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the critical health effect as a basis for risk characterization. Mod-
eling of data describing different severities has previously been 
performed by regression methods designed to handle catego-
ries (discrete data). Hertzberg and Miller (1985) and Hertzberg 
(1989) introduced such approaches for species extrapolation. Ad-
vantages and possibilities of these methods were discussed for 
different applications related to chemical risk assessment (e.g., 
Hertzberg and Dourson, 1993; Dourson et al., 1997; Guth et al., 
1997; Teuschler et al., 1999; Milton et al., 2017a,b). As an exten-
sion, Chen and Chen (2014) suggested to calculate the BMD as a 
weighted average of the BMDs obtained at dichotomous cutoffs 
for each severity level.

Many of the methods discussed above may be used to compute 
the probability for a given severity category at a given dose. Sand 
et al. (2018) provides this type of output simultaneously across all 
categories. In addition, a new response metric that integrates prob-

1  Introduction

For risk characterization of chemical hazards, margin of expo-
sure-related concepts are generally applied where estimates of 
the human exposure to a chemical are compared, in one way or 
another, to a reference level, i.e., a health-based guidance value 
or a reference point (RP) (a term coined by the European Food 
Safety Authority (EFSA), 2009) also called point of departure 
(PoD). The RP is based on the critical health effect and is, when-
ever possible, recommended to be derived by the benchmark 
dose (BMD) approach (Crump, 1984; Dourson et al., 1985; EF-
SA, 2005, 2009, 2017; Haber et al., 2018; US EPA, 2005, 2012).

Sand et al. (2018) proposed to expand the current approach by 
characterizing the dose-related sequence of RPs (e.g., BMDs) 
associated with lower- to higher-order health effects, represent-
ing low to high severities, instead of only using a single RP for 
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should be the same for all included BMDs. As in Sand et al. 
(2018), a BMR = 0.21 is used here as default for apical effects, 
but a BMR = 0.1 is also applied for comparison to transcriptomic 
BMDs that correspond to a change of one control SD. 

In the original approach, Sij(k) is a quantitative value of the se-
verity of toxicity associated with health effects (k) classifying 
in the jth severity category (j = 1, 2,..9) for the ith chemical/mix-
ture. Sij describes the severity of health effects in a relative sense 
and is therefore not dependent on the BMR associated with the 
RPP. The assignment of Sij-values is described in detail in Sand 
et al. (2018). Briefly, health effects are first classified according 
to a nine-graded categorical severity scale, C1-C9, which is then 
mapped to a quantitative scale, S = 0 to S = 1, where each sever-
ity category corresponds to an interval of S-values. Derivation 
of the default mapping is described in Figure 1. This represents 
a starting point for the analysis that may later be modified by a 
severity weighting approach described below in association with 
Equation 3. 

In the extended approach for genomic dose-response informa-
tion, classification of effects/genes according to gene ontology 
(GO) category rather than severity category is considered. While 
the described implementation uses GO categories, it may also be 
applicable to other types of classifications of gene-level BMDs. 
Here, the default starting point/mapping of effects/genes to Sij(k) 
is determined using a dose-dependent approach, described in de-
tail in Section 2.3. Sij(k) represents a quantitative rank value asso-
ciated with the kth health effect/gene ID within the jth GO catego-
ry for the ith chemical/mixture. The severity weighting approach 
in Equation 3 below applies in the same manner as before. S rep-
resents a fixed rank value, Sijk, in the extended method while 
Sand et al. (2018) defines Sij as a value within an interval that is 
common for all associated, k, health effects. Therefore, S is writ-
ten as Sij(k) in Equation 1 through 4 to be applicable to both ap-
proaches. The genomic RPP is illustrated in Figure 2 using triph-
enyl phosphate (TPHP) as an example.

The (error) term, εijk, mainly describes the natural variation in 
log BMDijk (the BMD for the kth health effect classifying in the  
jth severity category (Sand et al., 2018) or effect group/GO cat-
egory (extended method) for the ith chemical/mixture) and is 
assumed to be normally distributed with constant variance, σ2. 
Variability (σ2) results since BMDs may differ for health effects 
within the same severity category (Sand et al., 2018) or across 
GO categories (extended approach). The RPP is estimated us-
ing an iterative approach. In each iteration, a value is random-
ly sampled from the log-normal BMD uncertainty distribution 
for each BMD and combined with either 1) an Sij -value ran-
domly sampled from the associated S-interval that is assumed 
to be uniformly distributed (Sand et al., 2018) or 2) an Sijk -val-
ue determined as described in Section 2.3 (extended approach). 
A sigmoidal RPP model is then fitted to each generated data set, 
which, overall, provides a point estimate and confidence inter-
val for the RPP. More details on the algorithm for RPP estima-
tion are given in Sand et al. (2018) and below for the approach 
for genomic data.

Three specific RPP models with different geometrical charac-
teristics were considered in Sand et al. (2018), and the present 

ability and severity across the entire severity domain is calculated, 
and dose equivalents for specified levels of this response can also 
be derived. The new response metric is a comprehensive quantita-
tive measure of chemical toxicity that is expressed in terms of the 
most severe health effects. Integration across different severities 
requires weighting, and the developed system in Sand et al. (2018), 
with nine severity categories, C1 through C9, is therefore mapped 
to a quantitative severity scale, S = 0 to S = 1, and this mapping 
may be modified systematically by a mathematical function.

The present paper describes in detail how the method intro-
duced in Sand et al. (2018) can influence assessments compared 
to consideration of health effects individually in line with the cur-
rent framework. The method is also further developed as a step 
towards application of this concept to data from new approach 
methodologies (NAMs) using results from transcriptomic BMD 
analysis as a basis. 

2  Materials and methods 

2.1  Methodology for combining data on multiple  
health effects
The method proposed in Sand et al. (2018) characterizes the 
dose-related sequence of the development of multiple (lower- to 
higher-order) toxicological health effects caused by a chemical 
and calculates a response metric that integrates probability and 
severity across these effects. A description of the methodology, 
and its further development for genomic data, follows below.

In Sand et al. (2018), a reference point profile (RPP) is defined 
as the relation between benchmark doses (BMDs) for a set of 
health effects and a standardized severity score, S, determined 
for these effects (see Fig. 1). In this paper, toxicological/biolog-
ical findings related to chemical exposure are generally termed 
“health effects” or “effects”. Comparison of BMDs across var-
ious types of effects requires normalization/standardization of 
the corresponding response scales. To increase compatibility in 
this regard, the benchmark response (BMR) associated with the 
BMD for apical effects is defined as a change in response relative 
to the (absolute) difference between the maximum and minimum 
response level. For quantal data, this corresponds to the “extra 
risk” definition, and in this case the minimum response (back-
ground) is ≥ 0, and the maximum response equals 1 (100%), 
while the minimum and maximum response theoretically may 
assume any values for continuous data. For transcriptomic da-
ta, the National Toxicology Program (NTP) recommends that 
BMDs correspond to a response change equal to one standard de-
viation (SD) at zero dose/control level (NTP, 2018). For certain 
assumptions (e.g., Crump, 1995), this translates to an extra risk 
of 10% (for quantal data) and, similarly, represents a normalized 
BMR definition. Under the consideration of a normalized BMR, 
the general equation for the RPP is,

(Eq. 1)

where μ(Sij(k)) is the central estimate of the (sigmoidal) RPP that 
applies to a particular value of the standardized BMR, which 



Sand

ALTEX 39(3), 2022       482

pre-specified value for ν, so that several RPPs may be defined 
from Equation 1a, which extends and generalizes the model 
pool to cover a larger geometrical space compared to Sand et al. 
(2018). As mentioned, the RPP applies to a particular BMR, and 
it therefore represents a cross-section of a dose-S response vol-
ume where x, y, and z are the dose, the (relative) severity of the 
health effect or Sijk rank, and the standardized BMR, respectively 
(see Section 2.2 for further details).

