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Burch, 1959), with clear benefits in terms of money, time and an-
imal savings. RAX is a data gap-filling technique used to predict 
unknown toxicological endpoints for a chemical substance (tar-
get) by using the same endpoint information from one or more 
chemicals that are highly similar to the target (analogue(s)) (Pat-
lewicz et al., 2013; Pradeep et al., 2017; OECD, 2014; ECHA, 
2008). The first step of RAX consists in identifying potential ana-
logue(s) that may serve to fill the target’s toxicological data gaps. 
This can be done using quantitative metrics to evaluate the simi-
larity between the target and potential analogue(s). The following 
steps comprise gathering relevant data to determine analogue(s) 
suitability for the RAX. The presence of functional group(s) (e.g., 
aldehyde, epoxide, ester, specific metal ion) shared with the tar-
get, common constituents or chemical classes, similar carbon 
range numbers or the likelihood of common precursors and/or 
breakdown products are typical considerations when evaluating 

1  Introduction

In the last 15 years, regulations in the field of chemical safety as-
sessment have changed in that toxicological information for a 
large number of chemicals needs to be gathered prior to manu-
facture or import into the EU (EC, 2006). In vivo testing to meet 
these information requirements is clearly not feasible due to time, 
costs and the need to sacrifice an unacceptable number of animals. 
The EU Registration, Evaluation, Authorisation and restriction of 
CHemicals (REACH) calls for the use of non-testing approaches 
to be used in the assessment of chemical substances while verte-
brate animal testing should be seen as a last resort (ECHA, 2014).

Among non-testing methods, read-across (RAX) has proven to 
be an effective and widely used approach to provide toxicological 
information without the need to undertake animal testing accord-
ing to the 3Rs principle (Replace, Reduce, Refine) (Russell and 
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Abstract
Read-across (RAX) is a popular data gap-filling technique that uses category and analogue approaches to predict tox-
icological endpoints for a target. Despite its increasing relevance, RAX relies on human expert judgement and lacks 
a reproducible and automated protocol. It also relies only on structural similarity for identifying the analogues, while 
other aspects are often neglected. In this paper, we propose an automated procedure for the selection of analogues 
for data gap-filling. Analogues were identified by a decision algorithm that integrates three similarity metrics, each  
considering different toxicologically relevant aspects (i.e., structural, biological and metabolic similarity). Structural 
filters based on the presence of maximum common substructures (MCS) and common functional groups (FGs) were 
applied to narrow the chemical space for the analogue search. The procedure has been implemented as a workflow 
in KNIME and is freely available. The workflow provides informative tabular and graphical outputs to support toxicol-
ogists and risk assessors in drawing conclusions based on the RAX approach. The procedure has been validated for its 
predictive power on two datasets related to high-tier in vivo toxicological endpoints, i.e., human hepatotoxicity and drug- 
induced liver injury (DILI). The validation results gave good accuracy values (i.e., up to 0.79 for the binary hepatotoxicity  
classification and up to 0.67 for the three-class DILI classification) that were higher than those returned by RAX based on 
the sole use of structural similarity. Results confirmed the suitability of the procedure as a source of data to support regu-
latory decision-making.
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These aspects highlight the need to define an automated RAX 
framework able to consider both structural and biological pro-
files of chemicals, still keeping the entire process transparent 
and easy to understand for regulators (Low et al., 2013). Sev-
eral attempts to exploit hazard (Luechtefeld et al., 2018) or high 
throughput screening (HTS) in vitro data to include biological 
similarity in RAX reasoning have been reported (Petrone et al., 
2012; Russo et al., 2017; Shah et al., 2016; Grimm et al., 2016; 
Low et al., 2013). Large databases exist that include thousands of 
HTS assays for a broad range of chemical substances. ToxCast 
by US EPA1 and PubChem2 are well-known examples. Biologi-
cal phenotyping derived by combining results from HTS assays 
can serve to characterize the biological profile of target and ana-
logue(s) in terms of a fingerprint that can be used to determine a 
quantitative biological similarity (Patlewicz et al., 2014). The in-
creased availability of cheminformatics tools represents another 
possible improvement of traditional RAX. Automated tools ex-
ist that can be applied to analogue(s) identification (e.g., QSAR-
Toolbox3), data retrieval or, if no experimental data are available, 
for the prediction of physicochemical, toxicokinetic and meta-
bolic parameters for substances under study (Ball et al., 2016). 
Moreover, the same tools can be used to automate the evaluation 
of similarity between target and analogue(s) and other steps of 
the RAX, facilitating the final expert judgement. 

In this study, we present a novel automated workflow for an-
alogue(s) selection for RAX based on a WoE approach that sys-
tematically computes and combines three similarity metrics be-
tween target and potential analogue(s). Given a target, the work-
flow automatically lists potential analogue(s) that are selected 
independently based on three similarity criteria (i.e., structural, 
biological, and metabolic similarity). A large collection of data 
retrieved from on-line databases or calculated with cheminfor-
matics tools is provided in the final output of the workflow to 
aid experts in RAX reasoning. Finally, compound(s) included in 
multiple similarity lists (e.g., structural and biological similarity 
lists) are suggested as the most suitable analogue(s), and their ac-
tivity is used to infer the activity of the target chemical. Finally, 
we present examples to evaluate the suitability of the described 
procedure to predict high-tier endpoints for the chemicals.

The entire workflow is implemented in KNIME (version 3.4) 
(Berthold et al., 2008) and made freely available to the scientific 
community and to regulators to aid expert reasoning and deci-
sion-making.

2  Methods

2.1  RAX workflow
An automated procedure to compute similarities between chem-
icals was implemented as a KNIME workflow (Berthold et al., 
2008). The workflow accepts SMILES notation of the target 
chemical as input and is connected to a pre-loaded dataset in 

analogue(s) in the final RAX reasoning. Based on the retrieved 
data, one can assess the adequacy of the analogue(s) and use the 
most suitable ones to fill the data gaps for the target (Patlewicz et 
al., 2013, 2015; OECD, 2014; ECHA, 2008). 

Two approaches for RAX exist. The “analogue approach” is 
based on a small number of structurally similar substances (usu-
ally a single analogue), while the “category approach” relies on a 
larger number of analogues included in the same chemical class-
es or showing some kind of trend in structures (e.g., an increas-
ing number of carbon chain lengths).

