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cal materials). The latter comprise about 20% of all recent sub-
stance registrations in the European Union (ECHA, 2017) under 
the Regulation on the Registration, Evaluation and Authorisa-
tion of Chemicals (REACH). UVCBs are challenging for regu-
latory decision-making because of few established frameworks 
for their evaluation under current chemical regulatory regimes 
(ECHA, 2017). 

Petroleum substances are prototypical UVCBs (Clark et al., 
2013), and their complex and variable nature is the consequence 
of their manufacturing processes. They are primarily produced 

1  Introduction

Substance identification is required before exposure, hazard or 
risk evaluations are performed by industry or regulatory author-
ities. Most substances that are evaluated with respect to human 
or ecological risks are of the “mono-constituent” type, i.e., they 
contain one main constituent in at least 80% (w/w), even after ac-
counting for impurities (ECHA, 2015). Other types are deemed 
to be “multi-constituent” substances and UVCBs (unknown or 
variable composition, complex reaction products, and biologi-
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Abstract
One of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown 
or variable composition, complex reaction products and biological materials). Because the inherent complexity and 
variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical 
characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived 
biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 
141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of 
tissues. Petroleum substances were assayed in dilution series to derive point of departure estimates for each cell type and 
phenotype. Extensive quality control measures were taken to ensure that only high-confidence in vitro data were used to 
determine whether current groupings of these petroleum substances, based largely on the manufacturing process and 
physico-chemical properties, are justifiable. We found that bioactivity data-based groupings of petroleum substances 
were generally consistent with the manufacturing class-based categories. We also showed that these data, especially 
bioactivity from human induced pluripotent stem cell (iPSC)-derived and primary cells, can be used to rank substances in 
a manner highly concordant with their expected in vivo hazard potential based on their chemical compositional profile. 
Overall, this study demonstrates that NAMs can be used to inform groupings of UVCBs, to assist in identification of repre-
sentative substances in each group for testing when needed, and to fill data gaps by read-across.
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stances in 15 human cell types to derive a comprehensive set of 
phenotypes that were used to group substances based on their in 
vitro bioactivity. We found that NAM data can be used to rank 
individual UVCBs in a manner that was highly concordant with 
their expected in vivo hazard potential based on their chemical 
composition. Bioactivity data-based groupings of petroleum sub-
stances were largely consistent with the manufacturing class-
based categories. Furthermore, NAM data can be used to identify 
representative substances of each category for further testing and 
subsequent read-across.

2  Materials and methods 

Chemicals 
All chemicals used in these studies, except for petroleum sub-
stances, were obtained from Sigma-Aldrich (St. Louis, MO) un-
less otherwise noted. Samples of petroleum substances were sup-
plied by Concawe (Brussels, Belgium). To enable in vitro bioac-
tivity profiling experiments of petroleum substances, extraction 
of petroleum substances into DMSO was performed using 
American Society for Testing and Materials standard procedure 
(ASTM International, 2014) as outlined in Figure 1. The DMSO 
extraction procedure used herein was designed to concentrate the 
“biologically active” fraction (i.e., mostly 3-7 ring polycyclic ar-
omatics, but also other polar constituents) of each petroleum sub-
stance; the extracts obtained using this method are used routinely 
for safety testing (e.g., mutagenicity) and chemical characteriza-

by the distillation of petroleum feed stocks, typically followed by 
additional processing steps such as solvent extraction, hydro-de-
sulfurization, or hydrogenation (McKee et al., 2015). As a re-
sult, these are complex substances containing a large number of 
individual hydrocarbon molecules that can be aliphatic/paraffin-
ic (straight chain or branched), alicyclic/naphthenic (containing 
primarily cyclo-paraffinic constituents that are primarily saturat-
ed hydrocarbons), or aromatic. Petroleum substances of different 
types can vary significantly in their chemical complexity and di-
versity based on their degree of refinement and may contain any or 
all of these types of constituents in varying concentrations based 
on their respective manufacturing process. While petroleum sub-
stances of particular types and end-uses may have composition-
al differences, their compositional variation is limited to speci-
fied ranges based on the technical specifications of each product. 
The challenge of grouping petroleum substances is further com-
plicated by the reality that the currently used substance nomencla-
ture, due to the inherent chemical complexity of UVCBs, is not 
uniquely associated with chemical composition but relies on the 
manufacturing process, associated physico-chemical characteris-
tics, and product performance specifications.

To identify the hazards of petroleum substances, toxicology 
testing is conducted on the whole substance (in vivo) or on expo-
sure-relevant fractions of petroleum substances (in vitro), rather 
than on individual constituents or groups of constituents. Where 
no data are available for certain endpoints on a substance, alter-
native methods to fill data gaps in the registration requirements 
have been suggested, including the application of read-across 
(ECHA, 2015). Grouping of substances that are compositional-
ly similar is one path to reduce animal testing, provided there is 
sufficient information on the related compounds and sufficient 
reason to believe that the related compounds may have similar 
toxicological properties. However, existing grouping approach-
es for petroleum substances, which are currently based on the 
manufacturing process, physico-chemical characteristics (CON-
CAWE, 2017), and hazard data (McKee et al., 2015), have been 
challenged by regulatory agencies (Ball et al., 2014). 

 Complementary approaches to grouping of petroleum-based 
UVCBs have been proposed based on in vitro testing (Grimm 
et al., 2016; Kamelia et al., 2019), structure-activity analysis 
(Kutsarova et al., 2019; Dimitrov et al., 2015), or novel analytical 
chemistry methods (Grimm et al., 2017; Onel et al., 2019). Sim-
ilar approaches have been applied to other categories of UVCBs 
(Catlin et al., 2018). Because of the strong impetus to avoid un-
necessary vertebrate animal testing, a number of recent changes 
to the regulatory requirements in the US and EU provide for in 
vitro testing or quantitative structure-activity relationship analy-
sis as alternatives to whole-animal toxicity testing (Herrmann et 
al., 2019; Malloy et al., 2017; Kavlock et al., 2018). 

