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contamination (Council Regulation (EEC) No 315/93). Accord-
ingly, undesirable substances are regulated for feed, while con-
taminants are regulated for food. 

REACH (Regulation (EC) No 1907/2006) requires, accord-
ing to Article 14(4), exposure assessment and subsequent risk 
characterization to be carried out for chemical substances sub-
ject to registration that are manufactured or imported in quanti-
ties equal to or greater than 10 (metric) tons per year and where 
the substance fulfils the criteria for any of the hazard classes or 
categories indicated in Article 14(4)2 or is assessed to be per-
sistent, bioaccumulative and toxic (PBT) or very persistent and 
very bioaccumulative (vPvB). As such, for substances in plant 
protection products (Council Directive 91/414/EEC) as well as 
for the authorization of several feed additives (Commission Reg-
ulation (EC) No 429/2008), investigations on a possible transfer 
from feed to food are mandatory to establish withdrawal periods, 
maximum residue levels (MRLs) or maximum contents in feed-
stuffs (Directive 2002/32/EC). This routinely requires feeding 

1  Introduction 

Expectations of animal-derived food are high. Besides being 
available in sufficient quantities, animal-derived food is expected 
to be of high nutritional value, while food safety risks to consum-
er health must be low. Undesirable substances in feed can pose a 
threat to consumer health if, upon ingestion by livestock, they are 
transferred into foods of animal origin, where they are then con-
sidered contaminants. 

“Undesirable substances” in EU legislation on animal nutrition 
means any substance or product, except for pathogenic agents, 
present in and/or on the product intended for animal feed that 
presents a potential danger to human health, animal health or the 
environment or adversely affects livestock production (Direc-
tive 2002/32/EC). In comparison, “contaminants” are substanc-
es that have not been intentionally added to but may be present in 
food as a result of the various stages of its production, packaging, 
transport or storage. They also might result from environmental 
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is composed of the reticulum, rumen, omasum, and abomasum. 
The reticulum and rumen are joined by a fold of tissue and con-
stitute a large fermentation chamber that houses a highly diverse 
rumen microbiome with manifold enzymatic activities (Moraïs 
and Mizrahi, 2019). The rumen wall is covered by a keratiniz-
ing stratified squamous epithelium in the form of countless papil-
lae for effective absorption and secretion via a permeation barrier 
(Aschenbach et al., 2019). The reticulum is further connected to 
the omasum, also called manyplies because of the numerous par-
allel sheets of tissue, which serves as a bottleneck for feed parti-
cle passage from the reticulo-rumen. Fifteen percent of the water 
that enters the omasum is absorbed here (Krehbiel, 2014). The 
following abomasum is like the non-ruminant stomach, contain-
ing a glandular gastric mucosa with specialized secretory cells 
that produce mucus, pepsinogen, and hydrochloric acid. 

For decades, experiments have been conducted to compare ru-
minant species’ intake and digestive capacity by feeding a wide 
range of diets with different ingredients and chemical composi-
tions. In a meta-analysis, Riaz et al. (2014) stated that numer-
ous studies have compared feed intake and nutrient digestibili-
ty between sheep and goats and between sheep and cattle, few-
er studies have made comparisons between cattle and buffaloes, 
and even fewer studies have been published on the comparison 
of feed intake and digestibility among more than two ruminant 
species. These comparative studies indicate that there are differ-
ences between ruminant species regarding both intake and di-
gestive capacity at the reticulo-ruminal and total digestive tract 
level and that additional differences between genotypes, e.g., be-
tween Jersey versus Holstein-Friesian cows, must be considered 
(Beecher et al., 2014). 

However, others found no systematic differences between 
sheep and cattle in digesting maize silage and grassland products 
(Aerts et al., 1984). Moreover, interspecies differences in many 
studies were, in part, related to differences in the passage rates of 
solids (Bartocci et al., 1997) or fluid (Colucci et al., 1990) or both 
(Francoise Domingue et al., 1991; Poppi et al., 1980) from the re-
ticulo-rumen. It may therefore be argued that reticulo-ruminal in 
vitro systems, where reticulo-ruminal retention times or the re-
ciprocals, i.e., outflow rates, are constantly controlled regardless 
of ruminant species, are less prone to be affected by species dif-
ferences than in vivo studies. Therefore, the following consider-
ations will focus on studies that have compared ruminal contents 
from different species in in vitro experiments.