Among other non-testing methods, RAX is applied in various 
regulatory programs such as the OECD High Production Volume 
Programme (Bishop et al., 2012) and REACH. Indeed, REACH 
encourages using a category/analogue approach (ECHA, 2008) 
to address regulatory requirements for chemical substances to 
the point that RAX has been used in up to 75% of analyzed reg-
istration dossiers for at least one endpoint (ECHA, 2014). This 
percentage is much higher than those related to other non-test-
ing methods, e.g., quantitative structure-activity relationships 
(QSARs). This is especially true for high-tier toxicological end-
points (such as reproductive and repeated dose toxicities) that re-
fer to a wide range of adverse effects on different target organs 
and tissues. RAX proved to be more intuitive for regulators and 
more appropriate than QSAR/in vitro in appreciating the compos-
ite nature of complex in vivo endpoints (Patlewicz et al., 2013).

Despite its increasing use for regulatory purposes, RAX re-
mains largely subjective and relies on human expert judgement 
for both analogue(s) selection and data interpretation (Patle-
wicz et al., 2017). This prompted the European Chemicals Agen-
cy (ECHA) to publish a Read-Across Assessment Framework 
(RAAF) (ECHA, 2015), which complemented already existing 
regulatory technical guidance from ECHA (2008) and OECD 
(2014). These documents exemplify all relevant aspects that 
should be evaluated to assure the acceptability of RAX proposals 
included in REACH registrations. Despite this, the general lack 
of a well-defined and systematic decision workflow still hampers 
a consistent application of RAX (Patlewicz et al., 2017). Anoth-
er limitation is that RAX traditionally relies on the chemical sim-
ilarity principle. Indeed, REACH states that chemical structure 
should be the starting point for the definition of any category/an-
alogue approach (ECHA, 2008). However, the accuracy of pre-
dictions based exclusively on structural similarity is often inad-
equate in handling complex mechanisms of toxicity (Ball et al., 
2016). A pitfall of the sole use of structural similarity is, for ex-
ample, the existence of activity cliffs, i.e., a group of compounds 
may have high structural similarity but unexpectedly high activity 
(or property) differences (Cruz-Monteagudo et al., 2014). Ideally, 
the overall RAX should be based on a weight of evidence (WoE) 
assessment of many different pieces of information, i.e., not on-
ly structures, but also metabolism, biology and physicochemical 
properties should be considered to substantiate the similarity be-
tween target and analogue(s) (Patlewicz et al., 2014, 2015).

1 https://www.epa.gov/chemical-research/toxicity-forecasting 
2 https://pubchem.ncbi.nlm.nih.gov/ 
3 https://qsartoolbox.org/ 
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for both the target and the analogue(s) (e.g., metabolites, number 
of biological assays with the same outcome, common function-
al groups) that can be used by a toxicologist to support the RAX 
process and help regulators in decision-making. The pie plots that 
graphically describe RAX results are created using the bokeh li-
brary in Python7. Some examples are shown in Figure S24.

Structural similarity
StrS was based on MACCS fingerprints (166 bits) (Durant et al., 
2002) that were calculated for both target and analogue(s) with 
the KNIME implementation of the CDK toolkit8. MACCS keys 
are commonly used to calculate structural similarity (Maggiora 
et al., 2014; Sánchez-Cruz and Medina-Franco, 2018). Bits cod-
ify for the presence of a given substructure in the molecule (e.g., 
a phenyl ring or a functional group). They are useful to disclose 
analogies in terms of the chemical features relevant for biological 
and toxicological activity. StrS was computed by means of Tan-
imoto coefficient (Willet et al., 1998). In this regard, chemicals 
are identified as similar if they share a high number of biological-
ly relevant moieties. 

which the analogue(s) search is performed (source dataset). Three 
separate lists of possible analogue(s) are retrieved from the source 
dataset based on three different and independent methods to com-
pute similarity, i.e., 1) structural (StrS), 2) metabolic (MS) and 
3) biological similarity (BS). Chemicals in the source dataset are 
ranked for each of the three similarity metrics, and then three dif-
ferent lists of top-ranked similar compounds are returned as out-
put. The number of analogue(s) returned in each list can be cus-
tomized by the user in order to meet specific endpoint require-
ments (e.g., increase the MS analogues if metabolism is known 
to be particularly relevant). By default, up to 10 analogues are re-
trieved based on SrtS, as a primary requisite for any RAX predic-
tion (ECHA, 2015). Up to 5 analogues each are retrieved based 
on MS and BS. Figure 1 shows the logical scheme of the RAX 
workflow, while a more detailed depiction of the KNIME imple-
mentation is included in Figure S14. The KNIME workflow is 
freely available for download5. The user’s guide is available at the 
same GitHub link and in the supporting information6.

The workflow also offers rich tabular and graphical (pie-plot) 
outputs including relevant chemical and toxicological information 

Fig. 1: Conceptual scheme of the RAX workflow 
Similarities between the target and chemicals from the source dataset are computed to produce three independent lists of analogue(s).  
The activity of chemicals included in one (or multiple) list(s) are used to infer the RAX prediction. A preliminary selection of source 
chemicals can be applied based on the presence of maximum common substructures (MCS) and common functional group(s) (FG) with  
the target.

4 doi:10.14573/altex.2002281s1
5 https://github.com/DGadaleta88/RAX_tool
6 doi:10.14573/altex.2002281s2 
7 http://bokeh.pydata.org/
8 https://cdk.github.io/ 
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vestigation, while w is a weight assigned to common inactive as-
says that accounts for the ratio of active to inactive bits in the tar-
get compound’s biological fingerprint:

w =
    Aa

           Ai 

The weight ranges from 0 to 1, giving to inactive data a fraction 
of the weight of active data. This variable was adopted by Rus-
so et al. (2017) because biosimilarity should rely on active data 
more than on inactive data although there is a far higher num-
ber of inactive assays reported in public HTS repositories com-
pared to the active ones. Given the unbalanced nature of HTS da-
ta, values lower than 1 are usually assigned to w, and thus a lower 
weight is assigned to inactive assays compared to the active ones.