Therefore, this study tested the hypothesis that the challenge 
of demonstrating substance similarity to support grouping of 
petroleum substances can be improved using data derived from 
new approach methodologies (NAMs) (i.e., in vitro bioactivity) 
linked to the available compositional data (physical and analyti-
cal chemistry data). We tested the effects of 141 petroleum sub-

Fig. 1: General schematic diagram of the extraction procedure 
that was used in these studies 
The procedure was based on ASTM International (2014) standard 
method (E1687-10).
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tion of the refinery streams (ASTM International, 2014). Briefly, 
4 grams of each petroleum substance (Tab. 1, Tab. S11) was first 
dissolved in 10 mL of cyclohexane; 10 mL of DMSO (Fisher Sci-
entific, Waltham, MA) was added, and the mixture was vigorous-
ly shaken for several minutes. The DMSO layer was removed 
using a glass pipette and the cyclohexane was re-extracted with 
an additional 10 mL of DMSO. Both polycyclic aromatic com-
pound (PAC)-enriched DMSO layers were combined and diluted 
2:1 with two volumes of 4% (w/v) sodium chloride solution. Fol-
lowing subsequent extraction with 20 mL and 10 mL cyclohex-
ane to isolate the PAC fraction, the organic layers were washed 
twice with distilled water and filtered through anhydrous sodium 
sulfate. Details of additional chemicals that were used as refer-
ences (Tab. S21), cell type-specific positive controls or reagents 
(Fig. S1, Supplemental Files 1 and 21) are provided as specified.

In vitro study design 
Petroleum substance extracts (Tab. S11) and reference chemi-
cals representing the major known structural classes of chem-
istries in petroleum substances (Tab. S21) were processed to 
create a dilution series in DMSO. Overall, 4 serial 1-log10 dilu-
tions of each extract and reference substance were created (Fig. 
S21) and aliquoted into 384-well “master” plates (Masterblock 
384-well, V bottom, Deepwell polypropylene plate; Cat. No. 
781271; Greiner Bio-One North America, Monroe, NC) as fol-
lows: Plates (Fig. 2) contained 308 wells (all outer wells were 
filled with 200 µL of sterile distilled water to enhance tempera-
ture balance for the entire plate and were not used in the exper-
iments) with one serial dilution of each of 141 petroleum sub-
stances and 20 reference chemicals, 20 intra-plate replicates 
(duplicate of the same dilution for 10 UVCBs and 10 refer-

1 doi:10.14573/altex.2006262s1

Fig. 2: Experimental plate design 
Test substances (petroleum-based UVCBs) and other chemicals 
were arrayed on the individual plates for each dilution factor. 
Location of negative, positive and replication (intra- and inter-plate) 
controls on each plate are shown.

Tab. 1: Petroleum substance categories and substances  
used in this study  
See Table S11 for a complete listing of substance names, CAS  
and EC numbers and other information.

Petroleum substance	 Abbreviation	 N of samples 
category		  in category

Petrolatums	 P.LAT	 3

Paraffin and hydrocarbon	 WAX	 10 
waxes/slack waxes

Low boiling point naphthas	 NAPHTHA	 10 
(gasolines)	

Other lubricant base oils/	 BO	 33 
highly refined base oils

Kerosines/MK1 diesel fuel	 KER	 10

Foots oils	 FO	 3

Other gas oils	 OGO	 4

Bitumens/oxidized asphalt	 BIT	 5

Residual aromatic extracts	 RAE	 2

Treated distillate aromatic	 TDAE	 2 
extracts

Heavy fuel oil components	 HFO	 27

Unrefined/acid treated oils	 UATO	 4

Cracked gas oils	 CGO	 8

Vacuum gas oils, hydrocracked	 VHGO	 10 
gas oils & distillate fuels

Straight-run gas oils	 SRGO	 6

Untreated distillate aromatic	 UDAE	 4 
extracts

https://doi.org/10.14573/altex.2006262s1


House et al.

ALTEX 38(1), 2021       126

fects of test compounds. Five of these cell types (hepatocytes, 
endothelial cells, neurons, cardiomyocytes and macrophages) 
were human induced pluripotent stem cell (iPSC)-derived (Fuji- 
Film-CDI, Madison, WI). One cell type was primary human 
umbilical vein endothelial cells (HUVEC) from Lonza (Basel,  
Switzerland). Eight cell types (A375, A549, HepG2, HLMVEC,  
HT29, LN229, MCF7, and SH-SY5Y) were from ATCC 
(Manassas, VA). HEPARG cells were from Sigma-Aldrich. All 
cells were cultured as recommended by their supplier (see Sup-
plemental Files 1 and 21 for details). 

Cells were plated in 384-well plates in densities recommend-
ed by the supplier, using optimized media supplied by the same 
company or optimized for density by experimentation for each 
cell line. Cells were cultured without treatment for a period of 
time required to achieve functional capacity. Plating density, 
cell culture conditions and duration are detailed in Supplemen-
tal Files 1 and 21. Cells were treated with petroleum substanc-
es and chemicals in a series of dilutions to evaluate concentra-
tion-response as described above (Fig. 2). For each cell line, a 
number of phenotypes (Tab. 2, Tab. S31) were evaluated using 
high-content imaging and other read-outs as detailed in Supple-
mental Files 1 and 21. Assay-specific controls (Fig. S2, Supple-
mental Files 1 and 21) that were unique to each cell type were 
used to verify that each cell type exhibited expected functional 
and cytotoxicity responses.

ence chemicals), 20 inter-plate replicates (4 serial dilutions of 
5 UVCBs), 55 negative controls (14 media, 13 DMSO (0.25-
0.5%, final concentration identical to that in the assay wells for 
each cell type), and 28 “method blank” vehicle controls (see 
Fig. 1, 0.25-0.5% as for DMSO)). A total of 52 wells were left 
empty in the “master” plates so that cell type-specific positive 
controls (see Fig. S1 and Supplemental Files 1 and 21 for de-
tails) could be added before experiments with each cell type. 
Plates were sealed with aluminum film and stored at -80°C un-
til use. Copies of each master plate were prepared for use in all 
in vitro experiments. The final concentration of DMSO in as-
say wells following addition of test substances was 0.25-0.5% 
(v/v), depending on the cell type, as detailed in Supplemental 
Files 1 and 21.

