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ated in the peer-review of the validation studies, nor has a formal-
ized way to use this quantitative information reached test guide-
line status. Nevertheless, multiple studies have investigated ap-
plication of quantitative in vitro data from the validated assays 
for potency prediction (Hirota et al., 2018; Jaworska et al., 2013, 
2015; Natsch et al., 2015; Nukada et al., 2013). 

Potency prediction is of importance for two reasons: First, the 
Global Harmonized System (GHS) has introduced a subclassi-
fication of sensitizers into 1A (strong sensitizers) and 1B (other 
sensitizers). Chemicals with an estimated concentration inducing 
a 3-fold increase in the stimulation index (EC3) ≤ 2% in the local 
lymph node assay (LLNA) are classified as GHS Cat 1A, or, al-
ternatively, chemicals with an induction dose (DSA05) ≤ 500 µg/
cm2 in humans tests are attributed to this class, with the DSA05 
defined as the dose per unit area of skin required to sensitize 5% 
of the panelists in a human repeat insult patch test (HRIPT) or hu-
man maximization test (HMT). This differentiation into sub-cat-

1  Introduction

The field of non-animal testing for skin sensitization has rapid-
ly advanced over the past decade, leading to the publication of 
the adverse outcome pathway (AOP) for skin sensitization by the 
OECD in 2012, in which the sensitization process has been sim-
plified and described as a series of mechanistic key events (KE) 
(OECD, 2012). 

Three OECD test guidelines were published covering the first 
three KE (OECD, 2018a,b, 2020), namely KE 1 on covalent bind-
ing to proteins (the molecular initiating event, MIE), KE 2 on ke-
ratinocyte activation, and KE 3 on activation of dendritic cells. 
At the time of writing, these three test guidelines cover a total of 
seven test methods. They were all developed for hazard identifi-
cation based on a binary prediction model, while the cellular as-
says also provide concentration-response information. However, 
reproducibility of the concentration-response data was not evalu-
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Abstract
Several in vitro OECD test guidelines address key events 1-3 of the adverse outcome pathway for skin sensitization, 
but none are validated for sensitizer potency assessment. The reaction of sensitizing molecules with skin proteins is the 
molecular initiating event and appears to be rate-limiting, as chemical reactivity strongly correlates with sensitizer potency. 
The kinetic direct peptide reactivity assay (kDPRA), a modification of the DPRA (OECD TG 442C), allows derivation of 
rate constants of the depletion of the cysteine-containing model peptide upon reaction with the test item. Its reproduc-
ibility was demonstrated in an inter-laboratory study. Here, we present a database of rate constants, expressed as log 
kmax, for 180 chemicals to define the prediction threshold to identify strong sensitizers (classified as GHS 1A). A threshold 
of log kmax -2 offers a balanced accuracy of 85% for predicting GHS 1A sensitizers according to the local lymph node 
assay. The kDPRA is proposed as a stand-alone assay for identification of GHS 1A sensitizers among chemicals iden-
tified as sensitizers by other tests or defined approaches. It may also be used for the prediction of sensitizer potency on 
a continuous scale, ideally in combination with continuous parameters from other in vitro assays. We show how the rate 
constant could be combined with read-outs of other in vitro assays in a defined approach. A decision model based on log 
kmax alone has, however, a high predictivity and can be used as stand-alone model for identification of GHS 1A sensi-
tizers among chemicals predicted as sensitizers.
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The highly reactive and non-fluorescent mBrB rapidly reacts 
with unbound cysteine moieties of the model peptide to form a 
fluorescent complex. The non-depleted peptide can thus be deter-
mined fluorometrically, and the matrix of depletion values versus 
time and concentration can be transformed to a rate constant. The 
maximum observed logarithmic rate constant observed at any 
time point (log kmax, with log k for the different time points de-
rived from the slopes of the natural logarithm of the non-deplet-
ed peptide concentrations plotted versus the concentration of the 
test chemical) is the key parameter reported, noting that this is 
the maximum observed rate constant obtained with the standard-
ized data interpretation procedure, not necessarily the true maxi-
mal rate constant. 

The basic method of the kDPRA was described for the first time 
by Natsch et al. (2007). The approach to use it for rate constant 
determinations was described by Roberts and Natsch (2009) and 
later applied to more chemicals from specific domains (Natsch et 
al., 2011). In 2017, it was applied to a more diverse set of chemi-
cals, and a tentative prediction model was proposed with a thresh-
old of log kmax = -1.1 to discriminate between GHS Cat 1A and 
1B (Wareing et al., 2017). An international validation study in 
seven laboratories has recently been completed and has proven 
a high quantitative reproducibility of the rate constant determina-
tions (Wareing et al., 2020). 

Here, we have compiled a database of log kmax values on 180 
chemicals based on new measurements, published data, and data 
from the validation study. This database is used to derive an opti-
mal prediction threshold for GHS subclassifications, and it is an-
alyzed for quantitative predictions in relation to LLNA EC3 val-
ues alone or in combination with other endpoints measured using 
OECD approved in vitro methods.

2  Materials and methods

Test substance chemicals were purchased from Sigma-Aldrich; 
fragrance chemicals were obtained from Givaudan Schweiz AG. 
The Cys-peptide (Ac-RFAACAA, MW 750.1) was obtained 
from Genscript Inc. (Piscataway, NJ, USA). Two batches with a 
purity of 95.6 and 96.4% were used. 

kDPRA and rate constant determination
The kDPRA was run according to the standard operating proce-
dure (SOP) defined for the validation study; details of the meth-
od are described in the parallel paper on the ring trial valida-
tion study (Wareing et al., 2020; training video1). Briefly, the  
kDPRA was run in microtiter plates in a final volume of 160 µL. 
Test agents were dissolved in acetonitrile at concentrations of 
20, 10, 5, 2.5 and 1.25 mM. These solutions (40 µL) were add-
ed to individual wells of the microtiter plates containing 120 
µL of the Cys-peptide solution (0.66 mM in 100 mM phosphate 
buffer pH 7.5). Control wells contained solvent and buffer on-
ly to determine background fluorescence. The plates were cov-

egories leads to different labels, but has no other regulatory con-
sequences so far. However, the regulatory requirement for this 
subclassification necessitates that the LLNA on mice must still 
be conducted on many chemicals found positive in in vitro assays 
(Barentsen et al., 2019). It is thus highly desirable to validate a 
non-animal assay to perform this subclassification for labeling 
of chemicals. Also, and at least as importantly, a quantitative and 
continuous prediction of sensitizer potency is required to derive 
a NESIL (no expected sensitization induction level) as a point of 
departure (PoD), which is required for quantitative risk assess-
ment (QRA) (Api et al., 2008; Basketter and Safford, 2016).

Reaction of chemicals or their abiotic or biotic transforma-
tion products with nucleophilic residues in skin proteins is the 
MIE of skin sensitization. The modification of the proteins cre-
ates novel immunogenic epitopes. These epitopes ultimately trig-
ger activation of epitope-specific T-cells, which are the effector 
cells that finally elicit allergic contact dermatitis. While multiple 
steps are involved in the acquisition of skin sensitization (epi-
tope processing, danger signal formation, activation of dendritic 
cells and keratinocytes, cell migration), the MIE is argued to be 
of predominant importance (Roberts and Aptula, 2008). Poten-
cy is characterized by the steepness of the dose-response curve, 
and the formation of immunogenic epitopes sets the effective in-
ternal dose. Hence, significant correlation between a sensitizer’s 
reactivity and its potency was found in multiple studies (Alvarez- 
Sánchez et al., 2004; Delaine et al., 2014; Natsch et al., 2011; 
Niklasson et al., 2011; Roberts and Aptula, 2014). In chemical 
kinetics, the rate constant k indicates the extent of reaction that 
occurs in a given time t. 