A confidence ConfBS(A,B) index was assigned to BS to account 
for missing assays. The equation proposed by Russo et al. (2017) 
was modified in order to normalize the confidence in a 0-1 range 
as follows:

ConfBS(A,B) = 
 | Aa∩Ba |+| Ai∩Bi |∙w+| Aa∩Bi |+|Ai∩Ba |

                                                      Aa+Ai ∙w

A lower weight was given to assays that are negative for both 
compounds as explained above.

A final weighted BS (BSweight(A,B)) is calculated as the product 
of B(A,B) and ConfBS(A,B), which accounts for both the degree 
of similarity of the two compared biological fingerprints and the 
number of bits on which the comparison is based:

BSweight(A,B) = B(A,B) · ConfBS(A,B) 

Assays having no active compounds in the source dataset were 
not considered in the final fingerprints. In the same way, if ei-
ther the target or the analogue had no positive bits in their finger-
prints, the final similarity value was imposed to be equal to 0 to 
avoid large similarity values resulting from the exclusive com-
parison of negative assays.

Structural and functional group(s) filters
Pre-filters were implemented in the KNIME workflow to limit 
the search for potential analogue(s) to chemicals sharing relevant 
common structural features with the target. The user can decide 
to activate or deactivate each filter by modifying settings. This 
becomes particularly relevant when studying endpoints that are 
known to be related to a well-defined substructure and/or chemical  
category. Two independent filters were implemented:
1)	 Maximum common substructures (MCS). Chemicals in the 

source dataset are filtered based on the presence of a MCS 
with respect to the target. MCS is calculated using the RDKit 
MCS code10 implemented in KNIME. If the size of the MCS 
(i.e., the number of atoms in the common structural moiety) is 
greater than a given percentage of the size (i.e., number of at-

Metabolic similarity
“SyGMa metabolite” KNIME implementation was used to sim-
ulate metabolites of the target and the analogue(s). SyGMa (Sys-
tematic Generation of possible Metabolites) is a freely avail-
able tool to simulate metabolism of chemicals. Metabolic rules  
implemented in SyGMa are derived from combining expert 
knowledge and empirical analysis of proprietary data (i.e., MDL 
dataset) and cover 70% of all known human metabolic reactions. 
Predictions made by SyGMA are associated with an empirical 
probability score that identifies more likely metabolic routes and 
reduces the number of false positives that are often generated by 
tools based only on expert rules (Ridder and Wagener, 2008). 

The tool allows calculation both of specific metabolites and the 
type of metabolic pathways in humans that the parent undergoes 
to generate the metabolite. In addition, SyGMa provides a free 
Python code and a KNIME implementation that allows easy inte-
gration into the workflow presented here.

Only one cycle of Phase I metabolism was considered for the 
present simulation. A MS score was calculated based on the number  
of common and exclusive metabolic pathways of the two com-
pared chemicals. 

MS(A,B) =              P
(A,B)

                     P(A,B)+P(A)+P(B)

P(A,B) are metabolic pathways that are shared by compounds A 
and B, while P(A) and P(B) are metabolic pathways that are used 
by only one of the two compounds being compared.

The presence of shared, structurally identical metabolites and/
or parent compounds between the two compared chemicals is also  
reported in the final output of the workflow.

Biological similarity
BS calculation was based on HTS assays from PubChem. As-
says were used to compile biological binary fingerprints to com-
pare target and analogue(s), with each bit of the fingerprint cod-
ifying the outcome of a specific assay. The REST version of the 
PUG (Power User Gateway) interface for accessing PubChem 
data was implemented in KNIME to automatically retrieve as-
say information for target and analogue(s)9. In particular, “Ac-
tive” or “Probe” outcomes were flagged with 1, while “Inactive” 
was flagged with 0. “Inconclusive” and “Unspecified” outcomes 
were ignored. Duplicate assays resulting in different outcomes 
for the same chemical (e.g., “Active” and “Inactive”) were con-
sidered “Inconclusive”.

BS was calculated as proposed by Russo et al. (2017):

BS(A,B) =
                   | Aa∩Ba |+| Ai∩Bi |∙w

                    | Aa∩Ba |+| Ai∩Bi |∙w+| Aa∩Bi |+| Ai∩Ba | 

Aa and Ai are active and inactive assays for the target A, while Ba 
and Bi are active and inactive assays for the analogue B. ∩ indi-
cates assays in common between the two compounds under in-

9 https://pubchemdocs.ncbi.nlm.nih.gov/pug-rest 
10 https://www.rdkit.org/
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2.2  Source datasets
Two datasets (source datasets) including toxicological data relat-
ed to high-tier in vivo endpoints were compiled from the litera-
ture and used to validate the proposed methodology:
1)	 The DILIrank dataset (Chen et al., 2011, 2016) is a collection 

of 1,036 FDA-approved drugs divided into four classes ac-
cording to their potential for causing drug-induced liver inju-
ry (DILI). The DILI classification is the result of analysis of 
FDA-approved drug labeling documents and literature. Drugs 
are classified into three groups of DILI concern (Most-, Less- 
and No-DILI concern), and one group (Ambiguous-DILI-con-
cern) with undetermined causality. For the present work, the 
DILIrank dataset11 was downloaded. Compounds with Ambig-
uous-DILI-concern label were discarded.

2)	 The Liu et al. (2015) dataset includes data for 667 compounds 
retrieved from ToxRef 12. These data refer to three major groups 
of hepatic histopathological effects, i.e., hypertrophy, injury, 
and proliferative lesions. In the present work, if at least one of 
the three histopathological effects was positive, the chemical 
was classified as hepatotoxic, otherwise as non-hepatotoxic.

Chemical data included in each dataset were curated by means of 
a semi-automated in-house procedure described by Gadaleta et 
al. (2018). The procedure addresses the identification and remov-
al of inorganic and organometallic compounds and mixtures, the 
neutralization of salts, and the removal of duplicates (also check-
ing for tautomeric forms). Finally, the resulting SMILES are con-
verted to a standardized format. The procedure is implemented 
in KNIME and is freely available for download13. Entries with 
unspecified SMILES and compounds with ambiguous classifica-
tion were removed. 