In vitro experiments 
A total of 15 human cell types were used in these experiments 
(Tab. 2). Cell type and vendor selections were based on the fol-
lowing considerations: Cells were chosen to be of human origin 
and to represent diverse organs/tissues. We used both “primary” 
cells, i.e., iPSC-derived cells, as well as a number of established 
cell lines. These in vitro models had to be reproducible (i.e., a 
particular cell/donor can be obtained from a commercial source) 
and suitable for evaluation of both “functional” and “cytotoxic-
ity” endpoints so that we could assess the specificity of the ef-

Tab. 2: Cell types used in these studies  
See Table S31 for a complete list of assays, phenotypes, time points, and quality control criteria.

Organ/Tissue	 Origin	 Cell type name	 Number of	 QC “Pass” 	 QC “Fail”  
			   phenotypes	 phenotypes	 phenotypes

Skin	 Malignant melanoma	 A375	 3	 2	 1

Lung	 Epithelial carcinoma	 A549	 3	 0	 3

Liver	 Cholangiosarcoma	 HEPARG	 3	 1	 2

Liver	 Hepatocellular carcinoma	 HEPG2	 3	 2	 1

Lung	 Microvascular endothelial cells	 HLMVEC	 4	 2	 2

Gut	 Colorectal adenocarcinoma	 HT29	 4	 0	 4

Brain	 Glioblastoma	 LN229	 4	 2	 2

Breast	 Epithelial adenocarcinoma	 MCF7	 3	 2	 1

Bone marrow	 Neuroblastoma	 SH-SY5Y	 4	 2	 2

Heart	 iPSC-derived cardiomyocytes	 CM	 14	 12	 2

Liver	 iPSC-derived hepatocytes	 HEP	 6	 4	 2

Blood vessel	 iPSC-derived endothelial cells	 ENDO	 9	 4	 5

Blood vessel	 Umbilical cord endothelial cells	 HUVEC	 6	 5	 1

Brain	 iPSC-derived neuronal cells	 NEUR	 4	 4	 0

Blood	 iPSC-derived macrophages	 MACRO	 1	 0	 1

			   71	 42	 29
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1 and 21. Quality control was programmatically conducted to 
identify excessive variation in 3 ways in this high-dimension-
al, high-throughput experiment. An assay was considered QC 
“fail” if any assay flag was called across three assessments of 
experimental variation. First, plate controls were examined. 
For a given plate (consisting of a single cell type/assay/dose 
combination), method blank controls were mean-centered to 
100, while DMSO-/media-controls were normalized to meth-
od blanks. An assay was flagged for excessive control variation 
if the method blank inter-quartile range (IQR) exceeded the 
75/125 boundary or if the entire IQR of DMSO-/media-con-
trols existed outside the 80/120 limits of the mean-centered 
(mean = 100) method blank controls. Second, excessive in-
ter-plate variation was assessed across dose response. Five 
substances were plated on each dose plate as complete dose 
response. This means each dose plate (1000× through 1×) had 
5 substances that were plated for 1×, 10×, 100×, and 1000× 
concentrations each, yielding 4 data points at each dose. The 
single test substance data point on the plate was then com-
pared to the mean and standard deviation (SD) of the other 4. 
A substance was flagged if its value exceeded 1.75×SD for 2 
or more doses. If this occurred for 3 or more chemicals, the as-
say was flagged. Third, excessive intra-plate variation was as-
sessed with 20 substances that were plated in duplicate on each 
plate. The IQR of method-blank controls for the plate were 
compared to the IQR of a scaled replicate difference (((rep1 
- rep2)/sqrt(rep1*rep2))*100) of the 20 substances, and a con-
centration was flagged if the IQR (20 substances) was greater 
than 1.75×IQR of the method blank controls for the respective 
plate. The assay was flagged if more than 1 concentration was 
flagged. The number of pass/fail phenotypes for each cell type 
is shown in Table 2. Details on each quality control “flag” for 
cell type/phenotype are provided in Table S31.      

Data processing and quality assurance 
The experimental design consisted of running all of the petro-
leum substances on a single plate at one concentration (Fig. 2). 
As a consequence, the concentration response can be evaluated 
only when considering all four plates (each at a different dilu-
tion). To account for this, a number of inter- and intra-plate con-
trols were included to ensure that the concentration response was 
not affected by artifacts of the experimental design. Inter-plate 
controls consisted of 5 petroleum substances, which were present 
in all four dilutions on each plate. These responses could then be 
compared to the concentration response across the four plates to 
ensure that similar responses occurred within a plate and across 
plates. Due to running only a single replicate, intra-plate controls 
were added to ensure that the single values were consistent with-
in a plate. Ten petroleum substances and 10 reference chemicals 
were assayed as a duplicate on each plate. These were arrayed at 
the same concentration as those normally-placed substances and 
were used to ensure reproducibility within a plate.

Raw data generated during in vitro experiments was normal-
ized to the average of “method blank” vehicle control (Fig. 1) 
wells. The normalized values represent a percent response to the 
method blank. Normalization was performed for all raw values 
assessed, including the positive and negative controls. The nor-
malization process followed the formula (1):

Normalized Value =  
(Raw Value)/(Average of “Method Blank” Wells) × 100                 (1)

To ensure the integrity of the data, several metrics were cal-
culated for each phenotype. All data for quality assurance 
(Fig. 3) of each cell type are included in Supplemental Files 

Fig. 3: Data analysis workflow 
Extensive quality control (QC) 
steps were used to filter assay/cell 
line combinations to ensure high 
concordance among controls and high 
intra- and inter-plate reproducibility. 
For the assays passing QC, points 
of departure were estimated using 
logistic (Hill) function curve fitting, 
and overall and cell type-specific 
measures of bioactivity computed 
across the assays. Analysis of 
bioactivity was further grounded in 
comparisons of polycyclic aromatic 
content (PAC). Finally, existing 
UVCB categories were compared 
to unsupervised clustering of the 
emergent data, as well as using 
trained (supervised) models to 
“predict” the categories. 
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assessment between groupings achieved using each dataset to 
the known chemical categories. The higher the FM index, the 
more similar the grouping based on in vitro or chemical descrip-
tor data was to the a priori determined grouping as shown in 
Table 1. The FM index ranges from 0.0 (no correspondence) to 
1.0 (perfect correspondence). One-sided P-values for the FM in-
dex (using the null hypothesis of random assignment) can be ob-
tained using a standard z-statistic (Fowlkes and Mallows, 1983). 
However, to improve confidence in the findings, and to compare 
FM indices, we adopted a permutation approach. Specifically, 
we performed 100,000 permutations of the actual sample group-
ings, and for each clustering computed the resulting FM index 
for each permutation to calculate a one-sided P-value. In order 
to compare the FM index for two clusterings (which we label 
A and B, respectively), we compared the observed FMA-FMB 
value to the permutation distribution of |FMA-FMB| to obtain a 
two-sided P-value.

