. 
It has been estimated that the true number of occupational skin 
diseases may be in the order of 10-50 times higher than reported 
by the BLS (Lushniak, 2004). This would potentially raise the 
number of occupational skin disease cases in the US to between 
400,000 and 2 million per year. Occupational contact dermatitis 
is particularly prevalent in the personal services industry, with 
an estimated prevalence of 1.2% percent, e.g., in the beauty/
haircare industry (Warshaw et al., 2012), as well as high preva-
lences in the petrochemical, rubber, plastic, metal and automo-
tive industries (McDonald et al., 2006). 

Many chemicals used in occupational settings have not yet 
been tested for skin sensitization potential. Noteworthy, only 
one in eight premarketing notifications to EPA is submitted with 
any toxicological data. Although the replacement of the guinea 
pig maximization test (GPMT) with the mouse local lymph 
node assay (LLNA) allows for a reduction in animal use as well 
as suffering, there is still a strong need for an in vitro or in silico 
replacement (Adler et al., 2011; Basketter et al., 2012; Leist et 
al., 2014; Reisinger et al., 2015). The LLNA is prescribed by 
REACH for new test data, but the legislation allows the use of 
existing guinea pig or other data. Currently, no alternative ap-
proach has been formally accepted by ECHA for skin sensitiza-
tion, but the legislation allows the use of alternative methods in 
weight-of-evidence approaches (Linkov et al., 2015). Integrated 
testing strategies are under development (Jaworska et al., 2011; 
ECVAM, 2013; Rovida et al., 2015).

Sensitization prediction has been approached in many (Q)
SARs (Jaworska et al., 2013; Hirota et al., 2013; Luechtefeld 
et al., 2015). (Q)SARs typically have a limited applicability do-

main and are often over-fitted to the dataset from which they 
were derived (Hartung and Hoffmann, 2009). Supervised learn-
ing methods typically draw from in vitro data, with recent ad-
vances made in Jaworska et al.’s Bayesian network approach, 
Hirota et al.’s Artificial Neural Network and more (Jaworska et 
al., 2013; Hirota et al., 2013; Pirone et al., 2014; Luechtefeld et 
al., 2015). In vitro data allows direct measurement of features 
in OECD adverse outcome pathways, such as cysteine reactiv-
ity and dendritic cell activation, and as such provide a strong 
feature set for sensitization prediction. However, many of the in 
vitro features used in these publications have been measured for 
only a small subset of the chemical universe.  

2  Methods

Multiple programming languages, packages and database tools 
were used in the development of this project, including SCALA, 
Java, Python, MongoDB, SQL, HTMLUnit and Gephi. For de-
tails see Luechtefeld et al. (2016, this issue). 

2.1  ECHA downloads for REACH dossiers
Data was downloaded from ECHA using HTMLUnit, an open 
source Java “Gui-less browser” library (Bowler, 2002). Im-
plementation of ECHA dossier download automation used the 
functional programming language SCALA (Odersky et al., 
2004). In December 2014, a total of 10,588 dossiers for 9,801 
chemicals were retrieved.

2.2  MongoDB
A MongoDB database2 was generated from the REACH data 
(Chodorow, 2013). The database was generated by automated 
data extraction from ECHA dossier URLs via the SCALA driver 
ReactiveMongo (Godbillon, 2015). 

2.3  PubChem
PubChem’s Power User Gateway provided data on chemical 
similarity, chemical properties including molecular weight, and 
chemical identification information (common names, SMILES, 
etc.) (Bolton et al., 2008; Steinbeck et al., 2003). 

2.4  Gephi
Gephi, a network visualization tool, was used to construct and 
analyze similarity networks (Bastian et al., 2009). The code for 
Gephi is available4. Custom code was written to export chemi-
cal similarity from MongoDB into a Gephi-readable format. 

2.5  Force layout
The force atlas algorithm (Jacomy et al., 2014) was used for 
generation of chemical similarity networks. The force atlas al-
gorithm is a physical simulation where graph nodes are treated 
as charged particles that repel each other and edges are treated 

1 Bureau of Labor Statistics: Industry and illness data. Available online at: http://www.bls.gov
2 https://www.mongodb.org/
3 https://github.com/gephi/gephi

http://www.bls.gov
https://www.mongodb.org/
https://github.com/gephi/gephi
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as springs causing their associated nodes to be attracted. The 
following parameters were used for generation of the layout: 

Inertia: 0.1, Repulsion: 200.0, Attraction: 10.0, Maximum 
displacement: 10.0, Auto stabilize: True, Autostabilize Strength: 
80.0, Autostabilize sensibility: 0.2, Gravity: 9000, Attraction 
Distribution: false, Adjust by Sizes: True, Speed: 10.0 

2.6  Chemical similarity
Construction of a chemical similarity map was done using 
PubChem’s 2D conformational substructure vectors as accessed 
through the Chemical Development Kit (CDK)4 (Steinbeck et 
al., 2003). Chemical similarity was calculated using Tanimoto 
distance, which is calculated by the number of shared substruc-
tures between chemicals divided by the total number of sub-
structures in both chemicals and takes on a value between 1 
(perfect similarity) and 0 (no similarity).