More than 30 years ago, Kudo et al. (1984) showed that the tox-
ic amino acid mimosine was degraded to a similar extent in vitro 
in ruminal fluid from both cattle and sheep and that the degrada-
tion occurred faster when the donor animals were fed a mixed for-
age-concentrate diet compared to forage alone. When grass silage 
or maize silage were incubated in a rumen simulation technique 
(RUSITEC) system using ruminal contents from either cows or 
sheep fed on three different diets, Boguhn et al. (2013) observed 
that in vitro nutrient degradation and microbial crude protein syn-
thesis were more affected by the diet of the donor animals than by 
the animal species and was probably mediated by an adjusted mi-
crobial community. This was confirmed by Witzig et al. (2015), 
who analyzed the composition of the microbial community in the 

trials with various livestock species to cover the different physi-
ological systems (e.g., ruminant gastro-intestinal tract (GIT) and 
non-ruminant GIT). These in vivo trials are time-consuming, ex-
pensive, and often require killing of the animals to harvest organs 
and tissues for contaminant analyses (e.g., according to OECD 
TG 503 and OECD TG 505; OECD, 2007a,b). Following the 
3R principle (replace, reduce, refine) introduced by Russel and 
Burch (1959), alternative models (in vitro, ex vivo, in silico) are 
being developed and tested to simulate the relevant in vivo pro-
cesses as closely as possible. To employ them for regulatory pur-
poses, their development needs to undergo a thorough validation 
to ensure scientific integrity and quality (OECD, 2018). 

Various partial gastro-intestinal in vitro and ex vivo systems to 
evaluate the nutritional value of feedstuffs already were estab-
lished decades ago. These can simulate the process of nutrient 
digestion and absorption in the GIT. However, so far, they have 
been used only rarely to study the transfer and metabolism of un-
desirable substances in the animal. Moreover, to investigate po-
tential substance transfer into animal tissues or excreta when in-
gested with feed, the physiological processes downstream need 
to be simulated by a cascade of individual methods to capture the 
whole complexity of animal metabolism. Simulating processes 
in the ruminant is especially challenging due to the physiologi-
cal distinctiveness of the forestomach system and the highly dif-
ferent metabolic statuses the animal can be in during its life, e.g., 
dairy cows during the onset of lactation vs. beef cattle. 

Recently introduced in silico models may help to simulate the 
interactions between individual body compartments as well as 
species-specific differences. The decision on whether non-ani-
mal methods are suitable for reproducing the metabolism of an 
undesirable substance in the animal requires a detailed examina-
tion of the functioning, potential, and limitations of each individ-
ual method (Tab. 1). 

The present report reviews in vitro and ex vivo models that 
simulate the physiological processes in ruminant species, begin-
ning with the complex forestomach system, including intestinal 
absorption and hepatic metabolization, and ending in excretion 
via milk. The focus is on the fate of foreign substances in the or-
ganism. In this context, the fate is called kinetics and the sub-
stances xenobiotics. An in silico approach of kinetic modelling 
is introduced to model the interactions between the individual in 
vitro and ex vivo compartments to complete the understanding of 
the entire animal metabolism and close the gap between in vitro 
and in vivo results.             

2  In vitro reticulo-ruminal digestion and fermentation

2.1  General considerations regarding ruminant  
species
Ruminants are unique in their mode of plant digestion, as they 
have evolved a forestomach, which allows microbial diges-
tion and fermentation of fibrous carbohydrates, i.e., celluloses 
and hemicelluloses, leading to the formation of short chain fat-
ty acids (SCFA), which constitute the major energy source for 
the ruminant (Bergman, 1990). The ruminant’s stomach system 
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Tab. 1: Pros and cons of the reviewed in vitro, ex vivo and in silico methods proposed for investigating the transfer of  
undesirable substances from feed to food

Technique	 Simulated or 	 Pros	 Cons 
	 replaced organ  
	 or tissue	

Continuous 
culture models

Batch culture

 

Ussing 
chamber 

Immortal 
epithelial cell 
lines 
 
 
 
 

Liver S9 
mix and 
microsomes 
 
 
 
 
 
 
 

Organ 
perfusion 
models 
 

Toxicokinetic 
modelling

Rumen, colon, 
caecum

Rumen, colon, 
caecum

All gut 
segments 

Rumen, small 
intestine 
 
 
 
 
 

Liver, intestine, 
kidney, lung, 
skin 
 
 
 
 
 
 
 

Liver, kidney, 
udder 
 
 

All organs and 
tissues

–	 No killing of animals needed.
–	 Long term incubation allows investigation of 

bacterial adaptation to xenobiotics.

– 	No killing of animals needed.
– 	Easy and fast
– 	Allows simultaneous investigation of several 

substances or dosages. 
 
 

– 	Different gut segments can be tested 
simultaneously. 

– 	No killing of animals needed.
– 	Rapid screening of various contaminants, 

their concentration and interaction
– 	Allows studying mechanisms at cellular level. 