In the supervised analysis, 8 analytical measurements and 42 
cell assay bioactivity profiles (see below) were used to train a 
machine-learning statistical model using the Prediction Anal-
ysis of Microarrays (PAM) package in R (Tibshirani et al., 
2002) to predict the existing categorizations as shown in Ta-
ble 1. In contrast to the unsupervised approach, a supervised 
model is trained to recognize the features that are most pre-
dictive of the pre-defined classes. Importantly, the approach 
can be used to identify substances that are difficult to classi-
fy, or pre-defined classes that are difficult to distinguish from 
each other. As some of the UVCB categories were small, k-fold 
cross-validation methods were difficult, as some random-fold 
outcomes might include zero instances of a category. Thus, our 
application of PAM used a leave-one-out cross-validation, and 
a shrinkage threshold of 1.28 (the 90% quantile of a standard 
normal distribution). In order to understand the “null” accuracy 
of a random classifier, we performed 1 million permutations of 
the categorizations, matched up with the actual category vec-
tor, recording the accuracy (mean number of category-match-
ing UVCBs) for each permutation. The 95th percentile of these 
permuted accuracy values (0.163 = 16%) was then used as a 
null significance threshold to compare the accuracy for the ac-
tual classification rules.

Polycyclic aromatic compound (PAC) analysis
Weight percentages of the polycyclic aromatic compounds in 
all tested petroleum substance samples were determined by gas 
chromatography-coupled mass selective detection (GC/MSD) 
as detailed previously (Roy et al., 1988). Briefly, each substance 
was extracted as detailed above and dried. The amount of each 
extract was then determined using the weight difference of the 
empty flask and following solvent evaporation. The extract was 
then dissolved in cyclohexane to a final concentration of 50 
mg/mL and used for analytical assays. Sample separation was 
achieved on a Zebron-5HT capillary column (30 m; 0.25 mm; 
0.25 mm; Phenomenex, Torrance, CA). Quantitative integration 
of the chromatograms was achieved using standards of naph-
thalene, phenanthrene, 1,2-benzanthracene, benzo[a]pyrene, 

Dose-response analysis and derivation of the points  
of departure 
After normalization and quality control, a point-of-departure 
(POD) was calculated for all phenotypes that were determined 
to pass quality control (Tab. S31). Vehicle control-scaled data for 
each test substance and phenotype were fitted to a curve with a 
nonlinear logistic (Hill) function to determine POD values, de-
fined as the concentrations at which the fitted curve exceeds one 
standard deviation above or below the mean of vehicle-treated 
controls, using R software-based scripts (Supplemental File 31)
as previously reported (Sirenko et al., 2013). The choice of one 
standard deviation “benchmark response” was based on the US 
EPA guidance for dose-response modeling and determination of 
the point-of-departure values (U.S. EPA, 2012), as well as em-
pirical testing of various thresholds as detailed in (Sirenko et 
al., 2013), which showed that a choice of one standard deviation 
generates consistently high classification accuracy. Each concen-
tration-response graph with the logistic fit was visually inspect-
ed to ensure goodness of fit. Several aspects were considered in-
cluding degree of fit, trend of data points, and consideration of 
removal of outlier data. The final POD was derived using a deci-
sion tree as shown in Figure S31. 

Calculation of the Toxicological Priority Index (ToxPi) 
ToxPi is a computational approach for data integration (Reif et 
al., 2010, 2013). The ToxPi Graphical User Interface (Marvel et 
al., 2018) was used to integrate and visualize data from different 
cell types and phenotypes. POD values for each phenotype pass-
ing quality control were inversely normalized on a 0-1 scale, with 
0 representing the highest POD value in a given data set (i.e., the 
lowest observed bioactivity) and 1 representing the lowest POD 
value (i.e., the highest observed bioactivity) using formula (2):

ToxPi Value = 1-   (log10(POD)-log10 (PODmin)
                                log10(PODmax)-log10(PODmin)	        (2)

Clustering and classification analyses 
We used two approaches to grouping petroleum substances 
based on the biological profiling data produced in this study. In 
an unsupervised analysis, substances were grouped based on the 
similarity of their bioactivity profiles, without prior knowledge 
of manufacturing stream categories. To evaluate the outcome of 
such grouping, we included a quantitative metric into the unsu-
pervised analysis workflow to assess the correspondence of the 
outcome to the original categories of each chemical. The details 
of the unsupervised analysis workflow are described elsewhere 
(Onel et al., 2019). Briefly, clustering was performed using the 
hclust function in R, using average linkage clustering applied to 
a Euclidean distance metric on centered, scaled data (essentially 
Pearson correlation), which we have previously found to be rea-
sonably robust (Onel et al., 2019). The Fowlkes-Mallows (FM) 
index (Fowlkes and Mallows, 1983), a measure of similarity of 
two clusters, was calculated to enable quantitative comparative 
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the BO category has larger inherent compositional variability 
compared to other petroleum substance categories. Consequent-
ly, sample 075 is likely to represent a less extracted example and 
could guide selection of a “worst case” candidate for follow-up 
testing. 