Using chemical similarity numbers, a chemical similarity 
map can be constructed and laid out using the force layout al-
gorithm. This map is defined by the substances (called nodes in 
graph parlance) and edges (similarity between nodes). 

K-Core filtration was used to filter out non-central substances 
in the chemical similarity map. K-Core filtration iteratively re-
moves nodes (chemicals here) with the fewest neighbors first 
until all nodes have at least k neighbors. The result is a more co-
hesive similarity network at the cost of losing some interesting 
subsets of the network. K-Core filtration has been used success-
fully in discovering useful network structures in protein-protein 
networks (Altaf-Ul-Amine et al., 2003; Wuchty and Almaas, 
2005). The Blondel et al. module recognition algorithm (Blon-
del et al., 2008) is used to identify clusters of chemicals. More 
detailed explanation of the construction and analysis of chemi-
cal modules is given in Luechtefeld et al. (2016, this issue).

Visualizing sensitization in the chemical similarity map re-
quires substance sensitization status labeling. Chemical sensiti-
zation status is set to positive if there exists any “experimental 
key skin sensitization” study with a positive result for the given 
chemical or if there is classification and labeling data identify-
ing the chemical as positive for H317.

Chemical similarity enables the use of KNN models for 
chemical classification. Here we implement a simple variant 
of KNN as a proof of principle for classification by similarity 
given large datasets (Altman, 1992).

Our similarity-based classification method is implemented as 
follows: 
1.	 Choose minimum similarity parameter T. 
2.	 Let Aij be the similarity between chemicals i and j. 
3.	 Let Ni be the set of chemicals with similarity Aij > T. 
4.	 Predict sensitizer if majority of neighbors are sensitizers.
5.	 Predict non-sensitizer if majority neighbors are non- 

sensitizers.
6.	 In the event of a tie, predict sensitizer.
This instance-based learning approach is compared with a sim-
ple heuristic model of skin sensitization using molecular weight 
and structural alerts.

4 PubChem Substructure Fingerprint v1.3 (2009), http://pubchem.ncbi.nlm.nih.gov

2.7  Module entropy 
To identify which substructures provide the most information 
for sensitization status we used entropy calculations. Entropy is 
a metric with values between 0 and 1 and is higher for modules 
with balanced mixtures of sensitizers and non-sensitizers. En-
tropy is low for modules with imbalanced mixtures. A module 
consisting of all sensitizers would have 0 entropy.

H(M) = –P(sens) * log(P(sens)) – p(nonSens) * log(P(nonSens))

Equation 1: Entropy equation for a module M;  
sens = sensitizer, nonSens = non-sensitizer

When a structural alert successfully divides a module into sensi-
tizers and non-sensitizers, it is said to provide high information 
gain. This information gain is found quantitatively by evaluat-
ing entropy on 3 groups. The parent group (a substance module) 
and two child groups (substances in the module that are positive 
for a structural alert vs. those that are negative). The entropy 
for each subgroup is found. The difference between subgroup 
entropy (averaged by size of subgroup) and parent entropy is 
the information gain. 

I(M|alert) = Hp – p(alert)Hpa – p(!alert)Hpn 

Equation 2: Structural alert information gain is  
the entropy difference of the parent group Hp  

and the entropy of groups positive and negative for  
the given alert Hpa , Hpn (multiplied by the  

probability of the alert) 

As an example, if a structural alert divides a module’s substanc-
es into 2 subgroups, one with all sensitizers and one with no 
sensitizers, then the child groups both have entropy of 0 and 
thus the information gain is complete (I(M|alert) = H(M)). 
Since the parent group’s entropy is greater than 0, the informa-
tion gain is equal to the entropy in the parent group and thus no 
more information can be gathered.

3  Results

3.1  Sensitization data exists in  
greater abundance in the REACH dataset 
than in other existing datasets
REACH requires assessment of skin sensitization potential for 
all registered substances (REACH Annex VII, REACH Annex 
VIII). Even in case of data-waiving for skin sensitization, which 
REACH allows under certain circumstances, substance dossiers 
collect many studies related to sensitization. The large REACH 
dataset, though biased by the high-production volume chemicals 
registered in 2010 and 2013, allowed assessment of the preva-
lence of skin sensitizers among industrial chemicals, critical in-
formation for the construction of any testing strategy (Hoffmann 
et al., 2005; Hartung et al., 2013; Rovida et al., 2015). 

http://pubchem.ncbi.nlm.nih.gov
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2.	 Study contains “results and discussion” section. 
3.	 Study contains “materials and methods” section. 
4.	 Klimisch score less than or equal to 2. 
The Klimisch score developed by OECD characterizes the reli-
ability of the study based on defined criteria (Klimisch et al., 
1997). 