The probability to exceed the RPP along the entire S-domain 
(the probability to exceed the distribution of BMDs across S) at 
some exposure, Ei, to a chemical or mixture is described by,

	 (Eq. 2)

where ϕ is the cumulative standard normal distribution function;  
μ  ̂ (Sij(k)) is based on estimates for the location (Ĥi) and shape  
(λ  ̂ i ) of the RPP; and σ  ̂  is an unbiased estimator of the SD.  

work uses a generalized version of one of these models (a gener-
alized Hill model):

	 (Eq 1a)

where Ηi is the RPP (dose) location parameter for the ith chemi-
cal/mixture that corresponds to a traditional potency measure but 
based on the consideration of several health effects simultane-
ously (Ηi decreases with increasing potency). Parameter, λi, is 
the RPP shape for the ith chemical/mixture that describes how 
wide or narrow the range of BMDs is for health effects with dif-
ferent (relative) severities or Sijk ranks, i.e., in the former case 
the RPP shape/slope is low, indicating a clear relation between 
BMD and S and vice versa. Parameter, ν, is the RPP asymmetry/
skewness, where ν = 1 corresponds to a symmetric RPP while  
ν < 1 and ν > 1 are associated with left- and right-skewed 
RPPs, respectively. In practice, the RPP is estimated by using a 

Fig. 1: Technical illustration of the reference point profile (RPP)
The solid S-shaped curve describes the relation between benchmark doses (corresponding to a normalized benchmark response, BMR) 
for selected apical health effects and the relative severity of toxicity (S) determined for these effects. The RPP applies to the specified 
value of the normalized BMR and thus represents a cross-section of the dose-S-BMR volume. The relative severity for individual health 
effects is first determined categorically according to a hierarchical classification scheme: The classification performed in Sand et al. (2018) 
of considered health effects in the liver is illustrated. The nine-graded categorical scale, C1-C9, is then mapped to a quantitative scale that 
ranges from S = 0 to S = 1. The default mapping distributes severity categories symmetrically across S, e.g., with C1, C5, and C9 centered 
at S = 0.025, S = 0.5, and S = 0.975, respectively (see Sand et al., 2018 for details). The variability is assumed to be normally distributed on 
the log-scale with constant variance. Red areas describe probabilities, p, for exceeding the RPP at exposure level, E, corresponding to the 
vertical (red) line. Here, E corresponds to a response (RTR, Equation 3) of 50%, and E intersects the solid curve at S ≈ 0.71. The midpoint 
of C6 thus represents the center of the effect/category sequence in terms of RTR. This point of calibration is approximately independent 
of the RPP model parameters (Sand et al., 2018). A non-linear severity-weight, w(S) ≠ S, can indirectly modify the symmetrical mapping 
of C1-C9 to S. This allows the midpoint of the system, corresponding to RTR = 50%, to be lower (C1-C9 skewed upward) or higher (C1-C9 
skewed downward) than the midpoint of C6, which would also increase or decrease the RTR associated with E, respectively.
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is a modification compared to Sand et al. (2018), and it trans-
lates to a weighted average of the probability, p(Ei│Sij(k)), of ex-
ceeding the RPP. Within the extended approach for genomic da-
ta, the probability, p, might be framed as being related to the de-
gree of perturbing the respective gene-level processes described 
by the considered categorization of BMDs, herein based on GO 
biological processes. This interpretation may hold for both meth-
ods, depending on the effects used as part of the analysis, e.g., the 
ranking of apical effects in Sand et al. (2018) covers the adverse 
outcome pathway discussed for dioxin-like chemicals in rodents. 
In terms of impact, the RTR corresponds to the (average) proba-
bility of exceeding the BMD for outcomes associated with S = 1. 
The risk-based and toxicity integrated dose equivalent (RTD) is 
the dose that corresponds to a specified value of the RTR. A lin-
ear severity weight (a = b = 1) is regarded as the default, which 
is applied throughout this paper. Details for how to estimate the 
RTR and RTD are described in Sand et al. (2018). 

Similar to traditional risk assessment, μ  ̂(Sij(k)) can be divided by 
an overall standard or chemical-specific adjustment factor (AFi). 
For simplicity, AFi is set to 1 in this paper.

The risk-based and toxicity integrated response (RTR) associ-
ated with exposure Ei is an impact metric defined as the integral 
of the probability of exceeding the RPP (Equation 2) multiplied 
by the severity weight, w, described by a beta cumulative distri-
bution function that increases from 0 to 1 across S,

(Eq. 3)

The RTR ranges between 0 and 1 when expressed as a fraction 
of the maximum value of the p × w integral that approaches 0.5 
as Ei becomes large. Use of this standardized form of the RTR 

Fig. 2: Genomic RPP for TPHP based on gene-level BMDs derived from a short-term transcriptomic study in male Harlan  
Sprague Dawley rats 
The genomic RPP describes the BMD variability both within and across gene ontology (GO) categories. The central RPP curve (solid white 
curve) describes the sequence of BMDs associated with GO categories at median. The variation, assumed to be normally distributed on 
the log dose scale and defined by the RPP SD, describes the variation in BMDs across GO categories. The RPP is estimated using an 
iterative approach, and the circles correspond to the five iterations (illustrated by different colors, comprising 1% of all iterations) that are 
closest to the RPP point estimate. They represent snapshots along the BMD sequences associated with different GO categories. The full 
set of unique BMDs is utilized in each iteration, also accounting for the uncertainty (herein based on reported BMDs, BMDLs, and BMDUs). 
The GO category assignment associated with a given BMD is, however, randomized across iterations since a given Entrez Gene ID may 
be part of several GO categories. BMDs are combined with dose-dependent rank values between S = 0 and S = 1 that describe the fraction 
of BMDs exceeded within associated GO categories (see Section 2.3). A unique BMD may have several ranks if it is present in several GO 
categories. As a starting point, individual BMDs are ranked in the same manner across the different GO categories. The paper discusses 
that methods for comparison of similarity across GO terms may help to refine this ranking and possibly also support parameterization of the 
systemic weight function, w(S), in Equation 3.
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gard to such health effects/outcomes. Details on how to estimate 
2D-RTR as well as the corresponding RTD are described in Sand 
et al. (2018).

2.3  Extension to genomic data
Based on the analysis in Sand et al. (2018), the method appears 
robust to minor as well as moderate changes in severity classifi-
cation of BMDs. Even so, the categorization of health effects is a 
practical challenge, involving subjective judgement, and, as not-
ed in Sand et al. (2018), all health effects recorded within a study 
may not necessarily be relevant to include as part of the (prima-
ry) RPP. It may be more practical to use a dose-dependent ap-
proach that utilizes information across several studies and/or ef-
fect groups to support a generic (model-based) ranking. For ex-
ample, the order of BMDs for the different health effects within 
studies used in Sand et al. (2018) would jointly produce a cate-
gorical rank (e.g., using the average/median rank across studies 
for each effect) that, relatively speaking, would resemble the se-
verity categorization performed. Such an approach would help to 
automate the initial ranking of health effects, and toxicological 
and/or policy judgments can be made at the systemic level, uti-
lizing w(S ) as discussed, for differentiation of different types of 
effect sequences/processes. This type of design may also be more 
practical for data from NAMs, for example, since determination 
of severity for individual measures of bioactivity may be prob-
lematic. Previously published gene-level BMDs from short term 
studies in rodents mapped to GO categories have been used to il-
lustrate how the concept can be extended along these lines. The 
ranking approach and estimation of the RPP are described in sub-
sections below.

Ranking approach for derivation of S-values
Using all BMD point estimates within GO categories for a giv-
en chemical, x = 100 doses corresponding to percentile values 
between PA = 100/h and PB = 1 - PA are computed for each cat-
egory, where h is the highest number of BMDs within GO cat-
egories. All non-unique values are then removed, i.e., for cate-
gories with few BMDs, only part of the percentile range, PA to 
PB, may be computed with unique values. Using the matlab func-
tion “prctile”, PA = 100/(2×h) would correspond to the limit for 
the lowest unique percentile that can be calculated for h number 
of input values, so the suggested approach is a bit more strin-
gent than this. Doses corresponding to PA through PB are then 
averaged across the GO categories. This produces the dose vec-
tor, xm, which reflects an average version of the within GO cat-
egory BMD distribution. Initial analysis indicated that xm is left 
skewed across evaluated chemicals/data sets. A generalized lo-
gistic distribution, which is a flexible model for extreme valued 
data, is therefore considered with probability density function,

	
(Eq. 5)

where µ, σxm, and ν describe the location, scale (shape 1), and 
asymmetry (shape 2), respectively (observe that σ is used to rep-
resent the RPP SD, not to be confused with σxm). The associated 