The OECD adopted methods (OECD TG 442C) (OECD, 
2020) to characterize the MIE are the direct peptide reactivity 
assay (DPRA) (Gerberick et al., 2004) and the amino acid de-
rivative reaction assay (ADRA) (Yamamoto et al., 2015). In the 
classical DPRA, reactivity with cysteine- and lysine-containing 
synthetic peptides as surrogate nucleophiles is measured. Reac-
tivity is quantified as the relative depletion of the peptide signal 
after incubation with the test chemical using UV-HPLC analysis. 
The prediction model of the DPRA is based on the mean of ly-
sine- and cysteine-peptide depletion at a single time point mea-
surement (≥ 24 h) and at one fixed test material concentration  
(5 mM for the cysteine-containing peptide) (Gerberick et al., 
2004). Thus, the DPRA determines the peptide depletion at one 
late time point and one fixed test substance concentration, and 
thus chemicals of differing potency may lead to similar deple-
tions (e.g., 100% depletion after a complete reaction).

The kinetic direct peptide reactivity assay (kDPRA) is a mod-
ification of the DPRA. In the kDPRA, the reaction kinetics of 
a test substance towards the same synthetic cysteine-containing 
peptide as used in the DPRA is evaluated. For this purpose, sev-
eral concentrations of the test substance are incubated with the 
synthetic peptide for several incubation times. The residual con-
centrations of the cysteine peptide after several reaction times 
are quantified by their reaction with monobromobimane (mBrB). 

1doi:10.5281/zenodo.3901109
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ered with impermeable foil to avoid evaporation and were incu-
bated protected from light at 25°C for different time intervals. 
The reaction was stopped by addition of mBrB solution (40 µL 
per well; 3 mM in ACN). The highly reactive and non-fluores-
cent mBrB rapidly reacts with unbound cysteine moieties of the 
model peptide to form a fluorescent complex. The remaining 
non-depleted Cys-peptide concentration can thus be determined 
by measuring the fluorescence at 390/480nm after 5 min incu-
bation at RT.

Peptide depletion (dp) was expressed as the percentage de-
crease in concentration of free thiol groups compared to con-
trol samples with the peptide in solvent only. The kDPRA is per-
formed in parallel reactions of five final concentrations of the test 
chemical (5, 2.5, 1.25, 0.625 and 0.3125 mM) and over six differ-
ent reaction times (10, 30, 90, 150, 210 and 1440 min). If the de-
pletion of the highest tested concentration (5 mM test chemical) 
surpasses the threshold of 13.89% (threshold used in the DPRA 
for Cys-only positivity in accordance with OECD 442C) and this 
depletion is statistically significant versus controls with peptide 
only, further calculations are performed: The natural logarithm 
of the non-depleted peptide concentrations is plotted versus the 
concentration of the test chemical at each time point. If a linear 
relationship is observed (correlation coefficient > 0.9), the slope 
of this curve is determined and divided by the incubation time 
to calculate the rate constant in [min-1mM-1] measured at a giv-
en time. This value is transformed to the rate constant in [s-1M-1], 
and the logarithm is taken. The maximum value observed at any 
time point is taken as the log kmax. In cases of non-linear behav-
ior (reaction does not progress continuously over time or curva-
ture of the plots versus concentration), the SOP of the kDPRA 
proposes alternative calculations and provides detailed guide-
lines on how to interpret the data. In such cases, experiments are 
first repeated to confirm non-linearity is intrinsic to the chemical 
being assessed and not to experimental error. Reaction rates then 
can be calculated using Equation1:

k  =  [ln (100/(100-dp))] ⁄ [ [E]o  t] 		  Eq. 1 

where dp is depletion in %, E is the concentration of test chem-
ical and t is the incubation time. This is detailed in the SOP and 
implemented in the evaluation template of the standardized test. 

Chemical selection and literature reference data 
Chemical selection aimed at complementing the database with 
reference chemicals that had been previously evaluated in various 
other alternative methods and with presumably well-known in vi-
vo reference data, e.g., those in (Hoffmann et al., 2018; ICCVAM, 
2011; Urbisch et al., 2015). They were thus selected from the fol-
lowing lists: (i) Chemicals from the ICCVAM list on LLNA po-
tency (ICCVAM, 2011), (ii) performance standard substances se-
lected for OECD 442D (Nrf-2 luciferase test) (OECD, 2018a), 
OECD 442C (DPRA) (OECD, 2020) and OECD 429 (LLNA) 
(OECD, 2010), (iii) chemicals from the Cosmetics Europe data-
base (Hoffmann et al., 2018). All these chemicals have been test-
ed in multiple in vitro skin sensitization tests and some human 

evidence, at least from clinical data and expert judgment, is avail-
able (Basketter et al., 2014), and finally (iv) additional chemicals 
from the compilation by Urbisch et al. (2015). Metals and com-
plex mixtures such as essential oils included in the above datasets 
were not included as they are considered outside the applicability 
domain of the DPRA and also the kDPRA. 

The in vivo reference data for the LLNA were taken from the 
different reference lists cited above. If LLNA data in the Cos-
metics Europe database (Hoffmann et al., 2018) were available, 
these were given precedence, as they are derived from multiple 
LLNA studies if available, unless there is evidence that more re-
liable data are reported elsewhere. This LLNA dataset was re-
cently reviewed by the OECD expert group on defined approach-
es (DAs) to skin sensitization. However, an initial draft of this 
analysis (OECD, 2019a,b) became public just after the evalua-
tion reported here was finalized. The public draft OECD review 
has corrected some errors, but it also introduced some new mis-
takes under further revision, and hence we present the analysis 
done with the database compiled before the OECD review here. 
We indicate, however, specific cases where the OECD review 
came to a different conclusion and have added the preliminary 
OECD assessment to the database in Table S23. 

The human data originate from the assessment by ICCVAM 
when evaluating the LLNA for potency discrimination (IC-
CVAM, 2011), the RIFM database, and largely also from the 
Cosmetics Europe database and the corresponding potency as-
sessment by Basketter et al. (2014). As described in that paper, 
human potency classes 1 and 2 fall into GHS Cat 1A, while 3-6 
are considered GHS Cat 1B/NC. However, it should be noted 
that part of that assessment is based on clinical data and not on 
predictive human tests. Thus, not all chemicals labeled as Cat 
1A in that assessment would be rated as Cat 1A based on human 
predictive tests (HRIPT and HMT). The database in Table S23 
also contains data from KeratinoSens®, DPRA and h-CLAT as-
says where available. These data are primarily drawn from previ-
ous data compilations (Jaworska et al., 2015; Natsch et al., 2013, 
2015; Urbisch et al., 2015), with additional data added from the 
testing conducted by Cosmetics Europe (Hoffmann et al., 2018). 