 
 
 

– 	Reduced number of animals as organ  
donors needed. 

– 	High ethical acceptance
– 	Cheap and easy to produce.
– 	S9 contains both membrane-bound and 

cytosolic liver enzymes.
– 	Phase I and phase II reactions can be 

specifically investigated with the addition  
of appropriate cofactors.

– 	Available from all relevant metabolizing 
organs.

– 	Complex organ cellular interaction
– 	Active in vivo-like transport and metabolism 

conditions
– 	Better understanding of quantitative 

contribution of the organ to certain processes

– 	No killing of animals needed.
– 	Can generate predictions of future  

scenarios.
– 	Extrapolation to different species, chemicals 

and settings is possible.
– 	Cheaper than animal experiments

–	 Donor animals needed; one-time surgery 
required.

–	 Cannulated animals need extra care.
–	 Loss of ruminal protozoa
– 	No epithelial absorption and secretion
– 	Time intensive
– 	Apparatus is commonly not commercially 

available.

– 	Donor animals needed; one-time surgery 
required.

– 	Cannulated animals need extra care.
– 	No epithelial absorption and secretion
– 	Short term incubation likely does not  

allow microbial adaptation to incubation  
conditions and xenobiotics.

– 	Animals must be killed.
– 	Viability of tissues is limited.
– 	Costly and laborious 

– 	Sometimes different physiological behavior 
compared to in vivo conditions.

– 	No/limited interaction with other cell types 
(e.g., immune cells)

– 	Missing mucus layer 
– 	Results are valid on cell level but cannot 

necessarily be extrapolated to complex  
in vivo conditions.

– 	Microsomes contain only membrane-bound 
enzymes.

– 	Addition of cofactors required.
– 	Investigation of transport mechanisms is  

not possible.
–	 Comparability to the in vivo situation is lower 

than for immortalized and primary cell lines. 
 
 
 

– 	Animals must be killed.
– 	Viability of tissues is limited.
– 	Ischemia/reperfusion-caused cellular  

stress/damage 

– 	Reliance on extensive datasets
– 	Some data needs to be generated by  

animal experiments (for now).
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Several continuous culture systems were developed in the 
1960s (Aafjes and Nijhof, 1967), however their applicability was 
often limited. Three major systems are routinely used in sever-
al laboratories worldwide today: the rumen simulation technique 
(RUSITEC), which was established in the 1970s by Czerkawski 
and Breckenridge (1977, 1979a,b); a system first described by 
Slyter et al. (1964), in which solid feed is added directly to the 
fermenters and the overflow is collected; and the dual flow con-
tinuous culture system designed by Hoover et al. (1976), in 
which solid feed is also added directly to the fermenters but the 
overflow of the liquid phase and the solid phase leave the fer-
menters separately with different outflow rates. 

The RUSITEC system typically comprises 4 to 8 fermenters, 
each having a volume of 700 to 1000 mL. Artificial saliva (e.g., 
McDougall, 1948) is infused continuously at the bottom of the 
vessel, and the overflow of the liquid phase and the fermentation 
gases are forced through an outflow by a small positive pressure 
in the gas space. The overflow and the produced gas can be col-
lected in bottles and gastight bags, respectively, for quantification 
and analysis. Degradability of the diets is commonly determined 
from synthetic fiber feed bags after 48 h of incubation. Pore sizes 
of the feed bags vary between studies, from 50 to 200 µm. 

On the first day of a RUSITEC experiment, each fermenter is 
filled with a mixture of rumen fluid from at least three donor an-
imals, as proposed by Udén et al. (2012), and artificial saliva. 
In addition, approximately 80 g solid material of the rumen fi-
ber mat (Czerkawski and Breckenridge, 1977) is provided in a 
feed bag to enable the establishment of both liquid- and parti-
cle-associated ruminal microbes. An additional feed bag contains 
the experimental diet to ensure nutrient delivery to the microbes. 
Both bags are placed into the “food container” inside of each fer-
menter, which is continuously moved up and down to warrant 
constant mixing of the fluid and the solid phase (Czerkawski and 
Breckenridge, 1977). Feed bags are usually incubated in the fer-
menters for 48 h before being replaced with fresh ones. 

In routine RUSITEC experimental runs, the digestibility of 
different feedstuffs or diets as well as fermentation variables 
such as the production of SCFA and methane can be determined 
in the relatively short time of 10 to 15 days (e.g., Hindrichsen et 
al., 2004; Khiaosa-Ard et al., 2009; Terry et al., 2018); however, 
longer experiments of more than 20 days also have been success-
fully conducted (e.g., Wallace and Newbold, 1991; Soliva et al., 
2004). To obtain statistically valid results, sufficient replicates 
need to be obtained by repeating the experimental runs, thus pro-
longing the full experiment to several weeks. 