The RTR will reach ≈ 50% for an exposure, E, that intersects 
with S = 0.71 (Fig. 1). Sand et al. (2018) shows that this point of 
calibrations is approximately independent of the RPP shape (λ) 
and SD (σ). For the default mapping of severity categories to S, 
in combination with a linear severity weight, the midpoint of C6 
aligns to S = 0.71 (see illustration in Fig. 1). Thus, S = 0.71 rep-
resents the center of the sequence of health effects categorized by 
severity (C1-C9) or within groupings at genomic level (gene sets) 
in terms of RTR. In Sand et al. (2018), C6 was considered as the 
region that separates reversible and irreversible apical health ef-
fects. The association of C6 to RTR = 50% under default settings 
was therefore regarded as a plausible starting point for severity 
weighting. Technically, this can be modified by using non-linear 
weights in a systematic manner (a or b ≠ 1), which indirectly will 
skew severity categories or the genomic BMD distribution with-
in GO categories upwards or downwards (as indicated in Fig. 1) 
and thus re-modulate relative severity or ranks. This is more suit-
able than having to perform weighting at the level of individual 
effects, and consideration of the center of the effect sequence/s in 
the way described above can be used to reduce the complex prob-
lem of severity weighting to (value-based) selection of a single 
parameter (a or b). Since the severity weighting acts at the sys-
temic level, the original formulation fits well with the consider-
ation of effects as part of a biological process, which is further 
emphasized in the extended approach. For application to genom-
ic data, w(S ) may be framed as the relative severity of perturba-
tion, i.e., the severity associated with exceeding given fractions, 
S, of BMDs within considered GO categories (here, S = 0 to S = 1 
enclose the dose range covered by BMDs within and across GO 
categories, see Section 2.3).  

2.2  Generalization
As noted earlier, the RPP is a cross-section of the dose-S-BMR 
volume at the selected normalized BMR. As an extension of the 
method, the RPP associated with a given BMR may be dose-ad-
justed by multiplying the RPP location term, Ĥi, by a factor, Ηx, 
to approximate RPPs associated with other BMRs (Sand et al., 
2018). The factor Hx is calculated from the shapes/slopes of 
dose-response curves obtained in the underlying BMD analysis 
of individual health effects, and the shapes for all curves are al-
lowed to contribute equally to the shape of the averaged curve. 
By derivation of RPPs associated with BMRs = 0 to BMR = 1, 
RTRs for a given exposure, Ei, can be integrated across BMR 
levels, resulting in 2D-RTR that accounts for both the severity 
and response domains, 

	 (Eq. 4)

where the RTR associated with Ei is calculated using Equation 
3 across RPPs spanning the BMR domain, and Equation 4 is 
then calculated by numerical integration. In standardized form, 
2D-RTR ranges between 0 and 1. In terms of impact, it corre-
sponds to the (average) probability of exceeding the dose-re-
sponse curves (i.e., the BMD associated with BMR levels of 
0 through 1) for outcomes associated with S = 1. 2D-RTR is 
thus a proxy/surrogate for the probability of response with re-
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sides ν = 0.2. Also, a sensitivity analysis is performed related to 
the number of percentile values, x, used for derivation of xm, and 
the scaling of xm and BMDs towards the mean. 

Notice that a given BMD will have several ranks if it belongs 
to several GO categories. Here, S = 0.5 represents the median 
log BMD across GO terms, according to f (xm), and as a starting 
point a linear severity-weight, w(S ), is applied across categories. 
It can be noted that Sand et al. (2018) distributes effect catego-
ries, C1-C9, across S using a logistic CFD that corresponds to us-
ing ν = 1 in Equation 5. 

Simulation of BMD values across GO categories
The uncertainty in BMDijk is assumed to be normally distribut-
ed on the log scale, with a mean corresponding to the log BMD 
point estimate and an SD approximated by            		
where the range between the upper (log BMDU) and lower (log 
BMDL) bound on the BMD represents the two-sided 90% confi-
dence interval.

Each unique BMD uncertainty distribution within a given da-
ta set is randomly assigned to one of the GO categories it belongs 
to. A BMDijk value is randomly sampled from the uncertainty dis-

cumulative distribution function (CDF), here denoted f (xm), is ef-
fectively the same as the RPP in Equation 1a. Equation 5 is fitted 
to a normalized version of xm combined across chemicals, illus-
trated in Figure 3. The model (Fig. 3) nicely describes the consid-
ered data and is used to derive a generic representation of the RPP 
asymmetry/skewness parameter, ν, which is estimated to 0.2 with 
a 95% confidence interval of 0.16-0.24. By pre-specifying ν to 
0.2, Equation 5 is then fitted to xm, normalized to its mean on log 
scale, for chemicals individually. The resulting f (xm) provides an 
initial estimate of the RPP slope, λ, through σxm (describing BMD 
variability within GO categories), which, apart from the generic 
element, ν, guides the derivation of Sijk-values. More specifically, 
for a given chemical BMD, point estimates within each GO cat-
egory are normalized to the mean BMD for that category (on log 
scale), and Sijk-values (fixed ranks) associated with BMDijk with-
in the jth GO category are determined according to f (xm). Thus, 
the BMD range within GO categories is regarded to be chemi-
cal-specific, guided by σxm, and in line with the interpretation of 
λ in Equation 1a, while the manner in which BMDs/genes with-
in GO categories are distributed across S is generic, guided by ν. 
To assess model uncertainty, ν = 0.16 and 0.24 are considered be-

Fig. 3: Generalized logistic probability density and cumulative distribution functions fitted to a normalized version of xm and  
the corresponding probability profile of nine data sets covering five chemicals combined
(A) The generalized logistic probability density and cumulative distribution functions fitted to a normalized version of xm (xm reflects the 
within GO category BMD distribution, on average). Nine data sets covering five chemicals have been combined: TPHP, DBE-47, DE-71, 
MCHM, and PPH (two data sets for each chemical are included except for TPHP). For a given data set, the normalized xm is defined as:

where svi and ci are estimates of the scale and location/mode, respectively, of an extreme value distribution where vari is the variance of 
xmi (on log scale) and E is Euler’s constant. The extreme value distribution with two parameters provides a reasonable fit across a large 
part of xmn. However, the generalized logistic distribution, with an additional parameter for asymmetry/skewness, fits well across the whole 
range as further described by the probability profile in part (B), indicating that the model is also compatible at the very lowest xmn values 
(not shown in part A). Maximum likelihood estimates (with 95% confidence intervals) of the location, scale (shape 1), and asymmetry 
(shape 2) are 0.58 (0.50-0.66), 0.25 (0.21-0.28), and 0.20 (0.16-0.24), respectively. The estimate of the asymmetry term used as the generic 
part of the ranking approach is not dependent on the constant term (6/π2) in svi or the svi × E product in ci.

 A

B

-
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were observed in female Harlan Sprague-Dawley rats at 53 
weeks or at the end of the 2-year studies (NTP, 2006a-e, 2010). 
They are also tabulated as part of the supplementary material in 
Sand et al. (2018) together with estimated BMDs corresponding 
to a 21% change in response (Sand et al., 2006, 2012). Based on 
this material, it is investigated how the proposed method com-
pares with a traditional approach based on individual health ef-
fects. The RTR and 2D-RTR associated with BMDs for specific 
health effects are evaluated as a basis for these comparisons. It 
is also studied whether information corresponding to the low-
er severity categories provides adequate estimates of the RTD. 
The results in Sand et al. (2018), based on data in severity cate-
gories C2-C8 (Fig. 1), are contrasted to RTD derived herein for 
the same data sets but where data in categories C7 and C8 have 
been omitted.

For estimation of genomic RPPs, gene-level BMDs from 5-day 
toxicogenomic studies in rodents for TPHP, 4-methylcyclohex-
anemethanol (MCHM), and propylene glycol phenyl ether (PPH) 
were used (NTP, 2021). Gene-level BMDs for 2,2,4,4-tetrabro-
modiphenyl ether (PBDE-47) and technical pentabromodiphenyl 
(DE-71) from Dunnick et al. (2018, 2020) were also considered, 
where dams were dosed from gestation day 6 through postnatal 
day 21, and from GD 6 through postnatal day 4, respectively. In 
all studies, the effects of chemical exposure were assessed in the 
liver, and also in the kidney for MCHM and PPH. Overall, this 
provided nine data sets for evaluation.

The classification of gene-level BMDs in GO biological pro-
cess categories performed within the respective study was uti-
lized. In line with NTP (2018), individual BMDs larger than the 
highest dose were excluded, and GO categories for which the 
mean BMD (on log scale) was 10 times smaller than the low-
est dose were also excluded. Moreover, BMDs for which the 
ratio between the BMDU and BMDL was larger than a factor 
100 were excluded. NTP (2018) recommends a factor 40 as the 
breaking point, but a less stringent criterion was used herein to 
better allow evaluation of the impact of uncertainty in the RPP 
analysis. Also, GO categories populated with fewer than 5 BMD 
values were not considered.