Use of the various guidelines for sensitization testing over 
time was visualized by analysis of reference dates and study 
types for sensitization studies. Figure 3 shows the counts by 
year of all experimental key skin sensitization studies of study 
type Buehler, GPMT or LLNA since 1970. Notably, the LLNA 
was validated in 1999 and is since then the preferred method in 

We extracted the prevalence of GHS hazards reported in sub-
stance dossiers. 21% of substances are identified as sensitizers 
by submitters via H317, “May cause allergic skin sensitisation”. 
Figure 1 shows the frequency of other H317 labels. Figure 2 
gives the number of substances with sensitization data from ei-
ther in vitro, in vivo, read-across or QSAR studies (notewor-
thy, 762 unique substances have both in vivo and in vitro data). 
Study types were assigned using mappings from study guide-
lines and language heuristics. We selected all studies meeting 
the below criteria: 
1.	 Type contained the word “skin”, i.e., “exp key skin  

sensitization”. 

Fig. 3: Histogram of study counts by date of execution of 
REACH-registered studies 2008-2014 
Buehler and GPMT tests are most prevalent before 2000 and 
mouse LLNA are more prevalent after 2005. 

Fig. 1: Prevalence of positives, “conclusive but not sufficient 
for classification” and “data lacking” or “inconclusive” 
outcomes for 6,026 ECHA dossiers with GHS Classification 
and Labeling data for H317 (may cause an allergic skin 
reaction) from REACH registrations 2008-2014

Fig. 2: Diverse types of skin sensitization data on  
8,739 REACH-registered substances from 2008-2014 
Diagram shows number of substances with each type of study.

Tab. 1: Classification agreement on chemicals with at least 
two sensitization studies in REACH dossiers from 2008-2014 
Studies found by searching for all studies with studytype = Buehler, 
GPMT, Patch-Test or LLNA. 

	 Buehler	 GPMT	 Patch-test	 LLNA

Buehler	 95.1% 	 91.8% 	 87.8% 	 76.8%  
	 (344 chem.)	 (364 chem.)	 (58 chem.)	 (212 chem.)

GPMT		  93% 	 90.5% 	 77.4%  
		  (624 chem.)	 (107 chem.)	 (403 chem.)

Patch-test			   92.1% 	 78.3%  
			   (24 chem.)	 (40 chem.)

LLNA				    88.5%  
				    (296 chem.)
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leveraged for its predictive strength, originally tested only 96 
substances and was trained using 740 (Dimitrov et al., 2005).

3.2  Chemical similarity
A chemical similarity network was built from the 4,160 sub-
stances with in vivo skin sensitization data. We used PubChem’s 
2D Tanimoto similarity metric, which required that we first 
mapped REACH substances to PubChem (Bolton et al., 2008). 

the EU. In spite of the increase in study counts during the pro-
gression to LLNA testing, Figure 4 shows only small changes 
in the estimated number of animals used for this increased test-
ing. This lack of increases in estimated animal usage despite in-
creased testing is likely due to the requirement of fewer animals 
for LLNA tests.

To evaluate the intra- and inter-reproducibility of skin sen-
sitization tests, we analyzed all substances with two or more 
sensitization studies having an interpretation of “sensitizing” 
or “not sensitizing”, study type of “Guinea Pig Maximisation 
Test (GPMT)”, “Mouse Local Lymph Node Assay (LLNA)”, 
“Patch-Test” or “Buehler test”. We found 1,462 substances with 
multiple sensitization studies matching these constraints. Table 
1 shows the results of that reproducibility analysis. It is impor-
tant to note that the datasets used to evaluate the reproducibility 
between tests do not contain the same substances and for this 
reason percentage agreement should not be considered a direct 
comparison. All together, reproducibility ranged from 77% to 
95% with 89% for the LLNA to reproduce itself. This means we 
can expect no alternative method to be better than this in direct 
comparisons if used on the same sets of substances. 

LLNA (OECD TG 429) and GPMT (OECD TG 406) are 
frequently used to develop and test strategies of skin sensiti-
zation testing (Alvarez-Hamelin et al., 2005; Wuchty and Al-
maas, 2005; Newman, 2004). The extracted REACH data for 
in vivo skin sensitization contains a subset of 1,470 substances 
with mouse LLNA guideline studies and 2,787 substances with 
GPMT data, which is valuable for this purpose. 

Recent datasets used for sensitization model evaluation and 
construction lack the number of substances shown in the REACH 
extraction here (Tab. 2). E.g., TIMES-SS, frequently cited and 

Fig. 4: Estimate of number of animals used for experimental key skin sensitization studies since 1965 from REACH registration 
dossiers 2008-2014 
Average animal numbers for each study type are used to calculate these numbers.
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Tab. 2: Model datasets derived from LLNA and GPMT data  
These datasets were used to build or evaluate skin sensitization 
models. The table lists 1) bibliographic source or model (with 
citation) 2) Use of dataset (used to build a model, evaluate models 
or both) 3) number of substances in dataset.

Article or Model	 Use	 Substances

Toxtree	 Build/Eval	 210 
(Enoch et al., 2007)

DEREK	 Build/Eval	 85 
(Barrat and Langowski, 1999)

TIMES-SS	 Build	 740 
(Dimitrov et al., 2005)

TIMES-SS	 Eval	 96 
(Dimitrov et al., 2005)

Computers versus Reality	 Evaluation	 100 
(Teubner et al., 2013)

Times-SS	 Evaluation	 40 
(Patlewicz et al., 2007)

Reach extraction skin in vivo	 Build/Eval	 4160 
(this study)
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Fig. 6: Chemical 
similarity network with 
experimentally classified 
sensitizers from REACH 
(registered 2008-2014) 
mapped to PubChem 
Sensitizers (dark blue) and 
non-sensitizers (turquoise) 
as well as unknowns in 
yellow are shown. Nodes 
are chemicals and edges 
are drawn between 
chemicals with > 65% 
similarity. Numbers indicate 
the module. 