One limitation of the RUSITEC system is that, although bac-
terial populations can be largely maintained for several days and 
even weeks (Ziemer et al., 2000; Wetzels et al., 2018), the abun-
dance of protozoal populations has been shown to decrease con-
siderably after a few days (Ziemer et al., 2000; Martínez et al., 
2010b; Lengowski et al., 2016). This is likely a result of the high 
liquid turnover rate in comparison to the generation intervals of 
the protozoa (Potter and Dehority, 1973). 

Single and dual flow continuous culture systems as proposed 
by Slyter et al. (1964) and Hoover et al. (1976) on the other hand 
have been shown to also maintain the protozoal populations (Mi-

RUSITEC experiment of Boguhn et al. (2013) and found that the 
effect of donor animal species was limited to the number of ar-
chaea, which was greater for sheep than for cows. These authors 
concluded that the rumen microbial community that establishes 
in vitro is primarily affected by the donor animal’s diet. Based 
on their findings, the authors suggested using a standardized ap-
proach for studying the rumen microbiota in a rumen simulation. 
This suggestion was underlined in a recent study (Belanche et al., 
2019), in which the authors emphasized that collection time, do-
nor animal diet, fermentation substrate, and inoculum preserva-
tion method may all have an impact on the study variables. 

In accord with the observations outlined above, Henderson et 
al. (2015) reported that differences in ruminal microbial commu-
nity compositions were predominantly determined by the diet 
and much less by the species. Moreover, a core microbiome was 
found across geographical regions and ruminant species, such 
that similar bacteria and archaea dominated in nearly all samples, 
and only protozoal communities were more variable. According-
ly, the “core bacterial microbiome” at the genus or higher levels 
comprises Prevotella, Butyrivibrio, and Ruminococcus, as well 
as unclassified Lachnospiraceae, Ruminococcaceae, Bacteroi-
dales, and Clostridiales, providing a multitude of enzymes need-
ed for the breakdown of nutrients (Hartinger et al., 2018; Huws et 
al., 2018; Moraïs and Mizrahi, 2019). 

In summary, it appears that ruminal contents from different ru-
minant species are equally suitable for in vitro studies on rumen 
metabolism, provided that feeding management of animals and 
handling of ruminal fluid is standardized and procedures are ap-
plied consistently, regardless of the origin of ruminal fluid.

2.2  Continuous culture models
The rumen harbors a complex anaerobic ecosystem consisting 
of different niches of microbes, which enable extensive degrada-
tion and fermentation of feedstuffs. Diverse microbes have been 
shown to either adhere to fiber particles, be associated with the 
liquid phase (McAllister et al., 1994; Klevenhusen et al., 2017) 
or be attached to the rumen epithelium (Petri et al., 2013; Wetzels 
et al., 2016). Accordingly, in vitro systems simulating the rumen 
fermentation should ideally preserve this complex microbial com-
munity, mirroring the original rumen microbiota and fermentation 
processes, and therefore the in vitro fermenters must be inoculated 
with the original ruminal microbiota from donor animals. 

Ruminal contents for inoculation can be harvested either from 
slaughterhouses or from ruminally cannulated animals. The ad-
vantages of using ruminally cannulated animals are that their 
medical history is known and their feeding management can be 
controlled and adapted to specific research questions. Cannulat-
ed animals are commonly kept in research facilities with close 
access to the laboratories for in vitro incubation. Short transport 
distances and times ensure microbial survival. In comparison, it 
is often difficult to find slaughterhouses near research facilities, 
and therefore transport distances are often too long to maintain 
the ruminal microbiota. Although ruminally cannulated animals 
can live long, healthy lives, the cannulation itself is a surgical in-
tervention considered to be an animal experiment and thus re-
quires sound justification. 
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it remains to be answered if the in vitro degradation and biotrans-
formation of contaminants from feeds fully represent in vivo mi-
crobial processes, as the epimural microbiota, which is associated 
with the ruminal epithelium, is missing in vitro, and fiber-attached 
microbes (i.e., bacteria and fungi) and protozoa are underrepre-
sented. Nevertheless, continuous culture approaches can pro-
vide information on whether certain contaminants are likely to be 
transformed by ruminal microbes or not. 

Besides the epimural microbiota, it should be stressed that so 
far none of the developed incubation systems include a simula-
tion of the ruminal epithelium with its capacity for absorption of 
fermentation acids and possible harmful substances as well as its 
release of signal molecules into the rumen. The in vitro fermen-
tation systems do not include a provision for removal of soluble 
substances except through the overflow. Accordingly, additional 
methods to investigate epithelial absorption processes are needed 
as outlined in Section 3.