Information related to the stereoisomery was ignored because it 
is statistically not relevant. Indeed, out of the 15 couples of stereo-
isomers found in the DILIrank, only two cases (i.e., levofloxacine 
vs olofloxacine and amphetamine vs dextroamphetamine) showed 
differences in biological activity. No cases of stereoisomers with 
different activities were observed in the ToxRef dataset.

The final number of compounds included in each dataset and 
the distribution of activities as well as details on the chemical 

oms) of both the target and the analogue, the analogue is re-
tained for the following searches. The default value is set at 
50%, which the user can manually customize in the settings.

2)	 Functional groups (FG). Chemicals in the source dataset are 
filtered based on the presence of chemical functional groups in 
common with the target. The presence of 22 functional groups 
codified as SMARTS is verified for both the target and the 
possible analogue. Those functional groups codify for gener-
al chemical classes/categories (e.g., carboxylic acids or amine) 
and are relevant to describe the reactivity of chemicals. The col-
lection of SMARTS codifying functional groups was retrieved 
and adapted from RDKit Functional Group Filter KNIME node 
and is available in Table S14. If the percentage of common 
functional groups compared to the number of those present in 
the target is greater than a given percentage, the analogue was 
considered for the following searches. A threshold of 65% is the 
default value; this can be customized by the user.

Integration of similarities
The three independent lists of analogue(s) are integrated to iden-
tify a narrower range of chemicals for target data gap-filling. If 
a given chemical is found in multiple similarity lists, it is con-
sidered a more suitable analogue compared to those found in a 
lower number of lists. For example, if an analogue is found in all 
three similarity lists, a maximum suitability is assigned to that 
compound. 

The prediction of activity for the target is made by averaging 
activities of analogue(s) included in the similarity lists. Chemi-
cals included in multiple lists are prioritized (e.g., chemicals in-
cluded in at least two out of three lists, or only those included in 
all three lists). The number of analogues used for prediction may 
vary based on the user’s decision and the degree of overlap of the 
similarity lists. It can be up to 20 (i.e., 10 from StrS, 5 from BS, 
5 from MS), but the number is often reduced by the presence of 
chemicals that appear in multiple similarity lists or by the applica-
tion of a threshold for the selection of analogues (e.g., using only 
analogues that are included in multiple similarity lists). 

Tab. 1: Source datasets implemented in the RAX workflow 
For each dataset, the categories (C) and the number of chemicals included in each category are indicated. The range of  
(and the mean) values of relevant physico-chemical properties for the two datasets are reported. Properties were calculated  
with the Chemistry Developmental Kit (CDK) “Molecular Properties” node available in KNIMEa.

Dataset	 Categories	 Total	 C1	 C2	 C3	 logP	 TPSA	 MW

DILIrank	 No-DILI (C1)	 691	 252	 260	 179	 -2.06 to 14.44	 0.0 to 3115.35	 60.02 to 7049.04 
	 Less-DILI (C2)					     (2.8)	 (126.54)	 (431.39) 
	 Most-DILI (C3)

ToxRef	 Non-Hepatotox (C1) 	 663	 454	 209	 -	 0.03 to 4.76	 0.0 to 474.9	 42.02 to 972.32 
	 Hepatotox (C2)					     (2.37)	 (58.9)	 (272.57)

a https://cdk.github.io/

11 https://www.fda.gov/science-research/liver-toxicity-knowledge-base-ltkb/drug-induced-liver-injury-rank-dilirank-dataset 
12 http://www.epa.gov/ncct/toxcast/data.html 
13 https://github.com/DGadaleta88/data_curation_workflow
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fied among remaining compounds in the source dataset. Then, a 
prediction was returned as a majority vote of activities of select-
ed analogue(s). Separate predictions were generated by consid-
ering analogue(s) included in at least one, two or three similarity 
lists (i.e., structural, metabolic and biological). The effect of re-
ducing the searchable list of analogue(s) by applying MCS and  
FG pre-filters on accuracy was also evaluated. In order to de-
termine a benchmark in prediction quality, chemicals in the two 
source datasets were also predicted based on the sole use of the 
single closest analogue in terms of structural similarity. This was 
done to evaluate whether the combined use of multiple pieces of 
information and similarities represents an added value with re-
spect to the traditional use of structural similarity. Full details on 
predictions are included in the supporting information14.

Figure 2 and Table 2 report balanced accuracies (BA) and the 
ratio of predicted compounds (i.e., coverage) for the two source 
datasets for each combination of pre-filtering options and mini-
mum number of similarity lists that should contain a chemical to 
take it into account for the prediction. Table 2 and Tables S3-S44 
include detailed statistics on the validation performed. 

For the DILIrank source dataset, the “benchmark” BA ob-
tained by using the closest structural analogue for predictions 
was equal to 0.632. For this dataset, the combined use of StrS, 
MS and BS slightly improved this result (i.e., BA = 0.642). BA 
was further improved when only analogue(s) matching at least 
two similarity lists were used (BA = 0.660), at the cost of a slight 
loss in the number of predictions (i.e., 0.18 ratio loss). The inte-
gration of all three similarity lists, on the other hand, did not pro-
vide further improvement. This is likely related to the increased 
unbalancing of the dataset when considering only chemicals that 

space covered by the two datasets in terms of relevant physico-
chemical properties (i.e., molecular weight, MW; octanol-wa-
ter partition coefficient, logP; and topological polar surface area, 
TPSA) are given in Table 1, while detailed information on single 
activity categories are given in Table S24. The datasets and the 
information retrieved with the RAX workflow used to compute 
similarities are included in the supporting information14.

3  Results

3.1  Overall RAX strategy output
It should be kept in mind that this workflow is not primarily de-
signed for batch calculation on large datasets, and therefore one 
cannot expect to reach prediction accuracies at the same level of 
other methodologies (e.g., QSARs) specifically tailored for pre-
dicting large databases. One of the major strengths of this ap-
proach is that the information used to infer predictions is ex-
plicitly reported to the user and, unlike the complex theoreti-
cal chemical descriptors used in QSAR modeling, it consists of 
sound chemical and toxicological data to facilitate use for regu-
lators and scientists. In this regard, the authors propose to use the 
workflow for single chemical RAX predictions so that experts 
can take case-by-case decisions on the suitability of the identified 
analogue(s) based on the evaluation of the gathered data.