As part of the evaluations, the lowest mean and median log 
BMD across included GO categories was used to represent the 
type of potency estimate that previously has been discussed for 
this type of data (e.g., NTP 2018). Like the apical RPP analy-
sis, the RTR associated with this type of PoD (mean/median log 
BMD) was evaluated across chemicals to assess how consider-
ation of individual BMDs vs the whole RPP may affect potency 
estimation. RTDs corresponding to RTRs of 0.001, 0.01, 0.1, and 
0.5 were also derived for the different data set. The uncertainty in 
RTDs was compared to that resulting from selection of the low-
est mean/median log BMD. For DE-71, a comparative analysis 
of genomic and apical RPPs was performed using data from tran-
scriptomic analysis described above, and data from a long-term 
NTP study in the same species (NTP, 2016). Apical BMD analy-
sis was performed for quantal liver lesions as described in Sand 
et al. (2018) using BMR = 0.1 (extra risk) to match gene-level 
BMDs that are associated with a response change equal to one 
SD at control level.

tribution and matched with its Sijk-value (derived as described 
above) for the assigned GO category. This is performed across 
all unique BMDs and results in a set of BMDijk and Sijk-values 
reflecting the variability across GO categories and ranks, repre-
senting a generated RPP data set. In this process, the random se-
lection of a GO category, among the group of categories that in-
cludes BMDijk, is weighted inversely proportional to the number 
of BMDs within each of the categories so that a category with ma-
ny BMDs is down-weighted vs a category with a few BMDs. This 
is done to cover the full BMD variability across categories, which 
otherwise would not be the case. Also, if an Entrez Gene ID is as-
sociated with more than one unique BMD or if a unique BMD is 
associated with more than one Entrez Gene ID, this variation will 
be reflected within and between iterations, respectively. Figure 2 
illustrates 1% of all iterations for TPHP as an example.

Estimation of the genomic RPP
Model 1a is fitted, using a constant ν = 0.20, 0.16 or 0.24 (matched 
to that used above), by the least squares method: The sum of 
squares of log BMDijk ‒ log μ(Sijk) is minimized with respect to 
Ηi and λi, which is a usual regression problem with explicit solu-
tions. The estimate of σ  ̂2 is also obtained, from which an unbi-
ased estimator of σ  ̂  can be derived (Sand et al., 2003). A 90% 
confidence interval for the genomic RPP is derived using n = 500 
iterations. Median values of Ĥi, λ ̂ i , and σ ̂  are used to represent a 
point estimate of the whole RPP, denoted “RPP point estimate”, 
describing the most central GO category, and the variation (at 
median) across categories (see Fig. 2). 

In summary, the extended approach differs from Sand et al. 
(2018) with respect to the derivation of S-values and that they 
represent fixed ranks for BMDijk  (a given BMD has, however, 
different ranks across categories). Also, several effect sequences 
(GO categories) are included in the same analysis using a novel 
simulation approach, but this is more a function of differences in 
data types (BMDs from traditional vs genomic data). If a data set 
just consists of one GO category, the genomic RPP will only re-
flect that category. The response metric, RTR, and its dose equiv-
alent, RTD, are calculated as described earlier in association with 
Equations 2-4.

Refinement of S-values and severity weighting
Comparison of GO categories using tools for computation of 
similarity scores may potentially help to refine the determination 
of Sijk values as well as supporting parameterization of the sys-
temic weight function, w(S ), in Equation 3. To illustrate this po-
tential, the web application (MegaGO) from Verschaffelt et al. 
(2021) was used to calculate similarity between GO terms with 
the Lin semantic similarity metric (Lin, 1998). The tool provides 
a score between 0 and 1 for each of the three GO domains, but 
for the present data a score for “biological process” results exclu-
sively since this is the only domain covered.

2.4  Data and assessment
For estimation of apical RPPs, data from the NTP on dioxin-like 
chemicals and their mixtures were used. These data (changes 
in enzyme activity, non-neoplastic and neoplastic liver lesions) 
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tween TCDD and PCB118 depending on health effect. If the RPP 
SD for TCDD was the same as for PCB118, i.e., considering a dif-
ference in RPP shapes only, RTR and 2D-RTR point estimates 
would differ by a factor 4-10 and a factor 3-5, respectively, be-
tween chemicals depending on health effect (data not shown).

Since the proposed method, particularly in the case of tradition-
al toxicity data, is quite data-intensive, the effect of removing da-
ta for the highest severity categories was assessed as a supplement 
to the previous analyses in Sand et al. (2018). In Figure 5, RTDs 
associated with RTR of 2% derived from “reduced data” (sever-
ity categories C2 to C6) and “complete data” (severity catego-
ries C2 to C8) are shown for all chemicals/mixtures considered 
in Sand et al. (2018). Removal of C7 and C8 reduces information 
(no. of BMD values) by at most 39% (two-component mixture, 
PCB126:PCB118) and at least 23% (PeCDF), while data reduction 
is between 29% and 35% for other chemicals/mixtures (Fig. 5). 
RTDs associated with RTR = 2% are similar for the reduced vs 
complete data (Fig. 5). Point estimates generally differ by about 
a factor 1.1 and at most by a factor 1.3 (two-component mixture).

3  Results

The consequence of combining data on multiple apical health ef-
fects according to Sand et al. (2018) in relation to considering ef-
fects individually is illustrated in Figure 4 for TCDD and PCB118. 
The new response metric, RTR (Equation 3), is evaluated here 
at doses corresponding to the BMDs for EROD activity, clas-
sified as severity category C2 (Fig. 1). BMDs defined in terms 
of a specific response level for a given health effect would nor-
mally be regarded as equipotent doses. However, the point esti-
mate of the RTR associated with these BMDs is about 0.5% and 
10% for TCDD and PCB118, respectively, i.e., the RTRs differ by 
around a factor 20. In Table 1, both RTR and 2D-RTR associat-
ed with BMDs for all three liver enzyme parameters used in the 
RPP analysis (EROD, PROD, and A4H) are given. RTR point es-
timates differ by a factor 7-21 between TCDD and PCB118 de-
pending on health effect. For 2D-RTR, differences between the 
chemicals are less pronounced and somewhat more similar across 
health effects: 2D-RTR point estimates differ by a factor 3-7 be-

Fig. 4: Reference point profiles (RPPs) 
for (A) TCDD and (B) PCB118
The point estimates of Ĥi, λ̂, and σ ̂ are 15.3, 
1.51, and 0.45 for TCDD, and 537, 2.53, 
and 0.67 for PCB118, respectively. Vertical 
lines indicate BMDs (corresponding to 
a 21% change in response) for EROD 
activity classified in category C2. While 
these BMDs would normally be regarded 
as equipotent doses, the associated 
probability profiles across S differ (red 
areas) and the RTR (Equation 3) is about 
0.5% for TCDD and 10% for PCB118. Note 
that the effects at C2 (EROD, PROD, 
A4H) represent continuous data, while the 
effects at C3-C8 represent quantal data. 
The definition of the BMR as a percent 
change (21%) in response in relation to 
the difference between the minimum 
(estimated background) and the maximum 
response (estimated response as the dose 
approaches infinity, which is always 1 for 
quantal data) levels provides a form of 
mathematical standardization across the 
two data types. However, the continuous 
and quantal responses still have a different 
interpretation, i.e., mean response vs 
probability of response. Even though there 
is no perfect match between the continuous 
and quantal BMDs within the RPP, the 
estimated RTRs (0.5 vs 10%) nevertheless 
indicate different impacts for the same 
effect dose (the continuous BMDs) across 
the two chemicals. 
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only the RPP SD (besides differences in parameter confidence 
intervals) practically differed between the two scenarios in Ta-
ble 2. Thus, using the proposed method, the RTD will be less 
conservative as the uncertainty in the BMD reduces. Compar-
ing ratios between the lower bound on the RTD across the two 
scenarios in Table 2 shows that results become a factor 1.3-1.6 
(RTR = 0.001) to a factor 1-1.1 (RTR = 0.5) more conserva-
tive under the proposed method (Tab. 3). While the method ac-
counts for uncertainty in an appropriate manner (less conser-
vative when less uncertain), the uncertainty in BMDs does not 
appear to greatly affect the results in quantitative terms. When 
using a GO category-specific potency estimate, i.e., the lowest 
mean/median log BMD, the uncertainty in terms of the mean 
BMDU to mean BMDL ratio ranges between 2.6 and 8.6, which 
are not extremes considering the range of corresponding ratios 
for all GO categories within a data set (Tab. 3). In contrast, the 
ratio between the lower and upper bound on the RTD under the 
proposed method, also accounting for RPP model uncertainty 
(RPP asymmetry terms, ν = 0.20, 0.16 or 0.24), is a factor 1.1 to 
2.9 across evaluated RTRs. 