2.3  Batch culture techniques
In vitro batch culture systems based on ruminal fluid have tra-
ditionally been used to estimate (total-tract) organic matter  
digestibility, and standardization and routine application of these 
methods was discussed already more than 50 years ago (e.g.,  
Alexander and McGowan, 1966). Of all in vitro batch culture 
systems, gas production techniques have attracted the attention 
of researchers to study not only ruminal feed digestibility, but 
direct or indirect impacts of animal production on the environ-
ment (Krishnamoorthy et al., 2005). This widespread attraction 
became notably evident in a comprehensive special issue pub-
lished in Animal Feed Science and Technology in 2005, compris-
ing 40 publications (Krishnamoorthy et al., 2005). Topics cov-
ered in reviews and research papers, as outlined in the preface 
to the special issue by Krishnamoorthy et al. (2005), comprised 
methodologies, repeatability, application to feed nutritive evalu-
ation and feed secondary compounds, application to investigate 
environmental impacts such as methane production, application 
to simple-stomached animals and humans, describing and pre-
dicting gas production, and quantitative possibilities for gas data. 
Application of a range of in vitro batch culture systems, includ-
ing gas production techniques, to nutritive evaluation of food in 
the hindgut of humans and other simple-stomached animals was 
also reviewed at that time (Coles et al., 2005), and it was point-
ed out that, compared with techniques simulating ruminal events, 
in vitro digestion methods of relevance to human food evalua-
tion lack standardization as well as in vivo validation and justi-
fication. 

Generally, in vitro gas production techniques are versatile tools 
to study ruminal digestion and microbial metabolism, although 
they also have limitations (Rymer et al., 2005). More recently, 
Yáñez-Ruiz et al. (2016) reviewed the applicability of in vitro 
batch culture experiments to assess enteric methane mitigation in 
ruminants and provided a range of technical recommendations to 
harmonize techniques for feed evaluation and assessment of ru-
men function and methane production. The wide applicability of 
in vitro gas production techniques to study ruminal events is also 
reflected in modifications of the method, where ruminal fluid is 

ettinen and Setälä, 1989), albeit this strongly depends on the turn-
over rate and stirring conditions applied (Mansfield et al., 1995; 
Moumen et al., 2009). Hoover et al. (1976) designed a dual efflu-
ent removal system to simulate the differential flows for liquids 
and solids found in the rumen, allowing a longer residence time 
for the digestion of solid particles. A variable rate mechanical 
feeding device apportions the feed into the fermenter at regular 
intervals during the day. A magnetic stirrer operates intermittent-
ly, stirring the contents for 5 min every 5 h at low speed to mini-
mize possible deleterious effects of mechanical agitation on the 
protozoa. However, unlike the RUSITEC system, which is com-
monly inoculated with ruminal fluid and solid material from the 
ruminal fiber mat, the systems of Slyter et al. (1964) and Hoover 
et al. (1976) are inoculated only with ruminal liquid. Thus, al-
though protozoa might survive for a longer period and in greater 
abundance, ruminal microbes attached to the fiber mat might be 
generally missing or are at least underrepresented.

Continuous culture approaches are often used to investigate di-
etary effects and effects of feed additives on fermentation char-
acteristics, such as nutrient degradation and methane formation 
(e.g., Soliva et al., 2004; Busquet et al., 2005; Terry et al., 2018; 
Petri et al., 2019). However, so far only few studies have used 
any of the described continuous culture techniques to investi-
gate the ruminal degradation or biotransformation of undesir-
able substances. For instance, researchers analyzed the effects of  
Fusarium toxins on nutrient utilization, the turnover of deoxyni-
valenol and zearalenone (Seeling et al., 2006), and the responses 
of the rumen microbial communities to Fusarium-contaminated 
feed (Strobel et al., 2008; Boguhn et al., 2010) with RUSITEC. 
They could show that deoxynivalenol and zearalenone were on-
ly slightly metabolized by the in vitro rumen microbiota. Koch et 
al. (2006) demonstrated alterations in the microbial population 
structures and their metabolic profiles in the presence of trans-
genic maize, while application of a glyphosate-containing her-
bicide in concentrations reflecting potential exposure of dairy 
cows or beef cattle did not exhibit significant effects on bacte-
rial communities in RUSITEC (Riede et al., 2016). Kowalczyk 
et al. (2015) studied the recovery of perfluoroalkyl acids during 
the incubation of contaminated feed in RUSITEC. Recently, 
Birk et al. (2018) modified the RUSITEC system to allow test-
ing 14C-labelled metabolites of azole fungicide and thus showed 
that the system can also be used to work with radiolabeled test 
compounds. 