With this in mind, the large-scale evaluation described here 
is intended to provide an indication of the overall predictivity 
of the approach. The RAX workflow was validated by predict-
ing compounds included in the two source datasets (i.e., DILI-
rank and ToxRef). For each chemical, analogue(s) were identi-

Fig. 2: Validation results of the RAX integrated method applied to the DILIrank (three-class) and ToxRef (binary classification) 
dataset 
Grey bars report balanced accuracies (on the left y-axis) while solid black lines are the ratios of predicted compounds on the total (on the 
right y-axis). Results refer to predictions inferred from analogue(s) included in at least one, two or all three similarity lists (i.e., StrS, MS and 
BS). Dashed lines refer to BAs obtained by using only the closest structural analogue to make predictions. 

14 doi:10.14573/altex.2002281s3
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(i.e., QSAR), so that advanced strategies specifically designed to 
solve this problem have been proposed (Zakharov et al., 2014). 

For the DILIrank dataset, improvements were observed when 
the analogue search was restricted to chemicals sharing common 
MCSs and FGs, with BA reaching a value of 0.670. On the other 
hand, the application of these filters on the ToxRef dataset did not 
improve the statistical performance. In this regard, the inspec-
tion of performance for single chemical categories revealed dis-
appointing statistics for some of them (Tab. S54). In particular, 
aromatic amines (BA = 0.58) and aromatic alcohols (BA = 0.51) 
are relatively well-represented in the dataset, and the low sensi-
tivities associated with these classes are likely the reason for the 
drop in performance observed in the entire dataset. On the other 
hand, the methodology was found to perform better on aliphatic 
compounds such as carboxylic acids (BA = 0.88), alcohols (BA 
= 0.82) and halogens (BA = 0.71). Overall, good performances 

are predicted under these conditions. Indeed, the “MostDILI” 
category showed the highest variation in ratio with respect to the 
initial distribution of activities (from 0.38 to 0.22 of the entire 
dataset). This category is associated with the highest reduction 
in classification performance and also affects the performance of 
the whole dataset.

For the ToxRef database, the simple integration of multi-
ple similarities (BA = 0.639) does not improve the benchmark 
performance (i.e., BA = 0.698). On the other hand, BA is im-
proved considerably when only analogue(s) included in two (BA 
= 0.719) or three (BA = 0.788) similarity lists are considered, 
even if in the last case the coverage is severely reduced to 0.141. 

Low sensitivity values were observed in some cases. The reason 
is likely related to the degree of unbalance of the datasets (see Tab. 
1). The issue of handling unbalanced datasets is also commonly 
observed for other in silico methodologies for predicting toxicity 

Tab. 3: Percentage of single analogues having the same activity as the target 
The number of single selected source compounds (#scmpds), the number (#m_scmpds) and the ratio (%m_scmpds) of those matching their 
target’s activity are grouped based on the similarity lists in which they are included.

Similarity	 ToxRef			   DILIrank

	 #scmpds	 #m_scmpds	 %m_scmpds	 #scmpds	 #m_scmpds	 %m_scmpds

STR, MET, BIO	 100	 82	 0.820	 142	 86	 0.606

STR, MET	 1186	 895	 0.755	 1007	 575	 0.571

STR, BIO	 145	 108	 0.745	 204	 103	 0.505

MET, BIO	 38	 24	 0.632	 79	 36	 0.456

STR	 5324	 3506	 0.659	 5077	 2046	 0.403

MET	 2795	 1690	 0.605	 2140	 829	 0.387

BIO	 2250	 1350	 0.600	 4849	 1824	 0.376

Tab. 2: Prediction statistics of the RAX integrated approach applied to ToxRef and DILIrank datasets 
For each combination of similarity lists (i.e., number of lists including a single analogue) and pre-filtering method, the sensitivity (SEN),  
the specificity (SPE), the balanced accuracy (BA) and ratio (%) of predictions are reported. For the multi-category DILIRank database, 
SENavg and SPEavg are the average of values computed separately for each class, while BAavg is the arithmetic mean of SENavg and 
SPEavg. The first row of the table refers to the benchmark performance related to the sole use of the closest structural neighbor to infer 
the prediction.

Similarity lists	 Pre-filtering	 DILIrank				    ToxRef

		  SENavg	 SPEavg	 BAavg	 %a	 SEN	 SPE	 BA	 %b

 - 	  - 	 0.510	 0.754	 0.632	 1.000	 0.571	 0.825	 0.698	 1.000

1	 none	 0.523	 0.762	 0.642	 1.000	 0.332	 0.945	 0.639	 1.000

2	 none	 0.546	 0.774	 0.660	 0.825	 0.596	 0.841	 0.719	 0.798

3	 none	 0.533	 0.770	 0.652	 0.156	 0.697	 0.879	 0.788	 0.141

1	 FG+MCS	 0.570	 0.781	 0.676	 0.649	 0.438	 0.904	 0.671	 0.724

2	 FG+MCS	 0.563	 0.777	 0.670	 0.599	 0.527	 0.897	 0.712	 0.668

3	 FG+MCS	 0.535	 0.766	 0.650	 0.371	 0.567	 0.832	 0.699	 0.389

a 58 out of 691 SMILES in the dataset were unread from the RAX workflow and were not considered for statistical calculation.  
b 18 out of 663 SMILES in the dataset were unread from the RAX workflow and were not considered for statistical calculation.
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gard, they can be considered “close” to the target under multiple 
relevant aspects (e.g., chemical, toxicological, kinetic). In order 
to understand the contribution of different similarities to the fi-
nal RAX prediction, the activity of single analogues was eval-
uated for their coherence with the activity of the relative target. 
In Table 3, analogues are grouped based on the similarity list(s) 
in which they appear. For each combination, the number of ana-
logues exactly matching the relative target activity is reported. 
As expected, analogues included in multiple similarity lists are 
more likely to match the activity of the target compound. Indeed, 
the combination of all three similarity lists shows the highest ra-

were observed for the majority of the chemical categories in the 
DILIrank dataset, with aliphatic carboxylic acids being predict-
ed with the highest accuracy (BA = 0.80). Lower values were ob-
served for aliphatic amines (BA = 0.57) and aromatic halogens 
(BA = 0.59). Detailed statistics for individual chemical classes 
are shown in Table S54.