A quantitative comparison of the unsupervised analysis was 
conducted using the Fowlkes-Mallows (FM) index (Fowlkes 
and Mallows, 1983; Onel et al., 2019). The results of the bio-
activity-based clustering, or the data on PAC of each sample, a 
common approach to define health risks of petroleum substanc-
es (Redman et al., 2014), were compared to the known chemi-
cal groupings (Tab. 1) that were used as a reference. Figure 4C 
shows that the correspondence of clustering to the known group-
ings was highly significant (more accurate than expected by 
chance) when using either PAC data, bioactivity data, or their 
combination (P < 10-5 for all comparisons). Although the cluster-
ing correspondence of bioactivity profiles was somewhat higher 
than that based on PAC (3-7 ring) data alone (Fig. 4C), there was 
no significant difference between the two. Among the individual 
cell types, iCell hepatocytes showed the highest FM index (FM 
= 0.41), albeit it was not significantly different from that for oth-
er cell types. 

We also used the in vitro bioactivity data and PAC content 
to develop supervised predictive models for the manufacturing 
stream-based categories. The term “supervised” denotes that 
we use the existing categories to train a model and then apply a 
“leave-one-out” approach to predict in which category the spe-
cific UVCB belongs based on its aromatic ring class profile (i.e., 
PAC (3-7 ring)) and/or biological (i.e., ToxPi score from all data 
combined) profile. The leave-one-out approach ensures that the 
classification accuracy is informative, because each of the 141 
UVCBs is held out in succession and not used in training the 
model. Figure 5 shows statistical classification accuracy for 3- to 
7-ring PAC data (accuracy 43%) and bioactivity data (accuracy 
38%). The combination of PAC and bioactivity data did not re-
sult in a significant increase in classification accuracy (45%). All 
of these values are considerably greater than the null accuracy 
threshold of 16% described earlier. The categories were ordered 
by mean PAC 3-7 relative content, and exact matches are marked 
in green. One salient feature of classification using bioactivity 
data alone is that predictions tend to concentrate on the two larg-
est categories, BO and HFO. It is also apparent that relatively 
few of the category-assignment errors are in fact assignments to 
categories of very different PAC 3-7 content (shown in orange). 
When assignments to “distant” categories are considered as most 
consequential misclassification, the correct classification rate of 
the bioactivity data alone, or in combination with PAC data, is 
close to 90%, well above that for the PAC data alone (72%). The 
combination of PAC data and biological data not only yields the 
highest accuracy, but the spread of classifications across the cat-
egories is more easily explainable in terms of the 3-7 ring PAC 
content of the substances related to their observed biological ac-
tivity. 

A different question that can be asked with the bioactivity da-
ta on the petroleum-based UVCBs is whether substances that be-

benzo[g,h,i]perylene, and coronene. The resulting PAC profiles 
consist of weight percentages by ring number and are listed in 
Table S41.

3  Results

This study tested an integrative approach based on alternatives 
to animal models to support biological coherence and integra-
tive grouping of complex petroleum substances. We reasoned 
that bioactivity “signatures” of these substances in a large num-
ber of human cell types will be informative to (i) assess the va-
lidity of existing groupings, and (ii) determine whether “repre-
sentative” substances can be identified in each category so that 
they can be further considered for regulatory-required assays and 
that information used for read-across in each group. Both goals 
will increase effectiveness of any future testing and facilitate a 
NAM-informed approach to meet regulatory requirements. By 
including in this project a large number of petroleum substances 
that are registered under REACH in the European Union (CON-
CAWE, 2017), we aimed to provide broad coverage of the cate-
gories and individual substances. This dataset is unique insofar 
as it represents the largest standardized and tightly quality-con-
trolled NAM dataset on petroleum substances.

Quality control analysis (Fig. 3) of the data that was collected 
on 141 petroleum substances for a total of 71 phenotypes in 15 
cell types utilized various controls that were engineered into the 
experimental design (Fig. 2). All bioactivity assays were eval-
uated to flag assay and cell line combinations with potentially 
high signal-to-noise ratios (Tab. 2, Tab. S31). First, during the da-
ta collection phase, several upstream quality control procedures 
using positive controls were implemented in order to determine 
that the cells were responding according to expectations in the 
published assays. Second, additional analyses to assess the over-
all quality of the bioactivity profiling data were based on three 
criteria: (i) concordance of three types of negative controls (me-
dia, DMSO, and “method blank” vehicle), (ii) inter-plate repli-
cates, and (iii) intra-plate replicates. A total of 42 assays in 12 
cell types were deemed as high quality, and reproducibility sat-
isfied the QC thresholds. The quality control procedures were 
implemented as “flags” for each assay in each cell line so that 
downstream analyses could be compared in which flagged assays 
were either included or not included. Data from these 42 assays 
were used in further data analyses.

Unsupervised clustering analysis of the data integrated with 
the ToxPi approach was used to determine whether petroleum 
substances can be grouped based on their bioactivity profiles 
across all cell types and phenotypes. Figure 4A shows the re-
sults of clustering with two insets depicting two representative 
clusters. One shows a low bioactivity cluster and another shows 
a high bioactivity cluster; in both, samples from the same/sim-
ilar categories (Tab. 1, Tab. S11) show very similar ToxPi pro-
files. The exception is sample 075, which was from the base oils 
(“BO”) category and is a clear outlier with respect to its bioactiv-
ity as compared to other BO samples. However, it is noted that 
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Fig. 4: Unsupervised grouping of petroleum substances 
(A) Clustering dendrogram of the 141 UVCB samples, illustrating 
that clustering reflects both overall bioactivity and specific patterns 
of bioactivity across the cell types. See Table S51 for ToxPi GUI 
input file that can be used to recreate the dendrogram and ToxPi 
images. (B) ToxPi legend representing each included cell type 
as a colored slice with weight indicated in parenthesis based on 
the number of cell type-specific phenotypes included (Tab. 2). (C) 
Fowlkes-Mallows index comparing the existing 16 UVCB category 
designation of tested petroleum substances to unsupervised 
clustering using polycyclic aromatic compound data (PAC, Tab. 
S41), to the bioactivity summary based on the cell assays only 
(data shown in panel A), and to the combination of the two. Red 
dotted line shows the approximate permutation-based threshold of 
significance, which varies slightly for the three instances shown. 
Permutation-based p-values for clustering correspondence 
compared to a null model were less than 10-5 for each of PAC, 
bioactivity, and the combination. The accuracy of the three models 
did not differ significantly from each other.