Fig. 5: Chemical 
similarity map built from 
3,116 chemicals with skin 
sensitization studies and 
mappings from REACH 
(registered 2008-2014) to 
PubChem 
K-Core filtrations was 
performed with K = 30. 
Nodes are colored by 
module (as determined 
by Blondel et al. (2008) 
algorithm). Numbers 
correspond to modules. 
Larger nodes are positive 
for more GHS health 
hazards (H300-H399). 
Edges are determined by 
chemical similarity and 
drawn between nodes with 
similarity ≥ 0.65. 
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3.2.2  Similarity subgraph analysis
Large datasets made possible via REACH extraction greatly 
enhance data exploration. Network visualizations allow for the 
discovery of important predictive features. Skin sensitization is 
frequently described as a function of electrophilicity and many 
models rely on features attempting to capture reactivity mecha-
nisms. Given large enough reference data and clustering meth-
ods, experts may deduce reasonable sensitization mechanisms 
via analysis of interesting subgraphs. 

Similarity subgraphs can be created and annotated automati-
cally to aid in expert chemical evaluation, but rely on access to 
large datasets with endpoint information. Previously, software 
aiding in chemical screening processes have found use in sub-
categorizing Michael’s acceptors (Schultz et al., 2007, 2009). 

Figure 7 shows a subgraph of module 1 with highly similar  
(≥ 90%) methacrylates. Such subgraphs, particularly when 
made interactive, can help experts to elucidate mechanistic ex-
planations of sensitization. Identification of differences between 
tert-butyl methacrylate and methacrylic anhydride could help 
discover mechanisms of reactivity within this subdomain. Al-
ternatively, similarities between tert-butyl methacrylate and al-
lyl methacrylate not shared by other chemicals in the subgraph 
could also be automatically explored. 

3.3  Heuristic analyses
Modularity can be used to analyze domains of applicability. We 
developed a simple sensitization model using molecular weight 
and five ToxTree structural alerts (Enoch et al., 2007) and de-
pict the number of structural alerts associated with a chemical by 
chemical node size where larger nodes have more structural alerts. 
To find ToxTree alerts, we used the ToxTree Maven repository5. 

The resulting network displayed in Figure 5 is characterized by 
nodes representing substances. Each node size is determined by 
the number of ToxTree structural alerts. Edges are drawn be-
tween chemicals with similarity ≥ 0.65 with darker edges repre-
senting higher similarity. 

The large size of the REACH extraction has a network ef-
fect on chemical prediction: As the reference dataset grows, the 
probability of neighbors existing for a new chemical increases. 
Jaworska and Nikolova-Jeliazkova’s (2007) paper “How can 
structural similarity analysis help in category formation?” used 
a 211 chemical dataset to evaluate several chemical similarity 
approaches. Our analyses are based on 3,116 chemicals with 
mappings to PubChem and skin sensitization data. 

3.2.1  PubChem 2D
Figure 5 shows a diverse chemical dataset along with some 
clear indication of clusters. To better visualize the modularity of 
this network, we used the K-Core filtration approach (Alvarez-
Hamelin et al., 2005). Chemical modules, albeit dependent on 
chosen similarity metric, may make strong candidates for the 
evaluation of domains of applicability (Jaworska and Nikolo-
va-Jeliazkova, 2007). Analysis of biological activity cliffs and 
other biochemical features as functions of modularity may also 
yield toxicological value.

Leveraging the similarity network for skin sensitization 
analysis requires annotating nodes by their sensitization status. 
Figure 6 displays skin sensitizers in dark blue, non-sensitizers 
in turquoise, and unknowns (due to failed extraction or lacking 
data) in yellow. Visual inspection shows some modules lacking 
sensitizers (notably module 2), while others have high preva-
lence of hazard (module 1). 

Fig. 7: Module 1 similarity subgraph with methacrylate Michael’s acceptors of Figure 6 
Edges drawn for substructure similarity > 90%. Dark blue signifies a skin sensitizer, light blue a non-sensitizer. 

5 http://toxtree.sourceforge.net/skinsensitisation.html

http://toxtree.sourceforge.net/skinsensitisation.html
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3.3.2  Sensitization structural alerts
Structural alerts for skin sensitization identify substructures pre-
dictive for substance reactivity and sensitization proclivity. Dis-
tribution of structural alerts by module revealed wide variation 
(Tab. 3). Approximately 31% of mapped chemicals have the 
Michael acceptor alert and contain a,b-unsaturated ester, ketone 
or aldehyde functions. a,b-Unsaturated alcohols can also react 
as Michael acceptors after the alcohol group is oxidized to an al-
dehyde (Karlberg et al., 2013). Module 2 shows remarkably low 
reactivity with only one Schiff base alert (betaine), which rep-
resents the only misclassified substance in the module. Modules 
1 and 3 have a large prevalence of Michael’s acceptors (> 80%) 
and module 3 has the greatest prevalence of acylation alerts. 