Generally speaking, results confirmed that the use of ana-
logue(s) with different types of similarity improves performance 
compared to the sole use of structural similarity. This is espe-
cially true when source compounds used for RAX belong to at 
least two orthogonal similarity lists of analogue(s). In this re-

Fig. 3: RAX examples 
from the ToxRef 
source dataset 
(A) 2-chlorophenol,  
(B) hydrazobenzene. 
HT, hepatotoxic;  
nHT, non-hepatotoxic
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3.2  RAX examples
Figures 3 and 4 provide four examples that show how the output 
of the RAX workflow should be interpreted and how the integrat-
ed similarities represent an advantage over the StrS alone. 

A total of 18 analogue(s) were identified from ToxRef to predict 
the RAX of 2-chlorophenol (CAS 95-57-8) (Fig. 3A), a non-hepa-
totoxic compound. Phenol (CAS 108-95-2) was the only analogue 
that was included in all three similarity lists. Despite not being 
ranked as a top analogue for StrS, it may be considered the most 
suitable analogue for RAX; indeed, the chemical has a very high 
BS to the target (BS = 0.553, 299 negative assays and 2 positive 

tios of source compounds having the same activity as the target, 
i.e., 0.82 for ToxRef and 0.60 for DILIrank, reinforcing the initial 
hypothesis of this study.

This combination is followed by those integrating two out of 
three different similarities; in particular combinations includ-
ing structural similarity (i.e., StrS and MS or StrS and BS) were 
always characterized by higher percentages of concordant ana-
logues than the one combining MS and BS. As for source com-
pounds included in a single similarity list, those included in the 
StrS list were more often concordant with their target’s activity 
than those included in the BS or MS lists.

Fig. 4: RAX examples 
from the DILIrank 
source dataset 
(A) amlodipine;  
(B) dobutamine.
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ine is rapidly metabolized to its primary high-clearance metabo-
lite (H152/81) after cleavage of the ester group at position 3 of the 
dihydropyridine core (Ericcson et al., 1999). Due to absence of 
this rapid cleavage, amlodipine has a much longer half-life than 
clevidipine and a higher toxicity.

The second example from DILIrank is dobutamine (CAS 
34368-04-2) (Fig. 4B), a “No-DILI” chemical. Two of the top 
structural analogues, i.e., propafenone (CAS 54063-53-5) (rank 
1) and labetalol (36894-69-6) (rank 3), have discordant activity 
with respect to the target, and are indeed considered not suitable 
for RAX. The reason is that they show a very different metabol-
ic profile in comparison to dobutamine, which shares only 4 out 
of 19 pathways with propafenone, and 5 out of 13 with labetalol. 
It is likely that some of the non-shared biotransformations are re-
sponsible for the detoxification of the target and/or the increased 
toxicity of the analogues. In particular, propafenone and labetalol 
do not share the same catechol moiety that is present in dobuta-
mine. This is the main site of the metabolic transformations (i.e., 
aromatic hydroxylation and conjugations) that are responsible for 
the compound’s clearance. On the other hand, the three analogues 
isoprotenerol (CAS 7683-59-2), dopamine (CAS 51-61-6) and 
epinephrine (51-43-4) share the same catechol moiety as dobu-
tamine. They share a higher number of detoxification pathways 
and show higher MS values with dobutamine than propafenone 
and labetalol. They are indeed characterized by the same activity 
as dobutamine. Isoprotenerol is also one of the closest analogues 
in terms of biological profile (i.e., 194 negative assay responses 
and 12 positive ones in common with the target), despite it being 
ranked only as the seventh closest structural analogue.

In addition to tabular outputs, Figure S24 shows pie-plots gen-
erated by the workflow to graphically describe RAX results for 
the four compounds. In these plots, all the putative analogue(s) 
are included as separate slices in clockwise order, starting from 
those included in multiple similarity lists (i.e., outlined in dark 
blue for three lists and light blue for two lists) with background 
colors that are descriptive of the experimental activity of each 
analogue(s).

4  Discussion

4.1  Integrated RAX strategy
This paper describes an automated approach to identify suitable 
analogue(s) for RAX. As in traditional RAX, the selection of an-
alogue(s) is based on similarity with the target under study. How-
ever, while StrS is in many cases the only piece of information 
used to identify neighbors, this automated tool mathematically 
combines different approaches to evaluate similarity between the 
target and a series of putative analogue(s) from a source dataset to 
strengthen the evidence in supporting analogue(s) selection. Re-
sults in Tables 2-3 confirm the beneficial role of this strategy that 
improves predictivity in comparison to the sole use of the StrS.

The use of MCS and common FGs as pre-filters to narrow the 
list of candidate analogues does not seem to always carry evi-
dent improvements for the ToxRef dataset. Hepatotoxicity is a 
complex endpoint, which is related to multiple mechanisms of 

assays shared with the target). In addition, it undergoes the same 
metabolic biotransformations observed for the target, i.e., aromat-
ic hydroxylation ortho- and para- to oxygen (MS = 1.00). In case 
of 2-chlorophenol, these biotransformations generate 3-chlorocat-
echol and 2-chlorobenzene-1,4-diol, respectively, while phenol is 
converted to catechol and hydroquinone, respectively. Hydroxyl-
ation may plausibly play a role in the detoxification of both chem-
icals, because it increases the number of hydroxyl reactive cen-
ters that can undergo phase II reactions (i.e., conjugation), making 
the chemicals more easily excreted from the body. Phenol has the 
same activity as the target, leading to a correct RAX prediction. 
On the other hand, using the activity of the top structural analogue 
(pentachlorophenol, CAS 87-86-5) leads to an incorrect predic-
tion. Indeed, pentachlorophenol does not undergo hydroxylation, 
which is observed for 2-chlorophenol and is a key process for de-
toxification. Moreover, despite sharing a good amount of com-
mon biological assay outcomes, pentachlorophenol also activates 
41 additional assays that are not activated by the target (data not 
shown), drastically lowering the BS (i.e., 0.040). 