One reason for the lack of more studies might be the relative-
ly long duration of a complete experiment to achieve a reason-
able number of replicates for statistical evaluation. Other reasons 
might be the change in microbial populations and community 
structure with prolonged time of incubation and the constant di-
lution by buffer infusion. Accordingly, short term batch culture 
approaches might be easier to conduct and more appropriate to 
investigate microbial effects on the fate of contaminants in rumi-
nal fluid (see Section 2.3.).

Although continuous culture approaches can maintain a steady 
fermentation pattern, which is very similar to the pattern observed 
in the rumen of the donor animals (Hannah et al., 1986; Mansfield 
et al., 1995; Martínez et al., 2010a) over several days up to weeks, 
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sides, and de Oliveira et al. (2010) investigated the ruminal deg-
radation of the toxic protein ricin found in castor seed. Some 
countries have reported contamination of milk by heavy metals 
like lead (Pb). Nurdin and Susanty (2015) used a batch culture 
approach to test the Pb binding efficacy of herbal additives in the 
rumen. They showed that less dissolved Pb was found in the ru-
minal fluid after incubation with Cuminum zedoaria, Curcuma 
mangga and Cuminum cyminum, suggesting a possible transfer 
of bound Pb to the lower gut and excretion with the feces. Using 
in vitro batch culture, Váradyová et al. (2006) showed that in-
ocula of sheep that grazed on pastures contaminated with heavy 
metals resulted in significantly lower fermentation output than a 
control inoculum. Also, Craig et al. (1992) demonstrated the mi-
crobial degradation of pyrrolizidine alkaloids using ovine rumen 
fluid.

In summary, batch culture studies can be used to determine the 
degree of contaminant degradation or biotransformation and the 
contaminants’ effects on ruminal microbes and ruminal fermen-
tation. Consequently, results from batch culture studies can sig-
nificantly help as a decision support for follow-up investigations. 
They are easier and faster to apply than continuous batch culture 
approaches, resulting in larger numbers of replicates. However, 
continuous culture studies might be advantageous to determine 
whether longer term microbial adaptation towards certain sub-
stances can occur.

3  Models for the intestinal transfer of nutrients  
and contaminants 

The different segments of the gastrointestinal tract differ sub-
stantially within and between species regarding their anatomy 
and physiological function, but the epithelium lining the intes-
tinal tract represents the first and major barrier for both nutrients 
and contaminants throughout. 

The Ussing chamber technique is the only experimental ap-
proach for studying transepithelial transport processes that al-
lows quantification of unidirectional flux rates of molecules 
across the epithelial barrier as well as the electrophysiological 
characterization of transport processes. It also allows studying 
xenobiotic metabolism by intestinal epithelial cells through tar-
geted or non-targeted analysis of xenobiotic metabolites. This 
technique originally was introduced by the Danish physiologist 
Hans Ussing to measure ion transport processes across frog skin 
(Ussing, 1949; Ussing and Zerahn, 1951). 

Intestinal segments are taken immediately after slaughter, 
rinsed with physiological saline at 4°C and opened longitudi-
nally. The tunica mucosa is stripped of the muscular and serosal 
layer, and the mucosal tissue is then mounted between the two 
halves of an Ussing chamber with an exposed surface of up to  
2 cm2, thus forming a mucosal and a serosal compartment. Each 
side of the chamber is connected to a buffer reservoir, which is 
continuously gassed with carbogen (95% O2, 5% CO2). An iso-
tonic buffer solution with a pH of 7.4 commonly is used on each 
side to mimic physiological conditions. To maintain the viabili-
ty of the epithelial tissues, glucose is added at a concentration of 

replaced with buffered fecal suspensions from ruminants (Aiple 
et al., 1992) and other herbivores (e.g., horses; Can et al., 2009), 
which would allow replacing ruminally fistulated animals with 
intact animals.

Numerous batch culture studies have been conducted to screen 
the effects of bioactive substances (e.g., plant secondary metab-
olites) on microbial activity (e.g., methane formation; reviewed 
by Lewis et al., 2013; Morgavi et al., 2010; Yáñez-Ruiz et al., 
2016) and fermentation kinetics. However, like with the contin-
uous culture approach, only few studies have been carried out to 
determine the effects of undesirable substances or contaminants, 
and those few studies focused mostly on fungal metabolites. For 
example, Asiegbu et al. (1995) and Mojtahedi et al. (2013) in-
vestigated the effects of aflatoxins, and Jeong et al. (2010) stud-
ied the effects of deoxynivalenol on in vitro gas and SCFA pro-
duction. Morgavi et al. (2013) explored the methane inhibiting 
effects of fungal secondary metabolites from Monascus spp. us-
ing a batch culture approach, and Akkaya and Bal (2012) deter-
mined the aflatoxin binding capacities of a Saccharomyces cer-
evisiae extract and mycotoxin adsorbents based on hydrated so-
dium calcium aluminosilicate. Using batch culture, Hahn et al. 
(2015) tested whether 20 commercially available products could 
detoxify deoxynivalenol and zearalenone. 