Module characteristics can be further explored by examining 
the explanative power of structural alerts as a function of mod-
ule. This analysis is done by examining, for each module, the 
information gain associated with each structural alert. Informa-
tion gain is assessed by change in entropy. 

Table 4 allows for comparison of structural alert information 
gain across modules by an entropy-normalized information gain 
metric (information gain divided by original entropy x 100). 
This normalized information gain takes on a value of 100 when 
an attribute perfectly separates a set of chemicals into sensitiz-
ers and non-sensitizers. It takes on a value of 0 when an attribute 
fails to reduce entropy in a set of chemicals. Lack of sensitizers 
in module 2 makes information gain in this module impossible.

Most notably, information gain due to structural alerts is sur-
prisingly low in most modules. The reactivity domain (RD) 
attribute (positive when a chemical has any structural alert) is 
the most informative attribute for 4 out of the 9 modules, and 

These alerts capture electrophilic mechanistic information and in-
clude “Michael-type addition reaction”, “Schiff base formation”, 
“acylation”, “nucleophilic aromatic substitution” (SNAr) and 
“second order nucleophilic aliphatic substitution” (SN2). The fi-
nal alert “Reactivity domain alert” is true if any other alert is true 
(Enoch et al., 2007).

The simple heuristic model follows the below pseudocode 
(alerts refer to the number of structural alerts for a chemical, 
and MW refers to chemical molecular weight in Da):

if((alerts > 0) AND (MW < 500): predict chemical as sensitizer
else: predict chemical as non-sensitizing

Equation 3: Heuristic sensitization algorithm using 
ToxTree structural alerts and MW

3.3.1  Accuracy
The ToxTree heuristic module specificity and sensitivity is dis-
played in Figure 8. With the exception of module 1, all mod-
ules show specificities over 60%. Module sensitivities are in the 
range of 10% to 65% with the exception of module 1 with sen-
sitivity 100%. Over all 3,024 chemicals mapped from REACH 
to PubChem with skin sensitization data, the heuristic has a bal-
anced accuracy of 65.8% with a specificity of 80.4% and sensi-
tivity of 51.4%. 

High specificities indicate that the absence of structural alerts 
effectively reduces the probability of sensitization. Lower sensi-
tivities show that structural alerts do not necessitate sensitization. 
Module accuracy can be used to determine model applicability 
domains. 

Fig. 8: Sensitivity and specificity for ToxTree plus molecular weight sensitization heuristic defined on modules from Figure 5
A simple sensitization model using molecular weight and five ToxTree structural alerts (Enoch et al., 2007) was created: A substance was 
predicted positive if the molecular weight was below 500 and at least one alert (from the ToxTree Maven repository capturing electrophilic 
mechanistic information including “Michael-type addition reaction”, “Schiff base formation”, “acylation”, “nucleophilic aromatic substitution” 
(SNAr) and “second order nucleophilic aliphatic substitution” (SN2) as well as a final alert “reactivity domain alert” if any other alert is 
present) was found. 
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in module 6 predispose acylating agents to a greater probability 
of skin sensitization.

Module 5 sees a higher Schiff base alert information gain than 
the information gain associated with RD. Since the RD alert 
is true when any other alert is true (and can thus be consid-
ered a precautionary alert), its lack of predictive power in this 
module relative to more specific alerts indicates the weakness 
of a precautionary approach. By designating chemicals with any 
reactivity alert as sensitizers, it is possible to obtain lower ac-
curacy than by intelligent selection of those alerts more strongly 

also the most informative for the entire chemical space. The low 
overall information gain was attributed to a high incidence of 
false-positives associated with the RD alert. 

In module 6 the presence of any reactivity domain yields high 
information gain. Since the heuristic algorithm, Equation 3, 
includes a split on reactivity alert, this high information yield 
explains the relatively strong accuracy seen for the heuristic 
in module 6 (Fig. 8). Of additional note is the strength of the 
acylation alert in module 6, which is higher than for any other 
module. It is possible that some frequent chemical substructures 

Tab 3: Prevalence of structural alerts by module (modules in Fig. 5) 
Column maximums in blue. SN2 = Second order nucleophilic aliphatic substitution. MA = Michael-type addition reaction. SB= Schiff base 
alert. AA = Acylating agent. SNAr = Nucleophilic aromatic substitution. RD = Reactivity domain alert (true when any other alert is true). 
Diverse prevalences indicate unique distributions of reactivity alerts by chemical module.