A sensitivity analysis was performed since some settings as-
sociated with the extended method may be subject to modifica-
tion. As noted in Section 2.3, derivation of the dose vector, xm, 
involves generating x = 100 doses corresponding to linearly dis-
tributed percentile values. This was compared to using x = 50 in-
stead. Also, xm and BMDs are normalized to the mean, and nor-
malization to the median was performed as an alternative. RTDs 
associated with RTRs of 0.001 to 0.5 under the proposed proto-

Table 2 presents parameter estimates associated with the ge-
nomic RPP for five evaluated chemicals (nine data sets). Results 
associated with two scenarios are shown: 1) one based on the 
proposed method using BMD uncertainty distributions as input, 
and 2) another that uses BMD point estimates where the step of 
simulating BMDs from the uncertainty distributions is omitted, 
keeping everything else equal. As shown, the median location, 
Η, and shape, λ, across iterations is more or less the same, as ex-
pected, while the SD is larger for the proposed protocol com-
pared to using BMD point estimates only. Overall, results reflect 
a range of combinations of RPP slopes and SDs, indicating dif-
ference of such features at the genomic level. The range of this 
variation in RPP structure is illustrated by BDE-47 and MCHM 
in Figure 6.

Table 3 includes information on the RTR associated with the 
lowest mean and median log BMD across GO categories for the 
evaluated chemicals. This analysis is similar to that based on api-
cal effects in Table 1. The point estimate of the RTR associat-
ed with the considered GO category specific potency estimates 
(lowest mean and median log BMD) range between 0.05% and 
10% depending on the chemical/data set. Similar to the results 
for apical effects (Tab. 1), consideration of multiple BMDs, in 
this case across GO categories described by the genomic RPP, 
can affect estimates of potency.

Table 3 also presents RTDs associated with RTRs between 
0.001 and 0.5. Results are based on using BMD uncertainty 
distribution as input for RPP estimation. The RTDs would in-
crease if the uncertainty in BMDs were not accounted for since 

Fig. 5: RTDs corresponding to RTR = 2% 
Results for “reduced data” where severity categories C7 and C8 have been omitted are compared to results for “complete data” published 
in Sand et al. (2018). BMDs for PeCDF and PCB126 have been adjusted by the relative potency vs TCDD before estimation of the RTD  
(see Sand et al., 2018). Results are given in ng TEQ/kg/day except for PCB118 (µg/kg/day). For PCB118, results have also been adjusted 
with -1.5 log units to enable graphical illustration together with the other chemicals.
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Tab. 2: Genomic RPP model parameter estimates

Chemical	 BMD-inputa	 location, Η (mg/kg/day)	 shape, λ			   standard deviation, σ

		  PE	 LB	 UB	 PE	 LB	 UB	 PE	 LB	 UB

	 uncertainty distributions	 348	 333	 364	 4.2	 4.1	 4.4	 0.53	 0.50	 0.57

	 point estimates	 348	 339	 356	 4.2	 4.2	 4.3	 0.31	 0.30	 0.33

	 uncertainty distributions	 29	 26	 32	 3.1	 3.0	 3.3	 0.78	 0.69	 0.88

	 point estimates	 29	 27	 31	 3.1	 3.1	 3.2	 0.54	 0.49	 0.59

	 uncertainty distributions	 38	 33	 44	 3.3	 3.0	 3.6	 0.73	 0.61	 0.85

	 point estimates	 38	 34	 42	 3.3	 3.1	 3.4	 0.48	 0.42	 0.55

	 uncertainty distributions	 35	 33	 38	 4.2	 4.0	 4.5	 0.68	 0.63	 0.75

	 point estimates	 35	 34	 37	 4.2	 4.1	 4.3	 0.49	 0.46	 0.52

	 uncertainty distributions	 40	 37	 44	 8.0	 7.2	 8.9	 0.53	 0.45	 0.60

	 point estimates	 40	 38	 43	 8.0	 7.5	 8.5	 0.34	 0.29	 0.41

	 uncertainty distributions	 402	 372	 437	 15	 13	 18	 0.30	 0.25	 0.34

	 point estimates	 401	 392	 410	 15	 15	 16	 0.09	 0.08	 0.12

	 uncertainty distributions	 363	 332	 402	 6.2	 5.4	 7.0	 0.50	 0.44	 0.58

	 point estimates	 364	 346	 380	 6.2	 5.9	 6.5	 0.28	 0.25	 0.31

	 uncertainty distributions	 955	 856	 1061	 7.1	 6.1	 8.2	 0.42	 0.36	 0.52

	 point estimates	 949	 888	 1026	 7.1	 6.7	 7.4	 0.29	 0.25	 0.34

	 uncertainty distributions	 758	 667	 864	 7.3	 6.0	 9.3	 0.46	 0.39	 0.56

	 point estimates	 761	 720	 801	 7.3	 6.9	 7.7	 0.30	 0.27	 0.34

Note: RPP model parameter estimates (Η, λ, and σ) are given as medians (PE) with two-sided 90% confidence bounds (LB and UB) based 
on 500 iterations. The RPP asymmetry parameter, ν, in Equation 1a is set to 0.2. a According to the proposed method, the RPP is estimated 
using BMD uncertainty distributions as input, but for comparison results associated with using BMD point estimates as input are also shown.

TPHP
liver

BDE-47
liver
pnd 22
BDE-47
liver
pnd 4
DE-71
liver
pnd 22
DE-71
liver
pnd 4

MCHM
liver

MCHM
kidney

PPH
liver

PPH
kidney

Tab. 1: The RTR evaluated at doses corresponding to BMDs for individual health effects

Chemical	 Health effect	 BMDa	 RTR (Equation 3)			   2D-RTR (Equation 4)

			   point estimate	 L05	 U95	 point estimate	 L05	 U95

TCDD	 EROD	 2.1	 0.0048	 0.0028	 0.0090	 0.012	 0.0099	 0.016

	 PROD	 3.0	 0.012	 0.0074	 0.020	 0.020	 0.017	 0.026

	 A4H	 3.7	 0.020	 0.013	 0.032	 0.028	 0.023	 0.035

PCB118	 EROD	 260	 0.10	 0.076	 0.13	 0.084	 0.073	 0.096

	 PROD	 229	 0.077	 0.056	 0.10	 0.072	 0.062	 0.082

	 A4H	 327	 0.16	 0.13	 0.19	 0.11	 0.098	 0.13

Note: The point estimate and 90% confidence interval (L05 and U95) for RTR and 2D-RTR, evaluated at doses corresponding to the BMD 
(point estimate) for individual health effects (EROD (7-ethoxyresorufin-O-deethylase), PROD (7-pentoxyresorufin-O-deethylase) and A4H 
(acetanilide-4-hydroxylase)) classifying in severity category C2 (Fig. 1). Results are associated with an RPP asymmetry parameter, ν, 
in Equation 1a equal to 1. a BMDs are taken from Sand et al. (2018, Supplementary Table 5), and are associated with a 21% change in 
response with respect to given health effects. Units are in ng/kg/day for TCDD and µg/kg/day for PCB118.
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Tab. 3: RTDs (mg/kg/day) associated with different RTRs, including comparison to the lowest mean/median  
log BMD (mg/kg/day) across gene ontology (GO) categories

Chemical	 PoD-type	 RTR	 Point estimate	 Lowest LB	 Highest UB	 LB-ratioa	 UB/LBb	 Sensitivity  
								        analysisc

TPHP 
liver

 
BDE-47 
liver 
pnd 22

 
BDE-47 
liver 
pnd 4

 
 
 
DE-71 
liver 
pnd 22

 
 
 
DE-71 
liver 
pnd 4

 
 
 
MCHM 
liver

 
 
 
 
MCHM 
kidney

0.001
0.01
0.1
0.5
0.038
0.035
0.001
0.01
0.1
0.5
0.028
0.058
0.001
0.01
0.1
0.5
0.035
0.039
0.001
0.01
0.1
0.5
0.015
0.046
0.001
0.01
0.1
0.5
0.00048
0.027
0.001
0.01
0.1
0.5
0.051
0.10
0.001
0.01
0.1
0.5
0.047
0.068