Fig. 5: Analysis of the relationship between analytical (PAC) 
and summarized bioactivity data 
Top (A): The results of supervised analysis in which the UVCB 
category is predicted from the pattern of PAC analytic data using 
the PAM classification procedure. Rows refer to the true category, 
and columns to predicted category. Correct classification counts 
are shown in green as values on the diagonal. Categories are 
ordered according to median bioactivity score, so misclassifications 
near the diagonal are not severe, while misclassifications into 
categories with substantially different hazard profiles are shown in 
orange. Middle (B): correct classifications and misclassifications 
using bioactivity patterns only, which tends to predict as the most 
frequent categories of base oils and heavy fuel oils. Bottom (AB): 
correct classifications and misclassifications using both analytic 
and bioactivity data, which shows slightly higher accuracy than 
PAC analytical data alone. Numbers are correct classification rate 
when only exact matches are considered, or (in parenthesis) when 
misclassifications were not into a substantially different hazard 
category.
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point range. The waxes category in this study included substances 
from three closely related groups – slack waxes, and paraffin and 
hydrocarbon waxes. These wax substances are derived from vac-
uum distilled fractions and separated as a solid by chilling. Many 
of these substances are subject to further intermediate processing 
such as de-oiling or treatment with acid, clay, active carbon or hy-
drogenation to remove most of the polycyclic aromatic hydrocar-
bons (PACs). ToxPi profiles of most UVCBs that are classified 

long to a manufacturing stream-based category exhibit similar 
profiles, as this type of information is available to provide addi-
tional contextualization. Figure 6 shows examples of two cate-
gories, heavy fuel oil components (HFO, 27 individual UVCBs) 
and waxes (9 individual UVCBs). The HFO category is defined 
(CONCAWE, 2017) as streams obtained as either distillates or 
residues from distillation and cracking processes and containing 
saturated, aromatic and olefinic hydrocarbons in a wide boiling 

Fig. 6: ToxPi plots show striking similarity of bioactivity 
patterns among heavy fuel oil (HFO) components, and among 
some waxes 

Fig. 7: Manufacturing stream-based grouping of the bioactivity 
for individual petroleum substances 
Using the ToxPi score as an overall measure of bioactivity for 
each UVCB, striking differences are observed across UVCB 
categories (top). This phenomenon differs by cell type, with iCell 
hepatocytes showing two clear groups of bioactivity (middle), and 
iCell cardiomyocytes showing a gradation across the categories 
(bottom). Each dot represents a UVCB sample total ToxPi score 
derived from all phenotypes (top) or cell-specific phenotypes. Box 
is the inter-quartile range, vertical line is the median, and whiskers 
extend in most instances to the min-max range of values, and 
otherwise to the corresponding quartile plus 1.5X the interquartile 
range. See Figure S41 for the same data for other cell types.
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To test the hypothesis that in vitro bioactivity profiles may be 
associated with PAC content of each individual UVCB (Tab. 
S41), we examined the correlation between these two parameters 
(Fig. 8). The bioactivity, expressed as a total ToxPi score for each 
substance, was compared for each UVCB to the 3-7 ring PAC 
content expressed as a proportion of DMSO-extractable PACs. 
Specifically, 3-7 ring PAC content score was calculated by taking 
the sum of aromatic ring content (for 3 through 7 ring-contain-
ing constituents) multiplied by the percent total weight of DM-
SO-extractable PAC (Gray et al., 2013). Consistent with the hy-
pothesis, the overall fit based on all in vitro data combined (Fig. 
8A) showed a strong positive correlation (Spearman rho = 0.89) 
with the relative PAC 3-7 ring content of each substance. Figure 
8B shows examples of the same relationships when UVCBs were 
grouped using their manufacturing stream-based categories. For 
those categories with relatively higher 3-7 ring PAC content, or 
spanning a wide range of PAC content, strong trends in the cate-
gories showing increased bioactivity correlated to increased 3-7 
ring PAC content are observed. In contrast, these trends were 
not observed for categories with low to negligible 3-7 ring PAC 
content. We also examined the relationship between PAC con-
tent across aromatic ring compounds and bioactivity (Tab. 3). 
We found that 3-7 ring PAC content had the strongest correla-
tion, followed by PAC 3-ring content and PAC 4-ring content. 
These results corroborate the known relationship between the 
content of PAC, especially of 3-7 ring type, in the petroleum re-
fining products with their potential health hazard (McKee et al., 
2015; Gray et al., 2013). Interestingly, when the ToxPi scores 
for each cell type were correlated with PAC (3-7 ring) content of 
each substance, we found that data from iPSC-derived cell types 
and HUVECs were as informative as all data combined (Tab. 4, 
Fig. S51).

as belonging to the HFO category look very similar; these sub-
stances have relatively high bioactivity across most iPSC-derived 
cell types, especially iCell hepatocytes, commensurate with their 
high content of PACs. Only two substances, 131 and 007, show a 
qualitatively different ToxPi profile with little effect on iCell car-
diomyocytes and neuronal cells; therefore, these two substances 
may be considered as not representative of the overall bioactivity 
of the HFO category. In the waxes category, much less similari-
ty is evident among the individual members; however, all of these 
substances had a markedly lower bioactivity compared to HFOs.

To determine the overall bioactivity of each manufacturing 
stream-based category and the heterogeneity of the individual 
UVCBs in each category, we grouped ToxPi scores for all 141 
substances (Fig. 7). When all high-quality phenotypes are com-
bined to derive a ToxPi score as shown in Figures 4 and 6, a clear 
pattern in the bioactivity of each category emerges – aromatic 
extracts and gas oils have high mean bioactivity scores, while 
highly refined and chemically treated substances such as petrola-
tums and waxes have the lowest bioactivity. When data were ex-
amined for each cell type separately (Fig. 7, Fig. S41), addition-
al patterns were discernible. For example, the iCell hepatocytes 
showed separation into two broad bioactivity regions, whereas 
the iCell cardiomyocytes showed a gradient of bioactivity among 
the categories in the bottom half of bioactivity. At the same time, 
the data from many other tested cell types were not informative 
with respect to grouping (Fig. S41). It is noteworthy that a high 
degree of heterogeneity was present within each category, espe-
cially among HFO and BO categories. This finding is interesting 
because current manufacturing stream-based categories include 
substances with widely varying PAC content and considerable 
overlap exists between categories that are not always very sim-
ilar from a refining perspective.