Even fewer studies investigated whether the rumen microbial 
activity degrades or biotransforms a substance of interest. Caloni 
et al. (2000) demonstrated a low depletion rate of Fumonisin B1  
in batch culture, and Mobashar et al. (2012) quantified the mi-
crobial degradation of ochratoxin A using the Hohenheim gas 
test, distinguishing the degradation efficiency of individual mi-
crobial groups by applying antibiotics and fungicides. Likewise, 
by using a centrifugation protocol, Westlake et al. (1989) and 
Kiessling et al. (1984) demonstrated the degradation of several 
mycotoxins by bacterial and protozoal preparations from ovine 
ruminal fluid. 

However, although a quick degradation of toxic compounds 
can sometimes be measured in batch culture, this does not always 
fit the observed fermentation pattern. For example, although pat-
ulin was shown to be unstable in rumen contents, decreasing to 
50% after 4 h of incubation and being hardly detectably after 18 h,  
it was still highly toxic to in vitro rumen fermentation (Morga-
vi et al., 2003). The same group also found that gliotoxin, a my-
cotoxin often found in conserved forages, was unstable in the 
rumen environment, decreasing by 90% after 6 h of incubation 
(Morgavi et al., 2004). Others, though, demonstrated the stability 
of some mycotoxins in the in vitro rumen. As such, recoveries of 
mycophenolic acid and roquefortine C, both mycotoxins of Peni-
cillium section roqueforti, were 79% and 41%, respectively, after 
48 h of incubation (Gallo et al., 2015). Likewise, aflatoxin B1 and 
deoxynivalenol were not degraded by ruminal microbes in vitro 
(Kiessling et al., 1984). Apparently, these compounds are quite 
resistant to microbial degradation or ruminal biotransformation 
and likely reach the lower gut. 

Only few studies have investigated contaminants other than 
fungal metabolites in batch culture. For example, Majak and 
Cheng (1987) determined the rates of glycoside hydrolysis and 
hydrogen cyanide release of three different cyanogenic glyco-
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times. A viability test must be performed after each experiment 
using secretagogues such as forskolin, theophylline or carbachol 
or nutrients that are transported by electrogenic mechanisms to 
confirm tissue functionality during the experiment. 

Other in vitro incubation techniques such as the everted sac 
technique (Harmeyer et al., 1973) can be used for absorption 
studies, however they do not allow the continuous control of tis-
sue functionality like the Ussing chamber technique. 

Gut epithelial cell culture models might help to understand lo-
cal metabolism of xenobiotics in gastrointestinal cells, but al-
though epithelial cell cultures from ruminal epithelium have 
been successfully established (e.g., Stumpff et al., 2009, 2011; 
Kent-Dennis et al., 2020), they have very rarely been used to 
analyze xenobiotic metabolism or transport. Most of the estab-
lished ruminal epithelial cell culture models are based on prima-
ry ruminal cells harvested from freshly killed animals. Thus, the 
use of immortal cell lines to test drug metabolism and cytotoxic-
ity (Allen et al., 2005) could reduce the number of required ani-
mals. Immortal enterocyte cell lines have been established from 
several species. For example, immortalized bovine epithelial cell 
lines from the rumen and small intestine have been used to study 
transport mechanisms of pathogens and to evaluate drug delivery 
via membranous epithelial cells (Miyazawa et al., 2010; Zhan et 
al., 2019). Another study established a sheep ruminal cell line to 
screen for possible interactions of transgenic feed and food com-
pounds with the cells lining the rumen (Bondzio et al., 2008). 

4  In vitro models for hepatic metabolism 

Once nutrients or contaminants have crossed the intestinal ep-
ithelium, either via active transport, passive transcellular dif-
fusion or the paracellular route, they are transported via blood 
to the liver or, when first transported with the lymph, enter the 
systemic blood circulation through the thoracic duct. Therefore, 
these substances may be subjected to different biotransformation 
and excretion pathways or may accumulate in different organs, 
including tissues used for human consumption. Understanding 
the fate of contaminants after intestinal absorption is thus piv-
otal for the assessment of risks for both animal health and con-
sumer safety. 