Hydrazobenzene (CAS 122-66-7) (Fig. 3B) is a hepatotox-
ic chemical from ToxRef. As in the previous example, the sole 
use of the top structural analogue (4-aminoazobenzene, CAS 60-
09-3) leads to an underestimation of the target’s toxicity. Indeed, 
4-aminoazobenzene has a relatively low BS (i.e., 0.244) that leads 
to its exclusion from the top five biological analogues. It also dif-
fers from the target from a metabolic point of view because it un-
dergoes additional biotransformations that are likely responsible 
for its detoxification. On the other hand, azobenzene (CAS 103-
33-3) appears in all three similarity lists and is more suitable as 
a RAX analogue despite it being less similar to the target from a 
structural point of view. Benzidine (CAS 92-87-5) and diphenyl-
amine (CAS 122-39-4) are further analogues of hydrazobenzene 
that are included in two out of three similarity lists. Benzidine has 
a lower MS score (only one shared pathway out of four observed 
for the target and the analogue) while diphenylamine shows a dif-
ferent biological behavior (only one positive assay shared with 
the target). Overall, when analogue(s) that are in two or more lists 
are used, a prevalence of toxic chemicals (two out of three) is ob-
served, leading to a correct prediction of hydrazobenzene as hep-
atotoxic.

Amlodipine (CAS 88150-42-9) (Fig. 4A) is classified as 
“Less-DILI” in the DILIrank dataset. Out of the 16 analogues 
identified in the RAX procedure, three are included in two or more 
similarity lists. Two of them (i.e., fenlodipine, CAS 72509-76-3, 
and nifedipine, CAS 21829-25-4) have the same “Less-DILI”  
classification as the target, while the third (i.e., clevidipine, CAS 
167221-71-8) has a “No-DILI” classification. This is also the top 
structural analogue of amlodipine in the dataset. The unsuitabili-
ty of clevidipine as a source compound for the RAX is related to 
its very low BS with respect to amlodipine (i.e., close to zero). 
Indeed, this chemical only shares five negative assay outcomes 
with the target, while the other two analogues are characterized 
by more than 200 common assay responses. Overall, fenlodipine 
is the most suitable analogue for RAX, as it is included in all three 
similarity lists, while nifedipine shows a relatively low StrS val-
ue (StrS = 0.514). Metabolism is also relevant; indeed, clevidip-
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a metabolic process. Metabolism of the analogue(s) and of the 
target can have a significant impact on the overall RAX assess-
ment. Indeed, the potential for two chemicals to diverge in their 
bioactivation pathway may result in a different toxicological pro-
file, and it may therefore affect the conclusions drawn when us-
ing structural similarity alone (Patlewicz et al., 2013).

The use of BS has been explored extensively in the last years 
(Petrone et al., 2012; Russo et al., 2017; Shah et al., 2016; Grimm 
et al., 2016; Low et al.; 2013, Patlewicz et al., 2017). An approach 
that found broad consensus, and was also applied in this paper, 
was to use outcomes (i.e., positive or negative) from a large num-
ber of HTS assays to build a binary biological fingerprint of the 
target and of the analogue(s). Fingerprints are well suited to com-
pute similarity; indeed one can use the collective set of results 
from different assays to compare the target and the analogue(s) 
using classical mathematical methods, e.g., Tanimoto or Euclide-
an distances (Willet et al., 1998). Two chemicals characterized by 
a similar behavior on a large number of different biological assays 
are also likely to share a common toxicological profile.

4.2  Evaluation of uncertainty
The importance of an explicit strategy to characterize the uncer-
tainty associated with RAX data gap-filling has been highlight-
ed (OECD, 2017; Patlewicz et al., 2013; Blackburn and Stuard, 
2014). The number and the degree of suitability of analogue(s), the 
quality and quantity of the data considered, the nature and severi-
ty of the identified toxic effects, and the potency of the analogue(s) 
for those effects should be ideally evaluated in order to assess the 
effectiveness of the RAX and make transparent decisions.

The RAX tool offers several elements to quantify the uncer-
tainty associated with RAX, e.g., the final number of analogue(s) 
used for the data gap-filling, the criteria for selection (e.g., use 
of FG and MCS filters), and the number of categories into which 
each analogue falls. Ideally, a RAX based on a higher number 
of analogue(s) included in multiple lists is considered more reli-
able than a RAX based on few analogue(s) sharing few similari-
ty lists. Another element that can be used to evaluate uncertainty 
associated with RAX is the consistency of activities across ana-
logue(s) used. The greater the percentage of analogue(s) having 
the same activity, the more the final prediction can be considered 
reliable. 

Currently, this RAX workflow was validated for qualitative 
prediction of toxicity (i.e., classification), because quantitative 
RAX was recognized as more challenging for the higher number 
of potential areas of uncertainty to address (Ball et al., 2016). As 
a drawback, increasing the number of similarities introduces fur-
ther requirements for analogue(s) selection, which consequently 
reduces coverage of the method.

5  Conclusions

In this paper, we present an automated tool that implements good 
practices for toxicological data-gap filling in RAX that have been 
described in recent literature and technical guidelines. Much em-
phasis is put on the combined use of different types of similari-

action. Consequently, restricting the analogue(s) search to a sin-
gle chemical category may be less effective than for other end-
points with a clear mechanistic link to specific substructures and/
or functional groups (e.g., mutagenicity).

The methodology led to good predictive performance on the 
two validation datasets, with BA values in the range of 0.632-
0.670 for the DILIrank and 0.639-0.788 for the ToxRef dataset. 
The approach suffers from the use of unbalanced data for val-
idation, sometimes leading to low sensitivity values. However, 
the reader should keep in mind that the methodology presented 
here does not aspire to reach the same level of predictive perfor-
mance of other statistical approaches that are specifically tailored 
to large-scale toxicity predictions. The main strength of this inte-
grated RAX approach is its ability to provide results that are easy 
to understand, as well as a data-rich output for users to evaluate 
the final toxicity outcome based on their expertise.