Fig. 8: Polycyclic aromatic compound (PAC) score for 3-7 ring compounds in each UVCB sample is highly correlated with the 
overall ToxPi bioactivity score
(A) For all UVCB categories, PAC 3-7 ring content explains ~80% of the variation in ToxPi bioactivity. (B) The relationships depicted for 
each grouped category. See Figure S51 for cell type-specific correlations.
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the respective REACH dossiers. An alternative to new testing 
is the use of read-across, which requires detailed analytical da-
ta, ideally describing the full substance or all of its constituents 
(CONCAWE, 2019). However, the European Chemicals Agency 
(ECHA) is concerned about the paucity of available information 
on chemical composition and as a result has challenged the read-
across assumptions in petroleum substance submissions. This has 
led to requests for additional analytical chemistry and toxicolo-
gy data to better characterize similarity, justify the read-across, 
and address data gaps. A representative decision can be found in 
(ECHA, 2020). One approach to establish substance similarity is 
to consider chemical composition and/or physico-chemical prop-
erties. The process of grouping petroleum substances for regula-
tory decision-making and read-across traditionally relies on the 
physical/chemical properties, manufacturing process, and simi-
lar end uses (McKee et al., 2015). However, given the inherent 
chemical complexity of petroleum substances, as well as a lack 
of regulatory guidance as to what data may conclusively demon-
strate substance similarity, defining chemical groupings and ap-
plying the read-across remains challenging. 

This project hypothesized that NAM-based biological activity 
fingerprints, in conjunction with the existing grouping strategy 

4  Discussion

Regulators are tasked with assessing the risk to human and en-
vironmental health from substance exposure, including com-
plex substances, while reducing the use of animal testing. In or-
der to facilitate these objectives, we aimed to determine whether 
NAMs that are based on in vitro bioactivity can be used to as-
certain substance similarity among complex petroleum substanc-
es. These substances are manufactured in high volumes and have 
widespread uses and as such are subject to stringent regulatory 
scrutiny (McKee et al., 2015, 2018). A large number of mamma-
lian toxicology studies have been generated on these substanc-
es based on the requirements of previous regulatory frameworks, 
such as the Dangerous Substances Directive in the EU, and the 
High Production Volume Program in the USA. In general, low-
er boiling petroleum streams that do not contain PAC are known 
to exhibit lower tier toxicological effects, such as mild skin irri-
tation and in some cases central nervous system effects at high-
er dose levels. In contrast, heavier and high boiling petroleum 
substances, starting from some of the gas oils, have increased 
amounts of PAC constituents commensurate with potential to 
cause systemic toxicity as well as carcinogenicity and repro-
ductive toxicity (Roth et al., 2013; Feder and Hertzberg, 2013; 
McKee and White, 2014; McKee et al., 2014). These data have 
been used to fulfill requirements in the REACH dossiers, and the 
knowledge of the composition and refining processes, coupled 
with the existing health hazard data, formed the basis for devel-
oping the grouping, read-across and testing hypothesis. 

Although registrations for the petroleum substances were sub-
mitted for the 2010 REACH high tonnage deadline, multiple 
data gaps were identified. Where read-across could not be ap-
plied, testing proposals to fill these data gaps were included in 

Tab. 3: Spearman (rank) correlations of PAC content 
summarized across sets of ring classes suggests that the 
summary of PAC 3-7 rings is most predictive of overall 
bioactivity  
The greatest individual contributions arise from 3 ring and 4 ring 
content.

PAC content	 Correlation with ToxPi  
	 bioactivity

Rings 3-7	 0.89

Rings 4-7	 0.70

Rings 5-7	 0.51

Rings 1-2	 0.36

3 Ring	 0.84

4 Ring	 0.73

5 Ring	 0.55

6 Ring	 0.43

7 Ring	 0.29

Tab. 4: Cell-specific relationships between the bioactivity 
and polycyclic aromatic compound (PAC, 3-7 ring) content of 
petroleum UVCBs tested in this study  
See Figure S51 for cell type-specific correlation plots.

Cell type name	 Spearman correlation (ρ)  
	 with PAC (3-7 ring)

A375	 0.12

A549	 n/a*

HEPARG	 0.18

HEPG2	 0.25

HLMVEC	 0.52

HT29	 n/a

LN229	 0.10

MCF7	 0.52

SH-SY5Y	 -0.09

CM	 0.83

HEP	 0.81

ENDO	 0.82

HUVEC	 0.76

NEUR	 0.74

MACRO	 n/a

All QC “pass” phenotypes	 0.89

*, No QC “pass” phenotypes were available from this cell type. See 
Table 2 for explanation.
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tinely for safety (e.g., mutagenicity) testing and chemical char-
acterization of the refinery streams (CONCAWE, 1994; Carrillo 
et al., 2019). 

Because this project was not aimed at hazard identification of 
petroleum substances, the use of a normalized control allowed 
direct comparison of the results both within and across substance 
categories. ToxPi scores were based on a relative comparison of 
the cumulative effects of the analyzed substances. ToxPi scores 
are informative only in the context of a particular dataset. Tox-
Pi profiles of the individual substances aid in visualizing the 
patterns in the effects of each substance on in vitro cell-based 
models. Indeed, we observed overall strong correlation between 
bioactivity and the categories of UVCBs. For example, HFOs, 
which have overall much higher PAC content than waxes, in gen-
eral showed high bioactivity, whereas waxes showed low bioac-
tivity. 