Statistical data evaluation
A potential classification into GHS Cat 1A was determined for all 
chemicals based on different thresholds for high reactivity, which 
were set to log kmax = -3.0 to +0.8 in incremental steps of 0.1. For 
each threshold, the sensitivity, specificity and balanced accuracy 
were calculated to discriminate GHS Cat 1A chemicals (as de-
fined by an LLNA EC3 ≤ 2%) from all other chemicals. Based 
on this predictivity for identifying GHS Cat 1A chemicals at dif-
ferent thresholds, receiver operator characteristics (ROC) curves 
were plotted, and the threshold maximizing balanced accuracy 
was determined. Additionally, the same analysis for maximized 
balanced accuracy was also performed to predict human data. 

To calculate the correlation between log kmax and the LLNA 
EC3 values on a continuous scale, EC3 of non-sensitizers (i.e., SI 
3 not reached at maximum test concentrations) were set to 100 for 
the part of the analysis including the negative chemicals, although 
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2017) (Tab. S23). Chemicals with weak peptide depletion in these 
previous publications were retested according to the SOP, which 
contains a number of rules to exclude, based on a more rigorous 
statistical analysis, random positive results from small fluctua-
tions in the depletion data (DB-ALM protocol no. 217, in prepara-
tion). Some previously tested chemicals with significant reactivity 
were included in the validation study, and the results are compared 
here to the published, historical data. The method as used in the 
previous publications is identical in terms of volume of the reac-
tion, composition of the reaction, and the fluorescent read-out, and 
therefore it is fully compatible with the method as described in the 
SOP, while the definition of the plate setup as well as the automatic 
evaluation and statistical analysis of the data was introduced with 
the SOP (DB-ALM protocol no. 217, in preparation). Table 1 sum-
marizes data for six chemicals with historical results that were re-
peated according to the SOP in the validation study. Highly similar 
results were obtained, which indicate that it is justified that the pub-
lished historical results are integrated into the database.

Additional chemicals, selected from different reference lists as 
described in Section 2, were tested according to the SOP. This 
complete database now contains log kmax data on a total of 180 
chemicals with LLNA and 123 chemicals with human potency 
category attribution. Six chemicals were excluded from evalua-
tion due to strong interference (reaction with mBrB, quenching 
or autofluorescence, Tab. S12). The full database including the 
human and LLNA reference data and quantitative data from oth-
er in vitro assays is given in Table S23.   

3.2  ROC analysis to derive optimal  
prediction threshold and predictivity for  
identification of GHS Cat 1A sensitizers
Different proposals for DAs for skin sensitization hazard iden-
tification are currently being evaluated for their inclusion into 
an OECD guideline (OECD, 2019a), i.e., for discrimination of 
1B/1A chemicals from non-sensitizing chemicals. Thus, a predic-
tive threshold from a validated method is now needed to identi-

some may have been tested only up to 20-25%. LLNA EC3 values 
were transformed to pEC3 values according to Equation 2:

pEC3 = log( Mol.weight )			   Eq. 2

For regression analysis, the numerical data from KeratinoSens® 

(EC1.5 and EC3 for 1.5- and 3-fold luciferase induction, IC50 
for 50% cytotoxicity, all in µM) were transformed to logarith-
mic values. If no induction was reached and in case no toxicity 
was observed up to the maximum test concentration of 2000 µM, 
a default value of 4000 µM was used. The numerical data from 
h-CLAT (EC150 for 1.5-fold CD86 induction, EC200 for 2-fold 
CD54 induction, MIT, minimum induction threshold of EC150 
and EC200, and CV75 for 25% cytotoxicity, all in µg/mL) were 
transformed to logarithmic values. If no induction was reached 
and in case no toxicity was observed up to a maximum test con-
centration of 5000 µg/mL, a default value of 5000 µg/mL was 
used for numerical analysis. For the DPRA, the single time point 
depletion values are transformed to logarithmic rate constants ac-
cording to Equation 3 (Roberts and Natsch, 2009):

log k =log 			   	 Eq. 3

where dp is the peptide depletion, [E] the test substance concen-
tration in mM (5 mM) and t the incubation time (1440 min). All 
logarithmic data from LLNA and in vitro assays were then used 
for single or multiple linear regression analysis in MiniTab soft-
ware (MiniTab® 18.1; ©2017 MiniTab). 

3  Results

3.1  A database of log kmax values
The database includes all data from the validation study (Wareing 
et al., 2020) and all the data measured in the previous three publica-
tions (Natsch et al., 2011; Roberts and Natsch, 2009; Wareing et al., 

EC3

100
100-dp
[E] o t

ln

2 doi:10.14573/altex.2004292s1
3 doi:10.14573/altex.2004292s2

Tab. 1: Chemicals tested independently in previous experiments prior to SOP definition and in the validation ring trial 
according to the SOP. Log kmax values in s-1M-1 are shown. 

Chemicals	 CAS	 BASF historical	 Givaudan historical 	 Ring triala 
		  (Wareing et al., 2017)	 (Natsch et al., 2011; Roberts and Natsch, 2009)b

Cinnamic aldehyde	 104-55-2	 -1.33	 -1.60 / -1.66	 -1.35

2,4-Dinitrochlorobenzene	 97-00-7	 -0.61	 -0.65	 -0.56

Benzylidene acetone	 122-57-6	 -1.77	 -1.86 / -1.89	 -1.85

Diethylmaleate	 141-05-9	 -1.16	 -1.09 / -1.03	 -1.21

Ethylene glycol dimethacrylate	 97-90-5	 -2.34	 -2.24 / -2.11	 -2.44

Oxazolone	 15646-46-5	 -0.19	 -0.43	 -0.14

a Average of 7 laboratories testing according to the SOP; b Rate constants were derived from the full depletion matrix as described in Roberts and 
Natsch (2009).

https://doi.org/10.14573/altex.2004292s1
https://doi.org/10.14573/altex.2004292s2
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summarized in Table S32, and Table 2 shows results for the more 
relevant log kmax threshold range between -1.5 to -2.5.

The predictivity analysis versus LLNA data indicates that a log 
kmax = -2.0 maximizes balanced accuracy (85.2%) with a speci-
ficity of 85.9% and a sensitivity of 84.4%. This threshold is more 
conservative and more predictive compared to the tentative thresh-
old of log kmax = -1.1 proposed initially, which was based on only 
38 substances (Wareing et al., 2017). This difference may be due 
to a bias in the much smaller database evaluated previously.

fy GHS Cat 1A sensitizers in a binary prediction model. The data 
from the extended database were separated into GHS Cat 1A ver-
sus GHS Cat 1B/NC chemicals, and the sensitivity and specifici-
ty for identifying 1A chemicals was then calculated versus LLNA 
data or, separately, versus human data for different thresholds of 
log kmax in incremental steps of 0.1 between -3 and +0.8. 