4.6
18
71
232
40
38
0.080
0.50
3.2
17
1.1
2.1
0.14
0.79
4.7
22
2.1
2.2
0.39
1.5
6.2
23
2.0
3.8
3.0
6.1
14
32
2.3
8.5
98
145
224
356
195
224
16
41
108
272
78
91

3.3
15
67
220
19

0.051
0.38
2.8
15
0.40

0.079
0.57
3.9
20
0.70

0.29
1.3
5.6
21
0.95

2.2
5.0
12
30
1.1

80
128
207
333
122

11
33
97
251
30

6.2
21
75
244
85

0.12
0.63
3.6
18
3.3

0.23
1.1
5.5
26
6.0

0.51
1.8
6.9
25
4.1

3.8
7.4
16
35
5.1

116
162
241
383
312

22
50
121
302
199

1.3
1.2
1.2
1.0
-

1.4
1.4
1.3
1.0
-

1.5
1.4
1.3
1.1
-

1.4
1.3
1.2
1.0
-

1.4
1.4
1.2
1.0
-

1.4
1.4
1.3
1.1
-

1.5
1.4
1.3
1.0
-

1.9
1.4
1.1
1.1
4.6 
(2.0-16)

2.3
1.6
1.3
1.2
8.2 
(2.1-49)

2.9
1.9
1.4
1.3
8.6 
(2.2-50)

1.8
1.4
1.2
1.2
4.3 
(2.2-34)

1.7
1.5
1.3
1.2
4.8 
(2.1-21)

1.4
1.3
1.2
1.2
2.6 
(1.6-3.5)

2.0
1.5
1.3
1.2
6.6 
(1.6-12)

1.2
1.1
1.1
1.1
-

1.1
1.0
1.1
1.1
-

1.2
1.1
1.2
1.1
-

1.1
1.0
1.0
1.1
-

1.2
1.1
1.1
1.1
-

1.0
1.0
1.0
1.0
-

1.2
1.0
1.1
1.1
-

RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD
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Chemical	 PoD-type	 RTR	 Point estimate	 Lowest LB	 Highest UB	 LB-ratioa	 UB/LBb	 Sensitivity  
								        analysisc

PPH 
liver
 
 
 

 

PPH 
kidney

0.001
0.01
0.1
0.5
0.0083
0.046
0.001
0.01
0.1
0.5
0.011
0.0035

64
145
337
743
136
251
53
116
265
594
118
81

44
114
293
679
63

32
87
232
542
40

86
174
373
808
295

76
143
294
661
347

1.4
1.3
1.2
1.0
-

1.6
1.4
1.2
1.1
-

2.0
1.5
1.3
1.2
4.7 
(1.5-14)

2.4
1.7
1.3
1.2
8.6 
(1.6-19)

1.1
1.1
1.0
1.1
-

1.0
1.0
1.1
1.1
-

RTD

lowest mean BMD
lowest median BMD
RTD

lowest mean BMD
lowest median BMD

Note: Point estimates for the RTD based on an RPP model with asymmetry term, ν = 0.2, and 90% confidence intervals defined by  
the lowest lower bound (lowest LB) and the highest upper bound (highest UB) across three estimated RPP models with ν = 0.2, 0,16, 
and 0.24 are shown. RTDs correspond to RTR between 0.001 and 0.5 and are based on 500 iterations. The lowest mean and median log 
BMD across GO categories is also presented for each data set, where LB and UB correspond to mean log BMDL and mean log BMDU, 
respectively, for the relevant GO category. The RTR (point estimate) associated with lowest mean and median log BMD is also given.  
a Ratio between the lower bound on the RTD derived using BMD point estimates as input for RPP estimation and the lower bound on the 
RTD derived using BMD uncertainty distributions as input for RPP estimation. Results are associated with an RPP model with asymmetry 
term, ν = 0.2. b Ratios between the lowest LB and the highest UB based on the consideration of results across three RPP models (ν = 0.2, 
0,16, and 0.24) using BMD uncertainty distributions as input and ratios between mean log BMDU and mean log BMDL for the GO category 
with the lowest mean log BMD. The lowest and highest ratio between mean log BMDU and mean log BMDL across all GO categories is 
given in parenthesis. c The largest relative difference between RTDs across three scenarios: 1) the proposed approach that uses x = 100 
percentile values for derivation of the dose vector, xm, and performs normalization to the mean, 2) using x = 50 percentile values and 
normalization to the mean, and 3) using x = 100 percentile values and normalization to the median. The largest difference is assessed 
across point estimates, lower and upper bounds associated with an RPP model with asymmetry term, ν = 0.2.

Tab. 4: Similarity score according to the application by Verschaffelt et al. (2021) between sets of GO categories that differ in 
dose location with regard to log mean BMD described by the percentile range (Px-y) 

Chemical	 P0-10 vs P90-100	 P5-15 vs P85-95	 P35-45 vs P55-65	 P40-50 vs P50-60

TPHP	 0.55  	 0.59  	 0.76  	 0.79 
liver	 (125/125)a	 (125/125)	 (125/125)	 (125/125)

BDE47	 0.31	 0.33  	 0.62	 0.70 
liver pnd 22	 (13/13)	 (13/13)	 (13/12)	 (12/13)

BDE47	 0.44  	 0.46  	 0.67	 0.60 
liver pnd 4	 (30/30)	 (30/30)	 (30/31)	 (30/31)

DE71	 0.32	 0.38	 0.64	 0.61 
liver pnd 22	 (20/20)	 (21/21)	 (20/20)	 (20/21)

DE71	 0.43	 0.46	 0.66	 0.68 
liver pnd 4	 (57/57)	 (57/56)	 (57/58)	 (57/57)

MCHM	 0.40	 0.48	 0.70	 0.73 
liver	 (32/32)	 (32/33)	 (32/32)	 (32/33)

MCHM	 0.30	 0.41	 0.68	 0.77 
kidney	 (37/35)	 (40/37)	 (37/36)	 (37/37)

PPH	 0.38	 0.41	 0.62	 0.71  
liver	 (28/28)	 (28/27)	 (28/27)	 (29/28)

PPH	 0.55	 0.47	 0.64	 0.67 
kidney	 (48/48)	 (49/51)	 (48/48)	 (46/46)

Note: Px-y identifies GO categories with mean log BMD classifying in the given percentile range considering mean log BMD values across 
all GO terms. a Number of GO categories (gene sets) within the respective percentile range. Verschaffelt et al. (2021) application accessed 
June 2021.
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To address potentials for further development, Table 4 presents 
results from a comparison of GO categories using the web appli-
cation from Verschaffelt et al. (2021). As shown, semantic simi-
larity across the GO terms appears to be dose-dependent, i.e., as 
the dose separation between groups of GO terms increases, the 
similarity score decreases. The degree of dose-dependence ap-
pears to differ across chemicals and data sets and may depend on 
which GO terms were affected by the exposure (and for which 
BMDs could be derived). As noted in Section 2.3, individual 
BMDs are ranked according to f(xm), and in this process they are 
distributed similarly across S for the different GO categories. As 
a secondary step, the default rank could potentially be refined us-
ing the type of information presented in Table 4. For example, 
Sijk -values within GO categories with dose location (log mean 
BMD) below the central RPP curve may be weighted downwards, 
while Sijk -values within GO categories with dose location above 
the central RPP curve may be weighted upwards, guided by the 
strength of the dose-dependence indicated in Table 4.

col were then compared to corresponding RTDs derived under 
the two alternative scenarios. The ratio between the maximum 
and minimum RTD across all three scenarios, considering point 
estimates as well as lower/upper bounds, is below 1.2 in all cas-
es (Tab. 3), and the mean/median ratio across data sets and RTRs 
is 1.07/1.06. Thus, the method is stable with regard to the as-
sessed variations in settings. 

For DE-71 the genomic RPP was contrasted to that based on 
apical data from a long-term NTP study. As shown in Figure 7, 
the genomic BMDs associated with exposure from gestation 
day 6 through postnatal day 22 matches the apical BMDs well 
so that a single RPP could be used to describe both sets of data 
in a combined analysis. Here, the dose-dependent rank approach 
was applied for both types of data. It can be noted that the result-
ing S-values for the apical BMDs (given in the text to Fig. 7) de-
scribe a rank order quite similar to the severity-based ranking in 
Sand et al. (2018) of these types of liver effects (except for hepa-
tocellular adenoma) described in Figure 1.