We also tested whether multi-dimensional in vitro bioactivi-
ty and analytical data on petroleum substances can be used to 
classify them into categories. We found that each of these da-
ta streams individually is statistically significant in its ability to 
predict the category the substance may belong to, even though 
some misclassifications can occur due to the complex nature of 
these substances. Importantly, combinations of these data, a so-
called chemical-biological read-across, appeared most powerful 
in eliminating misclassifications. These data offer strong sup-
port for the utility of orthogonal supporting biological and phys-
ico-chemical data streams to increase confidence in grouping of 
complex UVCBs. 

It is well established that even within manufacturing catego-
ries of petroleum substances (e.g., HFO), the 3-7 ring PAC con-
tent can be variable between its category members. Existing 
groupings of petroleum substances contain category members 
with considerable inter- and intra-category overlap as expected 
based on their physico-chemical characteristics and manufactur-
ing processes (CONCAWE, 2017). Petroleum substances are a 
continuum in terms of their chemical composition. With “adja-
cent” streams overlapping to some extent, there will be overlap 
between the heavy end of a low boiling stream and the light end 
of the adjacent higher boiling stream. It is therefore significant 
that the bioactivity data collected in this study were able to clear-
ly identify substances that should not be placed into the same cat-
egory based on their refining properties and/or product specifica-
tions. Specifically, we found considerable variation in bioactivi-
ty within some categories, for example HFO have a large range 
from low to high PAC-containing substances, which is reflected 
in the spread of bioactivity observed in this category. This trend 
was enforced by the fact that the biological data separate out the 
two foots oils from the HFOs. This is well explainable as foots 
oils are much closer to waxes from a refining perspective. 

It is also noteworthy that both overall, and even within group-
ings, the 3-7 ring PAC content of tested substances correlated 
strongly with bioactivity. This finding suggests that petroleum 
substances can be ranked in the chemical-biological space repre-
senting the continuum of petroleum substances. On the one hand, 
this finding is in agreement with the “PAC hypothesis” for pe-

(i.e., manufacturing process, physico-chemical characteristics, 
and performance specifications), would strengthen the justifica-
tion for substance similarity (or disparity). Specifically, we argue 
that availability of the orthogonal data (i.e., physical, chemical, 
and biological) on the same substance(s) should enhance confi-
dence in the application of read-across for petroleum substanc-
es. Indeed, integration of chemical structure, physico-chemi-
cal properties, and biological data (in vivo, in vitro and in sili-
co) has been shown to offer a number of advantages (Low et al., 
2011, 2013; Rusyn and Greene, 2018; Zhu et al., 2016) and was 
encouraged by the US National Academies (National Research 
Council, 2014; National Academies of Sciences Engineering and 
Medicine, 2017). We suggest that expanding the regulatory prin-
ciple of “read-across” hypotheses to include in vitro bioactivi-
ty data could address uncertainties and increase confidence and 
the transparency of decisions. Still, it should be noted that NAM-
based data are intended to support grouping of petroleum sub-
stances and are not to be used for hazard evaluation. To subse-
quently support hazard evaluations and read-across, testing and 
read-across hypotheses may be developed using newly collected 
in vitro and existing in vivo data connected to the petroleum sub-
stance based on the chemical composition. This will facilitate se-
lection of representative substances for further in vivo testing, if 
needed, and the read-across from these substances. 

Previous studies (Grimm et al., 2016; Chen et al., 2020) have 
shown that incorporation of the bioactivity data helps underpin 
substance grouping and prioritize substances for which further 
work is needed to inform regulatory assessments. The present 
work provides further evidence that bioactivity profiling of com-
plex UVCBs is a feasible path towards characterization of “suf-
ficient similarity” for complex substances. It is the largest “case 
study” to date aimed at testing whether and how in vitro bioac-
tivity data can be used to inform grouping of UVCBs. By includ-
ing the large number of substances, cell types, and endpoints, we 
show that the approach is broadly applicable, not only with re-
spect to grouping of petroleum substances but also other UVCBs 
and mixtures. Indeed, our study demonstrates clear (clustering) 
relationships between in vitro bioactivity profiles and the class 
assignment of DMSO extracts of petroleum substances. 

It is acknowledged that using a DMSO extract of the substance 
means these biological activity data are not representative of the 
full substance. Even though DMSO selectively extracts lipophil-
ic constituents including PACs from test substances, the chemi-
cal profiles of PACs across molecular classes remain consistent 
after extraction (Luo et al., 2020). Modelling results from in vi-
vo testing of a range of petroleum substances indicated that the 
higher-tier toxicological profile of high-boiling petroleum sub-
stances is related to the types and levels of PAC (Nicolich et al., 
2013). Thus, the DMSO extracts represent the “biologically ac-
tive” fraction, i.e., [3-7 ring] aromatics, of the refinery streams 
(ASTM International, 2014; Roy et al., 1988), although addition-
al constituents (i.e., all polar molecules) are also extracted, which 
explains that certain refining streams with low to no (3-7 ring) 
PAC content still have low levels of extractable materials. Fur-
thermore, the extracts obtained using this method are used rou-
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cardiomyocytes can be a highly informative in vitro model (Chen 
et al., 2020) for substances without a defined toxicity pathway. 
These data also suggest that different types of molecules other 
than PAC play a role in the observed biological responses. More 
research is needed on whether generating and adding data to in-
tegrative analysis on the biological activity of the non-PAC frac-
tion of petroleum substances can further improve overall group-
ing. Therefore, inclusion of additional cell types may be benefi-
cial to address a broader range of potential health effects. Finally, 
studies on the experimental approaches that may aid in integra-
tion of biokinetic information in the grouping of complex sub-
stances are needed. For example, a previous study of bioavail-
ability of the hydrocarbon fractions showed that extraction pro-
cedure, protein binding in cell culture media, and dilution factors 
prior to in vitro testing can all contribute to determining the bio-
available concentrations of bioactive constituents of petroleum 
substances (Luo et al., 2020). 

In summary, we show that the use of biological activity pa-
rameters across multiple cell types of different origins, combined 
with extant physico-chemical properties, improves the ability to 
group and rank order petroleum substances for subsequent regu-
latory evaluation and data gap analysis. The data presented here-
in support the use of the current categories of petroleum sub-
stances, which are based on refining history, but add additional 
critical biological insights to these groupings in terms of chem-
ical-biological activity that are important for generating read-
across hypotheses. 
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