Figure 1 shows results as a ROC curve for LLNA data and hu-
man reference data plotting sensitivity versus [1 - specificity]. The 
predictivity for all different thresholds underlying these curves is 

Fig. 1: ROC curves for different log kmax threshold values to discriminate GHS Cat 1A from 1B/NC chemicals as determined by 
LLNA data (a) and human data (b)

Tab. 2: Predictivity of different log kmax threshold values to predict GHS Cat 1A vs. LLNA and human data  
The threshold range from log kmax = -1.5 to -2.5 is shown.a

Threshold	 LLNA			   Human

	 Sensitivity	 Specificity	 Balanced accuracy	 Sensitivity	 Specificity	 Balanced accuracy

-1.5	 73.3%	 91.1%	 82.2%	 42.4%	 90.0%	 66.2%

-1.6	 75.6%	 90.4%	 83.0%	 45.5%	 90.0%	 67.7%

-1.7	 77.8%	 88.1%	 83.0%	 48.5%	 88.9%	 68.7%

-1.8	 77.8%	 86.7%	 82.2%	 51.5%	 88.9%	 70.2%

-1.9	 77.8%	 85.9%	 81.9%	 54.5%	 88.9%	 71.7%

-2.0	 84.4%	 85.9%	 85.2%	 63.6%	 88.9%	 76.3%

-2.1	 84.4%	 85.2%	 84.8%	 63.6%	 87.8%	 75.7%

-2.2	 84.4%	 83.0%	 83.7%	 66.7%	 87.8%	 77.2%

-2.3	 84.4%	 82.2%	 83.3%	 66.7%	 87.8%	 77.2%

-2.4	 86.7%	 80.0%	 83.3%	 72.7%	 87.8%	 80.3%

-2.5	 88.9%	 77.0%	 83.0%	 75.8%	 84.4%	 80.1%

a A binary classification into GHS 1A vs. 1B/NC chemicals for each incremental 0.1 step for log kmax was performed here and  
corresponding Cooper statistics were calculated.
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es if the data are close to a binary prediction threshold. Glutaric 
aldehyde is a chemical predominately reactive by a Schiff-base 
formation mechanism (and hence reacting selectively with amine 
groups) in the classical DPRA protocol (Gerberick et al., 2004). It 
is probably the most important sensitizer next to 4-phenylenedi-
amine that is underpredicted by the kDPRA in the current dataset.

Table 4 lists the overpredicted chemicals as compared to the 
LLNA when applying the threshold log kmax = -2.0. It is interest-
ing that 11 of the 19 cases are in the LLNA EC3 range of 2-5%, 
thus close to the GHS Cat 1A threshold. Furthermore, the list con-

Table 3 summarizes the underpredicted chemicals versus an 
LLNA-based classification. Two of these are pre-haptens, which 
require oxidation to become reactive (4-phenylenediamine and 
2-aminophenol). There is no evidence that hexyl salicylate is a 
human sensitizer (tested up to 35,400 µg/cm2 in human predic-
tive tests), and it was rated 1B in the LLNA in the recent data re-
view conducted by the OECD group. Two chemicals (bisphenol 
A-diglycidyl ether and 2,4-dinitrobenzenesulfonic acid) are very 
close to the prediction threshold of both the kDPRA and the LLNA;  
it is by definition difficult to reliably attribute chemicals to class-

Tab. 3: LLNA GHS Cat 1A sensitizers that are underpredicted when applying a threshold of log kmax = -2.0

Name	 CAS	 log kmax	 LLNA EC3 (%)	 Human GHS Cat

4-Phenylenediamine	 106-50-3	 -2.81	 0.15	 1A

Glutaric aldehyde	 111-30-8	 -3.50	 0.09	 1A

2-Aminophenol	 95-55-6	 -2.46	 0.45	 1A

Hexyl salicylate	 6259-76-3	 -3.50	 0.18a	 (1B/NC)b

Bisphenol A-diglycidyl ether	 1675-54-3	 -2.53	 1.5	 1B

2,4-Dinitrobenzenesulfonic acid	 885-62-1	 -2.30	 1.9	 no data

a LLNA GHS 1B based on OECD review. b Attributed 1B in Basketter compilation, but human HRIPT indicates no sensitization when tested up  
to 35,400 µg/cm2 and there are no data from the clinic indicating it to be a sensitizer; thus there is no evidence that it is a human sensitizer.

Tab. 4: LLNA Cat 1B sensitizers that are overpredicted by applying a threshold of log kmax = -2.0

Name	 CAS	 log kmax	 LLNA EC3 (%)	 Human GHS Cat

Ethyl 2-nonynoate	 111-80-8	 -1.66	 2.5	 1A

trans-2-Hexenal	 6728-26-3	 -0.47	 4.05	 1A

Benzylidene acetone	 122-57-6	 -1.85	 3.7	 1A

Diethylmaleatea	 141-05-9	 -1.21	 4.7	 1A

Benzosiothiazolinone	 2634-33-5	 -0.12	 4.8	 1A

Safranal	 116-26-7	 -1.74	 7.5	 1A

2-Mercaptobenzothiazolea	 149-30-4	 -0.15	 2.6	 1B

Tetramethyldiuram disulfide	 137-26-8	 0.74	 2.93	 1B

Abietic acid	 514-10-3	 -0.55	 11	 1B

Imidazolidinyl urea	 39236-46-9	 -1.11	 24	 1B

Ethyl acrylate	 140-88-5	 -0.97	 32.75	 1B

4-Vinylcyclohex-1-ene-carbaldehyde	 1049017-68-6	 -1.77	 4	 No data

α-Damascone	 24720-09-0	 -1.64	 3.3	 No data

2,4-Heptadienal	 5910-85-0	 -1.52	 4	 No data

Bergamal	 22418-66-2	 -1.64	 11	 No data

2-Decenal	 3913-71-1	 -1.03	 2.5	 No data

Oxalic acid anhydrous	 144-62-7	 -1.01	 15	 No data

Butyl acrylate	 141-32-2	 -0.83	 20	 No data

1,2,4-Benzenetricarboxylic anhydride	 552-30-7	 -0.13	 9.2	 No data

a LLNA GHS 1A based on OECD review
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granular, continuous scale in an integrated testing strategy (ITS) 
or DA. Therefore, the correlation of the log kmax and other param-
eters measured in in vitro assays versus LLNA EC3 values was 
analyzed with single or multiple linear regressions to inform on 
(i) the predictive power of single parameters, (ii) a potential more 
predictive linear combination, and (iii) data redundancy when 
combining multiple parameters. 

In principle, such correlations can be made for all data includ-
ing sensitizers and non-sensitizers (Natsch et al., 2015). The result 
will then be influenced by the potential of an assay to predict haz-
ard and by its potential to predict potency. In parallel, it may be 
more interesting to analyze only chemicals with an LLNA EC3 be-
low a given threshold. Here we chose to focus, in a separate anal-
ysis, on chemicals with LLNA EC3 < 30%: These are the chemi-
cals with, in general, a bona fide positive LLNA result and sensiti-
zation potential as revealed by the LLNA. Chemicals with an EC3 
of 30-100% are in a grey zone: The majority of chemicals were 
only tested up to 25% when the LLNA was validated (Kolle et al., 
2020), and many non-sensitizers were only tested up to such inter-
mediary concentrations in original databases. At higher test con-
centrations, irritancy becomes an important confounding factor in 
the LLNA (see also Section 4). Hence, we cannot firmly conclude 
on the relevance of LLNA results with an EC3 above 30%, other 
than that they indicate a very weak/non-sensitizer status. 

Two datasets were evaluated:
a)	 Set I: Chemicals with data for log kmax AND for Keratino- 

Sens® (n = 173; EC3 < 30% n = 121)
b)	 Set II: Chemicals with data for log kmax AND KeratinoSens® 

AND h-CLAT AND DPRA (n = 154; EC3 < 30% n = 107)
For comparing predictivity of kDPRA and KeratinoSens® and 
their combination, the more comprehensive Set I was used. To 
evaluate predictivity in an additional combination with h-CLAT 
and, optionally, DPRA, the smaller Set II was used. 