Fig. 6: Genomic reference point profile 
for BDE-47 (pnd 22) (A) and MCHM (B) 
based on gene-level BMDs derived 
from neonatal and adult rat liver 
transcriptomic data, respectively 
Circles correspond to the iteration of the 
approach that is closest to the RPP point 
estimate (based on n = 500 iterations) 
illustrated by the solid curve and associated 
normal distribution. Model parameter 
estimates are given in Table 2. The lower 
RPP slope and higher RPP SD for DBE-47 
vs the higher RPP slope and lower RPP 
SD for MCHM cover the range of variation 
in genomic RPP structures across the data 
sets analyzed (Tab. 2).
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or high severity. In the comparison of TCDD and PCB118 using 
traditional toxicity data (Fig. 4), the BMD for EROD activity is 
located to the left and to the right of the solid curve at the central 
S-value (S = 0.0602) at C2, respectively. Differences in the loca-
tion of BMDs for EROD, PROD, and A4H in relation to the re-
spective RPP for the two chemicals explain the discrepancy be-
tween RTR results across health effects (Tab. 1).

The results in Figure 4 and Table 1 also indicate that the con-
cept of what change in response may be non-adverse/adverse 
for individual health effects, which is part of some guidance for 
how to define the BMD (e.g., EFSA, 2017), may be problem-
atic when considering effects in a joint context. Intuitively, the 
response level (considering a normalized response scale), re-
garded as the breaking point between acceptability and adversi-
ty for individual health effects, should decrease across severity 
categories C1 to C9, i.e., as health effects become more severe. 
However, since the BMD for a specific health effect can corre-
spond to different RTRs (Fig. 4, Tab. 1), critical response val-
ues defining the BMD may need to vary across chemicals for 
the same health effect to result in BMDs that are associated with 
equivalent RTRs. In the present examples (Tab. 1), the bench-

4  Discussion

The method introduced in Sand et al. (2018) and further devel-
oped in the present paper characterizes the sequence of BMDs/
dose-response curves for toxicological health effects or mea-
sures of bioactivity described by the RPP (Fig. 1) or the complete 
dose-severity-response volume. This enables toxicological re-
sponses and their dose equivalents to be derived by combination 
of dose-response information from multiple effects. The shape (λ) 
and variability (σ) of the RPP extend the dimensions of quantita-
tive risk assessment beyond the use of a potency measure, repre-
sented by the RPP location (Η) in the proposed method, or by a 
single RP (or PoD) under a more traditional approach. 

Differences in the RPP shape and/or SD across chemicals can 
modify conclusions regarding toxicity. Generally speaking, RPs 
based on individual apical health effects might be associated 
with a low or high risk (be conservative or non-conservative) un-
der the proposed method. This depends on the RPP parameters in 
combination with how the RP is aligned to the RPP, e.g., whether 
it is close or far away from BMDs for other effects, and wheth-
er the critical health effect represented is associated with a low 

Fig. 7: Genomic and apical reference point profile (RPP) for DE-71 based on BMDs derived from neonatal rat liver transcriptomic 
data from a short-term study (small circles) and data from a long-term NTP study (large circles) in the same rat species
Both sets of data could be described using common RPP model parameters, i.e., using group-specific parameters did not result in a 
significantly better fit. Circles correspond to the iteration of the approach that is closest to the RPP point estimate (based on n = 500 
iterations) illustrated by the solid curve and associated normal distribution. The point estimates of Ĥi, λ̂i, and σ ̂ are 35, 4.2, and 0.68, 
respectively (the RPP asymmetry term, ν, is set to 0.2). The dose-dependent rank approach for derivation of S-values has been applied 
for both the genomic and apical data (see Section 2.3). Nine apical BMDs describing liver lesions (and passing selection criteria), mainly in 
female rats, were included, i.e., hepatocyte hypertrophy (S ≈ 0.032, male), fatty change (S ≈ 0.14, female), eosinophilic focus (S ≈ 0.15, male 
and female), hepatocellular adenoma (S ≈ 0.36, female), oval cell hyperplasia (S ≈ 0.71, female), nodular hyperplasia (S ≈ 0.76, female), 
hepatocellular carcinoma (S ≈ 0.85, female), and hepatoblastoma (S ≈ 0.85, female).
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tional plan with a broader focus (Thomas et al., 2018). This in-
cludes consideration of high-throughput transcriptomics (HTT) 
as a timely and cost-effective screening approach, and the use of 
short-term studies in rodents in this context is regarded to serve 
as a bridge between in vitro approaches and traditional guideline 
toxicity studies (Gwinn et al., 2020).

The interest in the short-term study (i.e., the 5-day assay) relates 
to the observation that gene set BMDs correlate reasonably well 
with potency estimates traditionally used as PoDs (i.e., BMDLs/ 
NOAELs for the most sensitive apical effects) from cancer- and 
non-cancer toxicity studies in the same species (e.g., Thomas et 
al., 2013, NTP, 2018, Gwinn et al., 2020). The NTP (2018) ap-
proach to genomic dose-response analysis applies to both in vivo 
and in vitro studies, but the latter is less investigated and would 
also require the additional element of vitro-to-in vivo extrapola-
tion as a crucial element. Understanding relations between quan-
titative risk estimates at the genetic and apical levels in vivo, 
however, appears to be a relevant step in the process of devel-
oping a framework based on gene-level effects in vitro. As not-
ed above, this provides a bridge to facilitate understanding of the 
different data streams.

The NTP (2018) approach defines gene-level potency in terms 
of the median BMD, BMDL, and BMDU, providing a central es-
timate for each gene set. This type of summary measure, herein 
defined in terms of the mean/median log BMD over all gene sets 
included in a particular analysis, corresponds to the variability in 
the genomic RPP at a given S-value. In line with earlier discus-
sions, accounting for BMD variability, in this case both within 
and across GO terms described by the genomic RPP, allows for a 
more refined differentiation of potency compared to using a sum-
mary measure, as shown by the variation in both λ and σ across 
the studied chemicals (Tab. 2, Fig. 2, 6, 7). This is also indicat-
ed by the evaluation of RTRs associated with the lowest mean/
median log BMD (Tab. 3), providing a picture similar to that for 
apical effects (Tab. 1), i.e., that joint analysis of multiple effects/
BMDs, in this case across GO categories, can modify conclu-
sions on potency.

Results in this study also show that combination of several 
BMDs under the proposed method may allow for a less uncer-
tain derivation of exposure guidelines/PoDs. This was to some 
extent pointed out in the introduction of the concept in Sand et al. 
(2018), but herein more specifically evaluated across data sets fo-
cusing on the transcriptional level. The increase in dose-response 
information that follows when moving away from the apical re-
sponse provides an opportunity for determination of less uncer-
tain PoDs by combination of gene set BMDs as suggested. For 
the evaluated studies, the uncertainty in RTD was clearly lower 
than that associated with the lowest mean/median log BMD, also 
accounting for RPP model uncertainty (Tab. 3).

NTP (2018) notes that it may be further evaluated whether al-
ternative methods for summarizing gene set BMDs, including 
consideration of potency rank, could provide better surrogates 
for apical PoDs. Genomic and apical RPPs for DE71 were com-
pared in this work, and this illustrates how a more complete as-
sessment of the relation between the two types of data can be per-
formed (Fig. 7). The new strategic plan within Tox21 includes 

mark response for any of the liver enzyme parameters would 
need to be at least 40% to give a BMD for TCDD associated 
with an RTR/2D-RTR (data not shown), which is similar to the 
RTR/2D-RTR associated with the BMD for PCB118 that corre-
sponds to a 21% benchmark response. Thus, if the separation of 
a set of health effects across the dose continuum depends on the 
type of chemical, whether a certain benchmark response level 
is to be considered low or high becomes a chemical-specific as 
well as an endpoint-specific issue.

From a more general viewpoint, the joint consideration of mul-
tiple effects in line with the proposed method could improve the 
basis for risk management/prioritization since it allows for as-
sessing the consequences of exposures above the health-based 
guidance value (HBGV), or similar, in a standardized manner. 
Exceedance of the HBGV for estimated exposures or defined ex-
posure scenarios for some or several population groups is quite 
common. For example, this was noted in several risk assessments 
by the EFSA CONTAM panel in recent years (EFSA, 2020). 
To allow for a better differentiation of health concerns, a num-
ber of RTDs corresponding to specific RTRs can be derived, and 
exposures may then be categorized in terms of the extent they 
fall below/above these reference values. The separation of such 
RTDs will depend on the shape and SD of the RPP. Considering 
all six compounds/mixtures evaluated in the previous study, the 
range of RTDs (for standardized RTRs of 0.002 to 0.5 according 
to a Hill RPP model) covers a factor 12 (PCB118) to a factor 50 
(three-component mixture) (Sand et al., 2018).