Module	 SN2	 MA	 SB	 AA	 SNAr	 RD	 Count

ALL	 5.3%	 13.1%	 7.6%	 9.1%	 0.7%	 30.9%	 3024

undefined	 5.9%	 7.2%	 9.2%	 8.0%	 0.9%	 27.9%	 1509

0	 10.0%	 13.5%	 4.6%	 12.0%	 0.7%	 34.1%	 258

1	 8.8%	 89.8%	 1.2%	 7.5%	 0.0%	 97.4%	 79

2	 0.0%	 0.0%	 2.1%	 0.0%	 0.0%	 2.1%	 47

3	 5.0%	 81.3%	 0.0%	 37.2%	 1.6%	 96.6%	 118

4	 0.9%	 0.0%	 0.0%	 8.8%	 0.0%	 8.8%	 102

5	 4.8%	 23.5%	 17.0%	 17.0%	 0.0%	 56.1%	 123

6	 4.4%	 0.0%	 6.0%	 10.8%	 0.0%	 18.4%	 249

7	 2.0%	 15.1%	 6.0%	 3.0%	 0.0%	 26.2%	 99

8	 0.5%	 9.9%	 6.9%	 0.5%	 0.0%	 11.3%	 202

Tab. 4: Structural alert and molecular weight information by module  
Comparison of structural alert information gain across modules by an entropy normalized information gain metric (information gain 
divided by original entropy x 100). This normalized information gain takes on a value of 100 when an attribute perfectly separates a set of 
chemicals into sensitizers and non-sensitizers. It takes on a value of 0 when an attribute fails to reduce entropy in a set of chemicals. Lack 
of sensitizers in module 2 makes information gain in this module impossible. Row maximums in green. Column maximums in pink. Cells 
that are both a row and column maximum in orange.

Module	 Entropy	 SN2	 MA	 SB	 AA	 SNAr	 RD	 MW	 MW Threshold

ALL	 0.72	 0.61	 3.76	 1.53	 0.17	 0.08	 6.61	 0.73	 309

none	 0.69	 0.09	 1.76	 1.51	 0.02	 0.09	 2.54	 1.20	 306

0	 0.80	 4.48	 3.43	 1.27	 0.00	 0.38	 7.06	 3.32	 439

1	 0.98	 0.62	 3.42	 0.93	 1.38	 0.00	 3.04	 15.85	 329

2	 0.00	 na	 na	 na	 na	 na	 na	 na	 na

3	 0.78	 0.27	 4.80	 0.00	 0.43	 4.41	 1.55	 6.76	 682

4	 0.31	 12.82	 0.00	 0.00	 0.96	 0.00	 0.96	 10.83	 174

5	 0.98	 0.37	 0.53	 9.84	 2.10	 0.00	 5.36	 3.20	 110

6	 0.68	 1.94	 0.00	 1.54	 15.25	 0.00	 20.70	 1.87	 842

7	 0.86	 0.35	 6.48	 3.35	 0.03	 0.00	 11.44	 8.99	 121

8	 0.33	 5.80	 5.31	 1.83	 0.25	 0.00	 7.32	 7.88	 173
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molecular weight threshold of 309 for all chemicals with ranges 
from 110 to 842 for individual modules. 

There is an equal number of sensitizers above and below a 
molecular weight threshold of approximately 200 Da (305 be-
low, 318 above, data not shown). There are only 100 sensitizers 
with a molecular weight greater than 377 and only 23 sensi-
tizers with a molecular weight greater than 644 Da. However, 
total substance count also falls. The ratio of sensitizers to total 
chemicals gradually falls as molecular weight increases (data 
not shown). The low information attributed to molecular weight 
in Table 4 and the gradual reduction in relative sensitization 
count as the molecular weight threshold is increased suggests 
that, rather than some molecular weight threshold making skin 
penetration unlikely, molecular weight increases may simply re-
duce the number of reactive molecules as suggested by Roberts 
et al. (2013).

3.4  K-nearest neighbors classification
Our KNN variant classifies chemicals by finding all neighbors 
with similarity greater than a parameter T. The majority label 
of neighbors is then used to predict the class of the chemical in 
question.

Accuracy metrics for different values of T are given in Ta-
ble 5. We find this simple algorithm outperforms our heuristic 
approach already at the 75% minimum-similarity threshold, 
whereby chemicals are considered neighbors if their substruc-
ture similarity is greater than or equal to 75%. At higher similar-
ity thresholds the balanced accuracy increases. Lower similarity 
thresholds decrease sensitivity faster than specificity. 

The surprising strength of this naïve similarity based classi-
fication algorithm is impacted by several factors. The REACH 
extraction provides a large dataset, which improves the prob-
ability of neighbor existence for any given chemical (this is a 
network effect). A smaller dataset would result in poorer accu-
racy due to insufficient neighbors at large similarity thresholds. 
The success of this approach indicates that the PubChem 2D 
substructure features must bear some predictive strength for 
skin sensitization. Substructure information is related to chemi-
cal features such as electrophilicity and reactivity. 

Figure 7 shows a small subgraph of Michael’s acceptors with 
high similarities (90%). The identification of this small sub-
graph of highly similar chemicals suggests that similarity graph 
analysis could be used by experts for identifying locally predic-
tive chemical characteristics. One might use this subgraph to try 

associated with the endpoint in question. In the case of module 
5, using only the Schiff base alert to predict skin sensitization 
would yield stronger results than combining it with other alerts.

The high information value of SN2 in module 4 is due to  
the presence of a single SN2-positive chemical, bisisobutyryl 
peroxide, and should be considered of insufficient power to 
draw conclusions. The scarcity of sensitizers in module 4 and  
2 (6 sensitizers and 0) limited any conclusions being drawn 
from information gain. 