Correlation of individual parameters
First, single linear regression of each in vitro parameter versus the 
pEC3 from the LLNA was calculated. As shown in Table 6, the 
strongest correlation is observed for the full Set I for the log kmax 
from the kDPRA (r2 = 0.51). On the same set, the parameters from 
KeratinoSens® have a range of r2 = 0.29-0.35. Limiting the evalu-
ation to positives with EC3 < 30%, the correlation is reduced: r2 = 
0.40 for the kDPRA and r2 = 0.13-0.17 for KeratinoSens®.

For the smaller Set II, also including h-CLAT data, the correla-
tion to potency in general is slightly weaker: r2 = 0.45 and 0.32 
for log kmax compared to all LLNA values or the chemicals with 

tains a number of chemicals with clear sensitization risks based 
on clinical data (e.g., the important glove allergens 2-mercapto-
benzothiazole (Warburton et al., 2015) and tetramethyldiuram di-
sulfide (Warshaw et al., 2013, 2017)) and 6 human Cat 1A chem-
icals. Thus, for at least eight of the 19 false-positives versus the 
LLNA-based class attribution, a significant human sensitization 
potential is reported. The apparent rapid initial depletion of oxal-
ic acid cannot be explained, however. The list also includes two 
strongly reactive acrylates, which are highly volatile (ethyl acry-
late and butyl acrylate) and evaporate rapidly under LLNA con-
ditions (Natsch et al., 2015) but are likely to be strong sensitizers 
when applied under occluded conditions as is done in human pre-
dictive tests and as may occur under in-use scenarios.

The analysis versus human data indicates that a log kmax = -2.0 
yields a balanced accuracy of 76% with a specificity of 89% and 
a sensitivity of 64%. A further gain in sensitivity (73%) and bal-
anced accuracy (80%) could be achieved using a threshold of log 
kmax = -2.4; however, this would then reduce the accuracy versus 
LLNA data (84% instead of 85% balanced accuracy).

To evaluate whether this predictivity for human data by the  
kDPRA is sufficiently good, a comparison of the LLNA versus hu-
man data can be made: The LLNA has a sensitivity of 55% and a 
balanced accuracy of 73% for this dataset when predicting the hu-
man potency categorization for the same chemicals and based on the 
same reference data. Thus, with the threshold of log kmax = -2.0, the 
kDPRA is still slightly superior to the LLNA in predicting human 
potency in this dataset. Predictivity for human and LLNA data and 
of the LLNA versus human data is summarized in Table 5.

Table S42 lists the false-negative human GHS Cat 1A sensitizers 
based on a threshold of log kmax = -2.0, and a discussion is provided 
to interrogate the predictivity and to check whether this threshold is 
sufficiently protective. The analysis indicates that only few chemi-
cals are very clear-cut human GHS Cat 1A sensitizers. In terms of 
specific domains that tend to be underpredicted, phenolic pre-hap-
tens (chemicals that can be oxidized to reactive catechols or qui-
nones, e.g., phenylenediamine and 2-aminophenol), pro-haptens 
which can be transformed to potent allergens reacting by Schiff-
base formation (diethylenetriamine and 3-dimethylaminopropyl-
amine), and potent Schiff-base forming chemicals (glutaric alde-
hyde) are underpredicted for their human sensitization potency.

3.3  Correlation of log kmax and continuous parameters 
from other in vitro assays to potency in the LLNA
Besides the identification of GHS Cat 1A sensitizers, the kDPRA 
may be used for the prediction of sensitizer potency on a more 

Tab. 5: Summary of the predictivity using the threshold of log kmax = -2 
Predictivity data are given in percent and n correct predictions / n chemicals in the group are given in brackets

	 Sensitivity (%)	 Specificity (%)	 Balanced accuracy (%)	 n tested

kDPRA vs LLNA	 84.4% (38/45)	 85.9% (116/135)	 85.2%	 180

kDPRA vs LLNA for a set of	 76.9% (20/26)	 88.7% (86/97)	 82.8%	 123 
substances with human data

kDPRA vs human	 63.6% (21/33)	 88.9% (80/90)	 76.3%	 123

LLNA vs human	 54.5% (18/33)	 91.1% (82/90)	 72.8%	 123
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this same improvement is from 0.45 to 0.57 for all chemicals and 
from 0.32 to 0.38 for those with EC3 < 30%. Similarly, when add-
ing h-CLAT (MIT and CV75) to kmax, the r2 is improved from 
0.45 to 0.59 for all chemicals and from 0.32 to 0.40 for those with 
EC3 < 30%. Thus, adding one cellular assay improves predictivi-
ty, and this effect is more pronounced when integrating all chem-
icals and less so when only those with EC3 < 30% are consid-
ered. If both cell-based assays are added to log kmax, the further 
increase in correlation is only marginal (row 4 in Tab. 7) com-
pared to using only one cellular assay, which indicates strong data 
redundancy between the cellular assays for predicting potency, as 
has already been observed before (Natsch et al., 2015). 

In an additional evaluation, we stratified the dataset into chem-
icals that are positive in the LLNA between 10% and 100% and 
those that are positive with an EC3 < 10%. When conducting the 
regression analysis combining log kmax with either the h-CLAT 
parameters or the KeratinoSens parameters, a very different re-
sult is obtained on the two subsets of data. For chemicals with an 
EC3 between 10 and 100%, cytotoxicity (either from IC50 Kera-
tinoSens or CV75 from h-CLAT) is the key parameter correlating 
to LLNA potency, while log kmax is the key predictor if the EC3 
is below 10% (Tab. S92). This at least partly explains why add-
ing the parameters from the cell-based assays improves the over-
all correlation for the full potency range, despite the fact that log 
kmax appears sufficient to predict the GHS 1A potency class. 

When combining all in vitro parameters from classical DPRA, 
h-CLAT and KeratinoSens®, the quantitative correlation to po-
tency for the chemicals with EC3 < 30% is weaker (r2 = 0.27) as 
compared to log kmax alone (r2 = 0.32) or the combination of log 
kmax and one cellular assay (r2 = 0.38-0.40). This is a further in-
dication that log kmax is the strongest contributing parameter for 
potency of all the validated in vitro assays and an important con-
tribution to an optimized linear model, which is in line with the 

EC3 < 30%, respectively. For the parameters from the cellular 
assays, a range of r2 = 0.16-0.43 is observed for all chemicals and 
0.11-0.20 for chemicals with EC3 < 30%. Based on this analy-
sis, log kmax as a single parameter has the strongest correlation to 
potency among all parameters investigated in both datasets, and 
this is in particular true when focusing on chemicals with EC3  
< 30%, i.e., those where the potential for hazard identification of 
the in vitro tests no longer contributes to the overall predictivity 
of potency.

All correlations shown in Table 6 are statistically highly sig-
nificant at p ≤ 0.0005 (with the exception of EC200 / Set II / EC  
< 30%, where p = 0.039). Table S82 additionally lists all the F 
values for these statistical comparisons. It has to be emphasized 
that these are very general comparisons, as they integrate chem-
icals from all chemical domains and focus on predictivity of po-
tency in the LLNA with associated limitations regarding vari-
ability and potential to predict human sensitization potential. 
Also, in vitro assays may have a stronger correlation to potency 
when used in specific mechanistic domains (Natsch et al., 2015), 
and these benefits are not taken into account by these statistical 
comparisons on the entire database. 