Other examples that combine different approaches to com-
pute similarity for RAX have been described. Notably, Wu et al. 
(2010) proposed and validated a robust evaluation framework 
to determine analogue(s) suitability for RAX that used several 
cheminformatics tools, e.g., to evaluate physicochemical prop-
erties of substances and simulate their metabolic pathway. Even 
though the decision framework proposed by Wu and coworkers 
takes into consideration all relevant aspects necessary for a RAX 
evaluation, no automated procedure is proposed and the interven-
tion of various experts is required at various levels. Low et al. 
(2013) proposed an automated Chemical Biological Read-Across 
(CBRA) that used an integrated StrS and BS to predict the toxic-
ity of chemicals. The approach was adapted by Shah et al. (2016) 
in their Generalized Read-Across (GenRA) that compares the ef-
ficiency of structural and biological fingerprints (and a combina-
tion of both) to search for analogue(s) for RAX. In both cases, on-
ly StrS and BS are considered, while other highly relevant infor-
mation (e.g., physicochemical properties, metabolism, reactivity 
and pharmacokinetics) is not addressed.

Results reported in Table 3 confirm that in our approach StrS 
maintains a predominant role. It is accepted that the chemistry  
should be the starting point for the definition of similarity (ECHA, 
2008; Ball et al., 2016) owing to the strong correlation between 
the structure of compounds and their biological effects (Bender 
and Glen, 2004). For this reason, a higher number of neighbors 
based on StrS was selected (i.e., up to 10 compared to up to 5 an-
alogue(s) for other similarities). StrS identifies common behav-
iors between the target and the analogue(s) in terms of physico-
chemical properties and, consequently, in terms of toxicokinetics. 
Indeed, the toxicity of a chemical depends on its absorption and 
excretion rates and the time that it effectively spends in the organ-
ism. Differences in these parameters could affect in vivo toxicity 
(due to differences in bioavailability) or in vitro toxicity (due to 
differences in solubility). On the contrary, high structural simi-
larity values will result in analogies for most important physico-
chemical properties (e.g., molecular weight, lipophilicity, solubil-
ity) and, as a consequence, in a similar toxicokinetic profile.

The role of MS becomes relevant when the metabolism of 
non-toxic chemicals leads to the production of harmful metab-
olites or, alternatively, when a toxic substance is detoxified by 
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mization of MDL keys for use in drug discovery. J Chem Inf 
Comput Sci 42, 1273-1280. doi:10.1021/ci010132r

EC – European Commission (2006). Regulation (EC) of No 
1907/2006 of the European parliament and of the council 18 
December 2006 concerning the Registration, Evaluation, Au-
thorisation and Restriction of Chemicals (REACH), estab-
lishing a European Chemicals Agency, amending Directive 
1999/45/EC and repealing Council Regulation (EEC) No 
793/93 and Commission Regulation (EC) No 1488/94 as well 
as Council Directive 76/769/EEC and Commission Direc-
tives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. 
doi:10.5771/9783845266466-1026

ECHA (2008). Guidance on Information Requirements and 
Chemical Safety Assessment. Chapter R.6: QSARs and 
Grouping of Chemicals.

ECHA (2014). The Use of Alternatives to Testing on Animals for 
the REACH Regulation, ISBN 978-92-9244-593-5. Second 
report under Article 117(3) of the REACH Regulation. ECHA-
14-A-07-EN. doi:10.2823/22471

ECHA (2015). Read-across Assessment Framework (RAAF). 
ECHA-15-R-07-EN, 2015.

Ericsson, H., Tholander, B., Björkman, J. A. et al. (1999). Phar-
macokinetics of new calcium channel antagonist clevidipine in 
the rat, rabbit, and dog and pharmacokinetic/pharmacodynam-
ic relationship in anesthetized dogs. Drug Metab Dispos 27, 
558-564. http://dmd.aspetjournals.org/content/27/5/558.long

Gadaleta, D., Manganelli, S., Roncaglioni, A. et al. (2018). 
QSAR modeling of ToxCast assays relevant to the molecular 
initiating events of AOPs leading to hepatic steatosis. J Chem 
Inf Model 58, 1501-1517. doi:10.1021/acs.jcim.8b00297

Grimm, F. A., Iwata, Y., Sirenko, O. et al. (2016). A chemical-bi-
ological similarity-based grouping of complex substances as 
a prototype approach for evaluating chemical alternatives. 
Green Chem 18, 4407-4419. doi:10.1039/c6gc01147k

Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse out-
come pathways: Opportunities, limitations and open questions. 
Arch Toxicol 91, 3477-3505. doi:10.1007/s00204-017-2045-3

ty to identify suitable analogue(s) with a high level of reliabili-
ty. The workflow provides a rich output in form of tables/graphs 
that provide a strong basis to support RAX conclusions and to 
aid toxicologists and risk assessors in decision-making. The data 
(i.e., simulated metabolites, positive HTS assays, common sub-
structures and/or functional groups) used to selected analogue(s) 
are made available in the workflow output and represent a rel-
evant resource for users to assess the reliability of the conclu-
sions drawn by the tool, e.g., by manually evaluating the con-
sistency of toxicological and biological data gathered across the 
analogue(s). 

A limitation of the tool is that it does not identify a priori spe-
cific information relevant for different types of toxicity. Indeed, 
some specific properties can be key elements for making assess-
ments for some endpoints (e.g., reactivity for mutagenicity, li-
pophilicity for bioaccumulation), while being less important for 
other endpoints. Each endpoint should be justified case-by-case, 
and RAX should be ideally endpoint-specific (Patlewicz et al., 
2015). In this regard, we invite users to consider the workflow 
presented here mainly in combination with other sources of evi-
dence, as a visualization tool, and a source of relevant data to aid 
the reasoning, more than as an autonomous predictive tool. Fur-
ther work is needed to develop variations of the workflow that 
are specific for a given endpoint.

Adverse outcome pathways (AOPs) represent a promising 
resource that has been proposed to address endpoint specifici-
ties (Tollefsen et al., 2014; Patlewicz et al., 2015). Although the 
use of AOPs is currently limited by the low number of validat-
ed AOPs, some efforts have been made to apply computational 
tools to AOPs (Gadaleta et al., 2018). In the future, the integra-
tion of computational predictions for molecular initiating events 
and key events in an AOP could be used to demonstrate that a 
set of chemicals has analogous biological behavior that is rele-
vant for the toxicological endpoint of concern, providing new ev-
idence for improving RAX results (Leist et al., 2017). 

The presented automated workflow for analogue(s) selection 
for RAX can reduce animal experiments and improve the pro-
cess of extracting all relevant information from existing data in a 
more efficient and organized way where multiple features of het-
erogeneous nature are integrated.
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