The low prevalence of SNAr in this chemical dataset (only 20 
instances) makes any meaningful information gain highly un-
likely for this attribute. In and of itself low prevalence does not 
disqualify SNAr from being of strong predictive power, how-
ever, if we analyze all chemicals with a positive SNAr alert we 
see that 7 are considered sensitizers and 13 are non-sensitizers. 
This means that the SNAr alert does a poor job (albeit on a small 
sample) of separating these two classes.

Despite its high frequency in many modules, the Michael’s 
acceptor alert does not provide much information for skin sensi-
tization. Subcategorization of Michael’s acceptors can improve 
the predictive capacity of this alert. Schultz et al. (2009) show 
that further categorization can influence reactivity of Michael’s 
acceptors. Identification of the subcategorizing substructures 
may be aided by generation of interactive subgraphs built on 
our existing code base; Figure 7 shows a preliminary example. 

3.3.3  Molecular weight
Molecular weight is an ubiquitous parameter used within skin 
sensitization prediction models. In our heuristic Equation 3, 
we use the 500 Da molecular weight rule, which stipulates that 
substances over 500 Da are non-sensitizers (Bos and Meinardi, 
2000). In 2013, Roberts et al. (2013) determined the 500 Da 
cut-off to be a “myth”, identifying 5 out of 13 substances with 
a molecular weight > 500 Da (out of a 700 chemical dataset) to 
be sensitizers (Roberts et al., 2013). We corroborate Roberts’ 
results with REACH evidence of 49 sensitizing chemicals with 
a molecular weight greater than 500 Da. 

The low information gain associated with molecular weight 
prompted the use of a binary search for the molecular weight 
threshold yielding greatest information gain per module. Rather 
than setting a threshold beyond which we expect no skin sen-
sitizers, we simply desire a threshold that optimally separates 
sensitizers and non-sensitizers and yields the greatest reduction 
in Shannon entropy (see Section 2.7). This approach yields a 

Tab. 5: Accuracy metrics for KNN variant given different minimal-similarity parameters  
For a given chemical neighbors used for prediction are constrained to those with similarity ≥ the minimum similarity. Predictions  
are made for all chemicals with one or more neighbors. 

Min. Similarity	 Chemicals	 TP	 TN	 FN	 FP	 Sensitivity	 Specificity	 BAC	 Accuracy

0.95	 525	 52	 429	 20	 24	 0.68	 0.96	 90.82	 0.92

0.9	 1189	 142	 870	 85	 92	 0.61	 0.91	 0.76	 0.85

0.85	 1738	 220	 1238	 130	 150	 0.59	 0.90	 0.75	 0.84

0.75	 2288	 224	 1616	 170	 278	 0.45	 0.90	 0.68	 0.80



Luechtefeld et al.

ALTEX 33(2), 2016 145

4.1  Chemical similarity
This similarity approach serves as a proof of principle and is 
subject to several flaws. The similarity paradox described by 
Martin et al. (2002), whereby small changes in chemical struc-
ture lead to large biological changes, is not handled in this ap-
proach. Additionally, large molecules have more substructures 
and therefore a greater probability of similar neighbors. Many 
substructures are redundant with each other, for instance the 
fourth feature in the PubChem 2D conformational fingerprint 
is “≥ 32 H”. If this substructure is present then the first three 
substructures all must be present (≥ 4 H, ≥ 8 H, ≥ 16H). 

More advanced similarity techniques employ approaches 
that account for metabolism, group chemicals into reactivity 
domains, use supervised learning algorithms to tailor similarity 
metrics for the endpoint in question and more (Nikolova and 
Jaworska, 2003). Jaworska and Nikolova-Jeliazkova (2007) 
show strong alternatives for similarity metrics (albeit on a 
smaller dataset). Self-organizing maps have notably been used 
to make context-specific similarity metrics. Kleinstreuer et al. 
(2014) use this approach for phenotypic screening of the Tox-
Cast chemical library. 

We pursued a naïve approach here with the intention to show 
that by simply increasing the size of the dataset we can create 
stronger models. Future research with more advanced approach-
es could improve the performance.

4.2  QSAR
Sensitization model performance varies by applicability do-
main. In their evaluation of Times-SS, Patlewicz et al. (2007) 
distinguish three categories of models: Local models make the 
definition of this domain explicit as they are typically defined 
on a single chemical class. Global models defined on a single 
mechanism of action may also have a well-defined applicability 
domain limited to chemicals for which the given mechanism 
can be confidently determined. Universal models are based 
on sensitization datasets comprising various chemistries and 
multiple mechanisms. All of these models benefit from larger 
datasets in training and evaluation, with the greatest benefits re-
alized by computational models unable to use knowledge not 
directly present in the data. (Q)SARs benefit from larger data-
sets through improved training and strengthened definition of 
the applicability domain. Whereas expert models can explicitly 
define applicability domains through structural rules, (Q)SAR 
rely on implicit domains defined by the scope of training sets 
(Netzeva et al., 2005). 