Continuous models with multiple regressions
Next, we performed multiple regressions of several in vitro pa-
rameters versus the pEC3 from the LLNA. This allows estimat-
ing whether a model incorporating several parameters or tests 
will significantly improve potency prediction and gives a first in-
dication of data redundancy. Results of the key linear combina-
tions are shown in Table 7, and more detailed information on the 
regression equations is provided in the supplementary file2.

For the larger Set I, adding KeratinoSens® parameters (EC3 
and IC50) to log kmax improves r2 from 0.51 to 0.61 for all chem-
icals and from 0.40 to 0.45 for those with EC3 < 30%. For Set II, 

Tab. 6: R2 coefficient for linear regression of logarithmic in vitro parameters vs pEC3

	 In vitro	 Set I:	 Set II: 	 Set I: 	 Set II:  
	 parameter	 (n = 173)	 (n = 154)	 EC3 < 30% (n = 121)	 EC3 < 30% (n = 107)

kDPRA	 log kmax	 0.51	 0.45	 0.40	 0.32

KeratinoSens®	 EC1.5	 0.29	 0.27	 0.13	 0.11

	 EC3	 0.35	 0.35	 0.17	 0.16

	 IC50	 0.34	 0.34	 0.14	 0.14

h-CLAT	 EC150 (CD 86)		  0.28		  0.17

	 EC200 (CD54)		  0.16		  0.04

	 MITa		  0.36		  0.20

	 CV75 		  0.43		  0.21

DPRA	 kCys		  0.33		  0.19

	 kLys		  0.16		  0.17

	 Mean depletion		  0.33		  0.20

a The MIT is a parameter that is not directly measured but a mathematical combination of two parameters, i.e. the minimal induction 
threshold (the lower concentration of the experimentally derived values of EC150 and EC200). As this is widely used in publications on 
h-CLAT, it is also provided here.
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cals from GHS Cat 1B/NC chemicals as compared to kDPRA  
alone for regulatory classification? We thus used the models in 
Table 7 (i.e., the regression equations underlying the reported r2 
values, which are given in the supplementary file2) and calculat-
ed the predicted LLNA EC3 for each chemical according to these 
equations. Chemicals with a predicted EC3 < 2% were then as-
signed a GHS 1A subcategory, which was compared to the in vivo  
value. We show the results in Table 8, here only for the chemicals 
with LLNA EC3 < 30%. The same analysis was also done with 
all chemicals, in that case specificity and balanced accuracy is 

view that protein modification as MIE is an important rate-limit-
ing step for the acquisition of skin sensitization.

Subclassification of chemicals into GHS Cat 1A based on   
multiple regression
Quantitative models integrating multiple parameters are of key 
interest for quantitative risk assessment (Leontaridou et al., 2016) 
and especially when evaluating potency in specific chemical do-
mains (Natsch et al., 2015). But could a model with multiple pa-
rameters also better predict and separate GHS Cat 1A chemi-

Tab. 7: R2 coefficient for multiple linear regression of logarithmic in vitro parameters vs pEC3

	 Set I:	 Set II: 	 Set I: 	 Set II:  
	 (n = 173)	 (n = 154)	 EC3 < 30% (n = 121)	 EC3 < 30% (n = 107)

log kmax	 0.51	 0.45	 0.40	 0.32

KSa + log kmax	 0.61	 0.57	 0.45	 0.38

h-CLATb + log kmax		  0.59		  0.40

h-CLAT + KS + log kmax		  0.60		  0.41

h-CLAT + KS + DPRAc		  0.54		  0.27

h-CLAT + KS		  0.51		  0.27

a KS, KeratinoSens®. For KS, the parameters IC50 for 50% cytotoxicity and EC3 for 3-fold luciferase induction were used. b For h-CLAT, 
MIT, i.e., the minimal value of EC150 and EC200 and CV75, concentration for 25% reduction in viability, was used. c For DPRA, log Cys k 
measured in the classical DPRA was used.

Tab. 8: Predictivity (in %) of linear regression models for sub-classification of chemicals with EC3 < 30% into  
GHS 1A and 1B chemicals

	 n	 Regression	 Sensitivityb (%)	 Specificity (%)	 Balanced 
		  equationa			   accuracy (%)

Set I					   

log kmax threshold -2	 125		  84.4	 77.8	 81.1

log kmax regression modeld	 125	 Eq. S11	 82.2c	 75.3	 78.8

KS + log kmax	 125	 Eq. S21	 82.2	 71.6	 76.9

Set II					   

kmax threshold -2	 106		  81.1	 77.1	 79.1

KS + log kmax	 106	 Eq. S41	 78.4	 75.7	 77.0

h-CLAT + log kmax	 106	 Eq. S51	 81.1	 77.1	 79.1

h-CLAT + KS + log kmax	 106	 Eq. S61	 75.7	 80.0	 77.8

h-CLAT + KS	 106	 Eq. S71	 67.6	 78.6	 73.1

h-CLAT + KS + DPRA	 106	 Eq. S81	 91.6	 62.9	 77.3

a The underlying regression analysis is shown in the training video1. b Here, prediction statistics are given for identifying GHS 1A  
sensitizers within the chemicals with an LLNA EC3 < 30%. c For each chemical, the predicted EC3 was calculated with the regression 
models summarized in Table 7 column 4 and 5 and in the supplementary file1, and chemicals with predicted EC3 < 2% were assigned to 
GHS 1A. d Note: For verification of the analysis, the average molecular weight of 185 g/mol for the chemicals with an EC3 < 30%  
and available kmax values was used and entered along an EC3 = 2% into the regression equation with kmax as single predictor (Eq. S1: 
pEC3 = 2.652 + 0.3491 × log kmax), and the equation was solved for log kmax. A log kmax = -1.96 was obtained as decision threshold 
indicating that we obtain a very similar prediction threshold with the regression analysis and with the ROC analysis. KS, KeratinoSens®
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yet to be defined) as criterion for a 1A classification in a tiered 
strategy is an option to reduce this uncertainty.

Pre-haptens that are activated to strong haptens, such as 
4-phenylenediamine, are further cases that may be underestimat-
ed in the kDPRA – the time needed for them to oxidize will reduce 
the apparent kinetic rate constant of the reaction with the test pep-
tide. Thus, chemicals that are spontaneously but not instantly trans-
formed to very reactive species may lead to some underestimation 
of the sensitization potential if the lag-period for oxidation is in the 
range of hours. Thus, in a regulatory setting, aromatic amines, cat-
echols or hydroquinones may be considered outside of the applica-
bility domain of the test or may require further data to confirm their 
weak reactivity even under oxidizing conditions before attributing 
them to class 1B in case the measured log kmax is > -2.