When applied to apical health effects, the proposed meth-
od may appear data demanding. The earlier analysis in Sand et 
al. (2018) represents a data-rich example that allowed for most 
severity categories to be populated. Removing the top catego-
ries (above C6) for these data, however, did not affect the RTD 
much (Fig. 5). An overview of NTP long-term studies in rodents 
over the last decade shows that the average/median number of 
non-neoplastic effects for which dose-response data is avail-
able in a given study is 10/8 for a specific species and sex (NTP, 
2020). The corresponding average/median is 29/19, considering 
all the available data (rats and mice, males and females) that may 
be used in combined analyses. For most of these NTP studies, da-
ta on neoplastic effects are also available. This indicates a pos-
sibility to consider the proposed method for apical effects more 
broadly, provided that significant dose-response trends are appar-
ent to enable derivation of BMDs and that effects can be differ-
entiated into a number of severity categories.

An extension of the method was introduced to address the 
possibility to apply the proposed concept to data from NAMs. 
While not investigated in detail herein, it may also be further 
studied if the type of dose-dependent, rather than severity-based, 
initial ranking approach used for genomic data can benefit the 
method more generally (since this might be more practical). 
In relation to NAMs, the National Research Council (NRC, 
2007) report, aimed at developing a long-range strategic plan 
to modernize toxicity testing, envisioned a shift from the tradi-
tional animal-based system to using human cells or cell lines in  
vitro and computational modeling. More recently, the interagen-
cy Tox21 consortium has developed a new strategic and opera-
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NRC (2007) vision, appears conceptually similar to the objective 
within the current paradigm that sets an RP/PoD based on the 
critical effect, which is ideally defined as the first adverse effect 
or known precursor (US EPA, 2002). However, moving towards 
using data from NAMs for risk assessment may be more in line 
with a data-driven rather than knowledge-driven approach. As 
discussed in Whelan and Andersen (2013), mechanistic descrip-
tion of the underlying biological system and details on how path-
way perturbation leads to adversity might not be absolute prereq-
uisites. Overall, moving away from the apical response may to 
a higher extent require/emphasize that probability becomes part 
of the consideration of what constitutes a significant alteration, 
e.g., in gene expression within the network of toxicity pathways, 
while the current paradigm considers this from a more absolute 
standpoint. 

The proposed method attempts to be in line with a probabili-
ty-based framework. Under the default rank, the probability, p, 
across S may serve as a quantitative description of the extent of 
perturbation across GO categories in terms of how many BMDs 
(relatively speaking) are exceeded within and across the catego-
ries. Introduction of a non-linear weight, w(S), might then allow 
this to be severity-adjusted, as noted in Section 2. In its current 
form, the method allows for the derivation of references values, 
RTDs, that are standardized in this regard. However, the ques-
tion of what would constitute an acceptable change (e.g., accept-
able RTR) remains, and, generally speaking, this issue will likely 
pose challenges under a NAM-based framework as it does with-
in traditional risk assessment. As noted earlier, the use of sever-
al exposure guidelines that better allow for consideration of the 
continuum of risk can, however, help in the assessment of chem-
ical exposure. A system that enables evaluation of the gradual in-
crease in the total amount of effect/biological activation might be 
particularly useful if risk assessment is informed by measures, 
e.g., at the genomic level, that are more numerous and less direct-
ly related to disease compared to apical effects used within the 
current approach.

5  Conclusion

Systematic combination of data by characterization of the 
dose-related severity sequence or the sequence of BMDs across 
gene sets condenses information of the chemical effect domain 
into a small set of parameters with toxicological interpretation. 
Based on the previously proposed concept, an extension to ge-
nomic dose-response information was developed. Results indi-
cated a variation in RPP shapes and SDs across chemicals, sug-
gesting, as for the apical response, that the method differentiates 
the consequence of chemical exposure to a higher extent com-
pared to standard approaches. This can help to refine establish-
ment of RPs/PoDs or sets of such values describing various lev-
els of health concerns that, e.g., would permit assessment of 
risks/impacts at exposures above the traditional human exposure 

making better use of legacy in vivo toxicity data in the process of 
moving towards using NAMs for chemical risk assessment. Tra-
ditional toxicity data is regarded to provide a rich resource that, 
for example, can help to link the effects observed at the molecu-
lar level to those at the tissue-, organ-, and organism-level, also 
characterizing how the variability in traditional toxicity studies 
may differ from in vivo testing approaches (Thomas et al., 2018). 
Further comparison of genomic and apical RPPs may help as part 
of such analysis. In the example for DE-71, the transcriptional 
and apical levels were adequately characterized by a single RPP 
(Fig. 7). While the default set-up/rank approach in this case pro-
vided similar RPPs, differences may occur in other cases. There-
fore, modification of the severity weight, w, may also be an in-
tegral part of this type of analysis. Differentiation of the sever-
ity weight across data types may then help to provide matching 
RTDs. The introduction of some default uncertainty in the sever-
ity weight based on a broader assessment of this issue might help 
to provide RTDs that better encapsulate the corresponding doses 
associated with apical response.

Knowledge of relations between toxicity pathways may also 
inform the ranking and/or severity weighting. As a step in this 
direction, it was illustrated how derivation of the genomic RPP 
could be supported by approaches for assessing semantic sim-
ilarities between GO terms using the web application by Ver-
schaffelt et al. (2021) as an example. Interestingly, the similar-
ity score across the genomic RPP was dose dependent (Tab. 4). 
This observation is based on the present data and the particular 
approach used for comparing similarity. Information provided at 
the GitHub repository states1 that scores < 0.3, 0.3-0.9, and > 0.9 
indicate “not functionally similar”, “functionally related”, and 
“highly similar functions”, respectively. Thus, GO terms part of 
genomic RPPs in this paper appear to be “functionally related” 
(to various degrees). This may need to be further assessed under 
a broader and/or more detailed analysis, including how to tech-
nically integrate the type of results in Table 4 as part of the over-
all method. 

The consequence of “tilting” the default rank, as exemplified 
in Section 3, appears mainly to have the effect of reducing the 
RPP SD, while the RPP location and slope will be less affected. 
Theoretically, a reduction in the RPP SD implies that a change in 
impacts/RTRs as a result of a given change in exposure from A to 
B will increase. Thus, as the relative distance metric between GO 
terms increases (smaller similarity score), so would a change in 
the RTR. Also, using some overall measure of similarity, e.g., a 
score associated with the central region of the RPP, may possibly 
support parameterization of the systemic weight function, w(S), 
in Equation 3 that indirectly affects all categories. For example, a 
stronger overall relation between GO terms may indicate a high-
er specificity/significance of the exposure that intuitively may in-
dicate a higher concern/severity. If so, this could motivate the use 
of a more conservative systemic weight.

The principle of finding exposures below which no significant 
perturbation of toxicity pathways is observed, in line with the 

1 https://github.com/MEGA-GO/MegaGO (accessed 19.06.2021)
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NTP – National Toxicology Program (2006a). NTP techni-
cal report on the toxicology and carcinogenesis studies of 
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No 1746-
01-6) in female Harlan Sprague-Dawley rats (Gavage Stud-
ies). Natl Toxicol Program Tech Rep Ser 521. https://ntp.niehs.
nih.gov/ntp/htdocs/lt_rpts/tr521.pdf 
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guideline. The standardized scale used for grading health effects 
or measures of bioactivity facilitates comparative analysis across 
individual chemicals in contrast to the current method, and the 
attached severity weighting approach allows for summarizing/in-
tegrating contributions across multiple outcomes, enriching the 
quantitative risk assessment metric. Further comparison of apical 
and genomic RPPs can help to improve understanding of differ-
ent data streams to facilitate transition to a NAM-based risk as-
sessment paradigm. In this process, analysis at the genomic level 
may potentially be advanced by considering functional relations 
between gene sets to refine the ranking of bioactivity and param-
eterization of the systemic weight function. The proposed con-
cept supports the use of an increasing amount of effect parame-
ters that may result when focus is shifted upstream from adverse 
apical response. This may more strongly promote or require 
methods for combination of data and evaluation of the overall 
impact compared to relying on specific observations as within 
traditional risk assessment.
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