Extraction of skin sensitization data from REACH is cur-
rently a nontrivial task, and the substance mapping performed 
here may be error-prone and incomplete. Modern skin sensitiza-
tion models typically predict reactivity levels (EC3 values for 
LLNA) or discretizations thereof. While it is possible to extract 
EC3 values from REACH, the variability in the means of enter-
ing EC3 data into chemical dossiers makes it difficult to accu-
rately extract the required information. The data extracted for 
these analyses were mapped from natural language to numeric 
or categorical values, which will have a certain intrinsic error 
that could be avoided by more structured data and formal data 
entry protocols.

and explain why allyl methacrylate and tert-butyl methacrylate 
are non-sensitizers while the remaining methacrylates are sen-
sitizers.  

4  Discussion

This analysis of skin sensitization data for industrial chemicals 
registered in REACH shows the wealth of information that can 
be used to tailor and optimize future testing strategies. Our pre-
liminary analysis shows how such a large dataset can be lev-
eraged. This can considerably reduce testing needs and related 
costs (Hartung and Rovida, 2009; Rovida and Hartung, 2009). 
Computational approaches benefit enormously from the amount 
and quality of the data. Already relatively simple algorithms 
can make reasonable predictions, also supporting the concept of 
read-across (Patlewicz et al., 2014). Noteworthy, the majority 
of new tools and testing strategies were developed over the last 
decade on the same set of only about 145 substances (Natsch et 
al., 2013). In a data-rich environment, conclusions can be drawn 
reasonably from neighboring substances, especially when struc-
tural properties are backed with biological profiling (Zhu et al., 
2016, this issue).

The variability of the LLNA was pointed out by Urbisch et 
al. (2015): By retesting 22 LLNA performance standards in the 
standard LLNA protocol, a reproducibility of only 77% was 
found (Kolle et al., 2013). Recently, Hoffmann (2015) ana-
lyzed the variability of the LLNA test, using the NICEATM 
database. Repeat experiments for more than 60 substances 
were analyzed in terms of skin sensitization potential, i.e., 
discriminating sensitizers from non-sensitizers: The false posi-
tive rate ranged from 14-20% (false negative rate 4-5%). In 
terms of skin sensitization potency, the chance of assigning a 
substance to the next higher or next lower potency class was 
approximately 10-15%. Here, similar results were found for a 
much larger substance set of 1,462 substances that had under-
gone multiple sensitization studies.

Michael acceptors, substances accepting nucleophilic substi-
tutions, are suggested to show higher hapten formation by bind-
ing to proteins and thus higher skin sensitization potential; they 
were also predicted as sensitizers with the highest accuracies 
by in vitro tools (Urbisch et al., 2015). It is thus astonishing 
that the Michaels acceptor alert gave little information value for 
the identification of sensitizers. It is possible that the Michael’s 
acceptor alert has a strongly limited domain of applicability, or 
even that it is generally non-informative. The overestimation of 
the relevance of this attribute in prior models may be a conse-
quence of the small datasets used for model construction.  

Strong balanced accuracies across this large dataset using a 
simple KNN algorithm provides evidence for the promise of 
more advanced similarity approaches on the same dataset. In 
addition to algorithmic analysis, one could envision combining 
advanced similarity-based classification techniques with graph 
visualizations to aid experts in identifying subgraph-specific 
substructures predictive of biological activity cliffs. 
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5  Conclusions

The characterization of the REACH chemical universe (at the 
time of extraction, 2014) in the context of skin sensitization 
showed a proportion of 21% sensitizers among these predomi-
nantly high-production volume chemicals. The large number of 
repeat studies and the overlap of methods used for assessment 
of many chemicals allowed the investigation of the reproduc-
ibility of the in vivo methods. This showed a range of 80-90% 
and therefore no alternative method or integrated testing strat-
egy (ITS) should be expected to perform better than this as long 
as we use these tests as points of reference. 

The extracted database presents the largest repository of in 
vivo skin sensitization data and indicates ECHA as a still larger 
repository of sensitization and other animal testing results. This 
will be most valuable when now exploring new tests / ITS and 
in silico approaches. 

With improved data structure and machine-readable data, the 
ECHA datasets could transform sensitization modeling. In this 
publication, several obvious extensions could be made with 
improved data. The prediction of a binary outcome (sensitizer 
vs. non-sensitizer) in this article was necessitated by failing to 
extract potency information where available in ECHA dossi-
ers. The available in vitro data in the database have not been 
analyzed and exploited yet. The promising predictivity of rather 
naïve prediction models from chemical neighbors suggests that 
such advanced predictions could actually bring predictions into 
the range of in vivo reproducibility.   

One goal of this publication is to underscore the importance 
of data availability and structuring data in a machine-readable 
format – while REACH in many ways has a workable ontol-
ogy for classifying endpoints, much could be improved by more 
formal data structures for results extracted from the main guide-
line-compliant studies. This would make this huge investment 
into consumer safety also an investment into the future of safety 
sciences.

Furthermore, it is our hope that our arguments and refer-
enced articles will motivate the publication of REACH data in 
the scientific community and to inform the general public. An 
open REACH platform would allow third parties to investigate 
concepts such as testing redundancies and hazard distributions, 
and could accelerate much other toxicological research. As we 
have demonstrated, REACH does already, but could even more 
widely, provide computational toxicology with an unparalleled 
dataset.
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