In vitro investigations (Patlewicz et al., 2016; Urbisch et al., 
2016) using compounds requiring molecular transformation to at-
tain a sensitizing potential have shown that most pre-haptens can 
readily be detected in the DPRA. Moreover, many pro-haptens 
are also activated by non-enzymatic oxidation (and therefore are 
both pre- and pro-haptens). As discussed widely before, the DPRA 
does not contain a metabolic system (Urbisch et al., 2016), and 
thus prediction of strict pro-haptens requiring metabolic activation 
(i.e., not acting as direct haptens nor pre-haptens) in theory is a 
significant limitation for the (k)DPRA. From the database evalu-
ated so far, two compounds were indeed identified that are poten-
tial pro-haptens and clearly false-negative in human GHS 1A clas-
sification (3-dimethylaminopropylamine and diethylenetriamine). 
These are two out of the ten clear human GHS Cat 1A false-nega-
tives. However, both chemicals are rated as 1B in the LLNA, and 
actually none of the six false-negatives versus LLNA (Tab. 3) is a 
presumed strict pro-hapten. The good predictivity to identify GHS 
Cat 1A sensitizers indeed indicates that the limitation for pro-hap-
tens is not a dramatic shortcoming. Is there a scientific explana-
tion for this observation? Indeed, most bona fide pro-haptens, for 
which activation by metabolic systems is well described and un-
derstood, are weak to moderate sensitizers in the LLNA (e.g., di-
hydroeugenol, eugenol, cinnamic alcohol, ethylene diamine, gera-
niol). Since the skin is a rather poor metabolic organ, slow meta-
bolic activation may often be a rate-limiting step for sensitization 
by pro-haptens, thus rendering them less potent allergens. This 
may explain why an assay without metabolic activation may rec-
ognize most strong sensitizers, which is not always the case when 
it comes to detecting moderate or weak allergens. 

The LLNA is measured in %, thus in a weight per volume met-
ric, while the rate constant is measured in molar terms. This may 
appear as a discrepancy, as we use a fixed threshold for log kmax to 
predict a regulatory threshold of 2% in the LLNA, not taking mo-
lecular weight into account. We thus performed an additional anal-
ysis, whereby the rate constant is transformed to a [%-1s-1] value, 
and we then again performed the ROC analysis for an optimal pre-
diction threshold. Alternatively, we also used a prediction based 
on Equation S12, which gives a predicted EC3 value based on a 
molar correlation (pEC3 versus log kmax). As shown in the supple-
mentary file2, both approaches agree for 174 of the 180 chemicals 
with the approach using a threshold of kmax > -2.0, and the bal-
anced accuracy is slightly reduced to 84.4 and 83% with these ap-

higher as all the chemicals with weak/no response in LLNA and 
in vitro tests are included, boosting specificity, while sensitivity, 
by definition, remains the same.

In the first row in Table 8, the predictivity of the kDPRA when 
applying the simple prediction model with a threshold of log 
kmax > -2 for GHS Cat 1A attribution (“log kmax threshold -2”)  
is repeated for these subsets of chemicals. A regression model 
with log kmax as single predictor is calculated and used for GHS 
Cat 1A attribution (row 2 in Tab. 8) in order to compare like  
for like when making the comparison to multiple regression 
models. As shown in Table 8, sensitivity for identifying GHS 
Cat 1A sensitizers is at 85% with the threshold prediction mod-
el and slightly lower (84%) with the regression model using 
kmax alone (see also detailed analysis of these two approach-
es for subclassification in Tab. S5-S72). By adding further pa-
rameters from Keratino-Sens® and/or h-CLAT to the regression 
model, sensitivity and balanced accuracy are not enhanced. A 
model with h-CLAT, KeratinoSens® and classical DPRA da-
ta (Lys- and Cys-depletion transformed to rate constants) can 
reach higher sensitivity but, not surprisingly, at significant costs 
regarding specificity. 

This analysis thus further indicates that, overall and for this 
relatively large database, a decision model for GHS Cat 1A attri-
bution based on log kmax alone has a high predictivity and can be 
used as stand-alone model for the identification of GHS Cat 1A 
sensitizers. 

4  Discussion

This study provides detailed information on the predictivity of 
the kinetic rate constant of the validated kDPRA for sensitizer 
potency assessment, both for subclassification according to the 
GHS and as important input parameter for deriving a continuous 
PoD for risk assessment. Statistical analysis clearly indicates that 
the rate constant is the best single predictor for potency of any 
validated in vitro test. Still, it is important to carefully discuss its 
limitations. 

First of all, the assay only measures reactivity with the 
Cys-peptide. This may limit applicability/predictivity, as some 
sensitizers exclusively react with lysine residues, such as some 
acyl-halides, phenol-esters or aldehydes. However, only few Cat 
1A sensitizers with this reactivity pattern are known. Glutaric al-
dehyde is such a case. Only few other Cat 1A sensitizers with 
pre-dominant lysine reactivity, such as the o-hydroxy benzalde-
hydes atranol and chloratranol (Natsch et al., 2012), are current-
ly known. The analysis of a large database (Urbisch et al., 2015) 
on Cys- and Lys-depletion by skin sensitizers indicates that 88% 
of skin sensitizers positive in the DPRA react more strongly with 
the Cys-peptide, and among the GHS Cat 1A chemicals accord-
ing to the LLNA, only glyoxal, glutaric aldehyde and phthal-
ic anhydride deplete the Lys-peptide more strongly after 24 h  
(Urbisch et al., 2015), although anhydrides have a strong Cys-re-
activity if evaluated at earlier timepoints and are thus correct-
ly identified by the kDPRA. Considering exclusive and strong 
Lys-reactivity in the DPRA (with a threshold of Lys-depletion 
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from the kDPRA appears to be an important input parameter for 
a DA for potency assessment on a continuous scale, and it can be 
combined with read-outs from other in vitro assays, structural in-
formation on chemical domain, and other reactivity parameters 
in a more comprehensive analysis of the sensitization risk, as has 
been shown before for a similar assay based on the Cor1-C420 
peptide (Natsch et al., 2015, 2018). 

The LLNA is not a direct sensitization assay, as it only mea-
sures the proxy of cell proliferation in the lymph node upon 
chemical administration to mouse ears (Kolle et al., 2020). It 
was long known that the LLNA is prone to false-positives, espe-
cially for cytotoxic irritants (Ball et al., 2011) employed at high 
test concentrations. The analysis of our database as presented in 
Table S92 indicates that cytotoxicity, which is closely related to 
skin irritation potential (Kandárová et al., 2006), is an import-
ant predictor for EC3 values observed at high test concentrations 
in the LLNA, further illustrating this limitation of the LLNA in 
discriminating irritants and sensitizers when conducted at high 
test concentrations. On the other hand, our data corroborate the 
correlation between LLNA and reactivity for EC3 values below 
10%, thus further confirming the link between the MIE of skin 
sensitization and cell proliferation in the LLNA.

Here we have built the database in a way that data are now 
available for many chemicals from tests performed according to 
OECD 442D and 442E along with the kinetic rate constant from 
the kDPRA. This will facilitate refinement of existing approach-
es and development of new approaches. A multiple linear regres-
sion as shown in Table 7 and associated supplementary informa-
tion2 is just one example of such a predictive DA – other mathe-
matical ways to integrate the information such as neuronal nets, 
Bayesian nets or other non-linear models might even be superior. 
A positive kDPRA result (i.e., reactivity above the cysteine-on-
ly prediction model of the DPRA) could be used to replace the 
DPRA in new and existing DAs, while it may need further dis-
cussion whether a reactivity assay on the Lysine-peptide may 
still be needed in case of negative results.

The discussion above summarizes the limitations of the cur-
rent protocol from the standpoint of predictivity. The standard-
ized protocol also comes with a number of simplifications in or-
der to allow deriving rate constants for diverse chemicals in a 
standardized setting as needed for regulatory toxicology. Thus, 
many chemicals may not react linearly over time with a differ-
ent apparent rate constant over time under our experimental con-
ditions or not be fully soluble in the reaction medium and thus 
precipitate out of solution in the course of the experiment. Oth-
er chemicals may form semi-stable peptide adducts that reach an 
equilibrium or are prone to a reverse reaction over time. All these 
effects may lead to a reaction that does not proceed to completion 
and that may lead to non-linearity (i.e., the rate determined at dif-
ferent points in time is different), which is not fully reflected in 
the way the data are treated. By deriving maximum rate constants 
in the current protocol, mainly the initial rate of reaction deter-
mines kmax for most chemicals. Analysis of our comprehensive 
database indicates that this approach already has good predictivi-
ty, but it remains an open question whether a different protocol or 
an array of protocols for different types of chemicals accounting 

proaches. Therefore, using the simple cut-off of log kmax > -2 as a 
regulatory threshold is warranted for predictive purposes, but we 
would propose to calculate EC3 values for modeling approaches 
for risk assessment using molar values for the EC3 (i.e., pEC3 as 
done in the regression analysis presented here).

There are now multiple validated in vitro tests, and several 
DAs have been proposed for sensitizer hazard assessment based 
on these in vitro tests. So how could the kDPRA best be used 
in a regulatory context? The most straightforward approach is to 
use one of the DAs that are in advanced validation at the OECD 
(2019a) for hazard identification. In case a chemical is predict-
ed as a sensitizer, the kDPRA could be conducted and chemicals 
with a log kmax > -2.0 would be attributed to GHS Cat 1A. Op-
tionally, chemicals with exclusive strong lysine reactivity (strong 
Lys-peptide depletion, which is not due to co-elution, in absence 
of Cys-depletion in DPRA) could also be attributed to GHS Cat 
1A in case reactivity surpasses a yet to be defined threshold. 
However, this would be an additional correction only required 
for few chemicals.

There is already one proposal for identification of GHS Cat 
1A under discussion at OECD level, namely a modification of 
the ITS proposed by Nukada et al. (2013). However, the ITS ap-
proach is based on concentration-response data from the h-CLAT 
and reactivity classes of the DPRA, and to our knowledge the re-
producibility of these quantitative data so far has not been doc-
umented. In addition, it uses an in silico input, and it is not clear 
to which extent the underlying in silico tool was trained on the 
chemicals used to assess its performance (Kolle et al., 2020). 
Thus, the approach of integrating kDPRA has the advantage that 
it is based on an experimentally determined and validated quan-
titative data input.

Based on the analysis in Table 8, subclassification based on  
kDPRA as single input maximizes predictivity, and no further 
potency data from the other assays is required for optimal GHS 
subclassification of those chemicals that have been identified as 
sensitizers by any other test or DA. It is also interesting to com-
pare the balanced accuracy for class attribution to the variabili-
ty of the LLNA itself to predict 1A sensitizers. A chance of 73% 
was reported to correctly identify a 1A sensitizer with the LLNA 
(OECD, 2019b) in three consecutive tests, thus the chance for a 
correct assignment in a single LLNA is p = 0.93 (0.933 = 0.73). 
In light of this intrinsic variability of the LLNA itself, a sensi-
tivity significantly above 90% to predict the LLNA subclassifi-
cation outcome cannot be expected of any test or DA, hence the 
reported sensitivity of 84.4% achieved by the kDPRA here ap-
pears adequate.

Besides subclassification into GHS subcategories, deriving 
a NESIL for risk assessment is of key importance. It has previ-
ously been shown how kinetic rate constants can be applied to 
the prediction of skin sensitization potency (Natsch et al., 2011, 
2015, 2018; Niklasson et al., 2011; Roberts and Aptula, 2014). 
Here we further show that of all the measured parameters in the 
validated in vitro assays, log kmax from the kDPRA is the pa-
rameter with the strongest correlation to sensitizer potency in the 
LLNA, and Table S92 further shows its importance especially to 
predict potency of moderate and strong sensitizers. Thus log kmax 
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llna-pot/tmer.pdf 
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ted testing strategy to assess skin sensitization potency: From  
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grated testing strategy (ITS) for skin sensitization potency as-
sessment: A decision support system for quantitative weight of 
evidence and adaptive testing strategy. Arch Toxicol 89, 2355-
2383. doi:10.1007/s00204-015-1634-2
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ment of the skin irritation potential of chemicals by using the 
SkinEthic reconstructed human epidermal model and the com-
mon skin irritation protocol evaluated in the ECVAM skin ir-
ritation validation study. Altern Lab Anim 34, 393-406. doi: 
10.1177/026119290603400407

Kolle, S. N., Landsiedel, R. and Natsch, A. (2020). Replacing the 
refinement for skin sensitization testing: Considerations to the 
implementation of adverse outcome pathway (AOP)-based de-
fined approaches (DA) in OECD guidelines. Regul Toxicol 
Pharmacol 115, 104713. doi:10.1016/j.yrtph.2020.104713

Leontaridou, M., Gabbert, S., Van Ierland, E. C. et al. (2016). Eval-
uation of non-animal methods for assessing skin sensitisation 
hazard: A Bayesian value-of-information analysis. Altern Lab 
Anim 44, 255-269. doi:10.1177/026119291604400309

Natsch, A., Gfeller, H., Rothaupt, M. et al. (2007). Utility and li-
mitations of a peptide reactivity assay to predict fragrance all-
ergens in vitro. Toxicol In Vitro 21, 1220-1226. doi:10.1016/j.
tiv.2007.03.016

Natsch, A., Haupt, T. and Laue, H. (2011). Relating skin sensitiz-
ing potency to chemical reactivity: Reactive Michael acceptors 
inhibit NF-κB signaling and are less sensitizing than S(N)Ar- 
and S(N)2-reactive chemicals. Chem Res Toxicol 24, 2018-2027. 
doi:10.1021/tx2003678

Natsch, A., Gfeller, H., Haupt, T. et al. (2012). Chemical reactivi-
ty and skin sensitization potential for benzaldehydes: Can Schiff 

for such non-linear effects would determine rate constants with 
an even better correlation with LLNA potency. 

Finally, the assay measures depletion of the peptide and not 
formation of peptide-adducts, which is the ultimate MIE for sen-
sitization to occur. As shown in detailed case studies (Natsch et 
al., 2018), an additional evaluation of adduct formation can fur-
ther advance risk assessment for specific chemicals. From a con-
ceptual point of view, the approach proposed by Sanderson et 
al. (2016) would be most preferable, as it directly measures rate 
constants of adduct formation by real-time NMR analysis. How-
ever, we currently do not see how that approach could be adapted 
to screen a large library of chemicals and to arrive at an OECD 
test guideline.

Further improvements of the assay may include, e.g., follow-
ing the reaction with an alternative fluorescent probe with differ-
ent excitation/emission wavelengths to test chemicals that cause 
fluorescence interference. Furthermore, a pre-incubation step of 
the chemical in the test buffer to allow for spontaneous oxidation 
may help to better identify strong pre-haptens (confirmed by pre-
liminary experiments for PPD; data not shown).

The kDPRA validation, which is described in the parallel pa-
per (Wareing et al., 2020) underwent an international peer-re-
view with experts nominated by ECVAM, NICEATM and JaC-
VAM. The peer-review panel concluded that “the data provided 
by the test method developers is sufficient and adequately sup-
ports the scientific validity of the kDPRA for the identification of 
UN GHS Subcat. 1A.” It will be further discussed by the OECD 
for integration into TG 442C. 
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