The liver, considered the most important metabolizing organ, 
consists of different cell types including hepatocytes, endotheli-
al cells, stellate cells, Kupffer cells, pit cells, and bile duct cells. 
Hepatocytes account for approximately 80% of the healthy liv-
er mass (Gerlach et al., 1994). The transporter-mediated uptake 
of endogenous substances and xenobiotics from the portal blood 
plasma into the hepatocytes occurs mainly via their sinusoidal 
(basolateral) membrane. In the context of metabolism, this pro-
cess is referred to as phase 0 (Döring and Petzinger, 2014). In 
humans, transport proteins from the class of organic anion trans-
porting polypeptides (OATP), organic anion transporters (OAT), 
cation transporters (OCT), and, to a lesser extent, the Na+/tau-
rochlorate cotransporting polypeptide (NTCP) are involved in 
the active uptake of compounds (Müller and Jansen 1997; Marin, 
2012). In contrast to the state of knowledge in humans and exper-

10 mmol/L to the serosal buffer solution used for incubating tis-
sues from the small intestines. For hindgut tissues, the mucosal 
buffer solution should contain acetate, propionate and butyrate at 
physiological molar proportions with an overall concentration of 
60 mmol/L. 

The Ussing chamber is connected to a computer-controlled 
voltage clamp unit. Electrodes located close to the tissues con-
tinuously measure the transepithelial potential difference (PDt). 
Under open circuit conditions, defined currents, which induce a 
short-term change in PDt, are applied to the tissue at regular in-
tervals. The transepithelial tissue resistance can be calculated us-
ing Ohm’s law. Active transepithelial electrogenic transport pro-
cesses generate an electric current that can be set to zero by in-
troducing a respective short circuit current (Isc) by a further pair 
of electrodes. Under these conditions, the Isc is a measure for all 
electrogenic transport processes. When both chemical and electri-
cal gradients are eliminated, the transport properties can be deter-
mined by measuring unidirectional flux rates from the mucosal to 
the serosal (Jms) and from the serosal to the mucosal  (Jsm)side of 
the tissue using radioactively labelled substrates. In the absence 
of any electrochemical gradient, the unidirectional flux rates dif-
fer significantly and result in a significant net flux (Jnet) when ac-
tive processes are involved in either absorption or secretion. 

Numerous studies have been carried out in recent years to 
identify the transport properties of intestinal phosphate (re-
viewed by Muscher-Banse and Breves, 2019) and gastrointesti-
nal calcium in ruminants (Wilkens et al., 2012; Schröder et al., 
2015). The effect of SCFA on electrophysiological and co-trans-
port properties of calcium, sodium or urea across the bovine and 
ovine rumen epithelium have been studied, respectively (Sehest-
ed et al., 1995; Uppal et al., 2003; Abdoun et al., 2010). The Uss-
ing chamber technique has also been used to understand chlo-
ride secretion and intraepithelial metabolism of histamine in both 
the porcine colon and the bovine rumen (Aschenbach and Gäbel, 
2000; Ahrens et al., 2003; Kröger et al., 2013, 2015). Whereas 
the flux rates of electrolytes can be quantified based on radioac-
tively labelled substrates, the exact measurement of organic nu-
trients or contaminants necessitates a more laborious approach, 
as most organic compounds are subjected to intraepithelial me-
tabolism. Thus, sensitive analytical methods are needed to quan-
tify the mucosal uptake and serosal release, also of metabolites 
formed in the epithelium, and the potential tissue accumulation 
as a function of time. This approach was successfully introduced 
for measuring transport processes of SCFA in the porcine hind-
gut (Herrmann et al., 2011). In addition, epithelial transfer of the 
colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]
pyridine (PhIP) was evaluated across the rat intestine (Nicken et 
al., 2013). Finally, the Ussing chamber technique has been suc-
cessfully applied to measure drug transfer in human intestinal tis-
sues (Rozehnal et al., 2012; Sjöberg et al., 2013). Alternative-
ly, the specific radioactivity in the mucosal and serosal compart-
ments can be measured. 

The gastrointestinal segments can only be incubated for limit-
ed times. Whereas rumen epithelial tissues can be incubated for 
at least 6-7 h, tissues from the small intestine can only be used for 
approximately 2.5-3.5 h; hindgut tissues survive for intermediate 
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Yoshioka et al., 2016), and subcellular fractions derived from 
liver homogenates. CYP, UGT or SULT isoenzymes can be ex-
pressed recombinantly in insect cells (supersomes) or E. coli 
(bactosomes) (Asseffa et al., 1989; Kost et al., 2005).

Subcellular fractions of liver tissue can be divided by differ-
ential centrifugation into the 9000 × g supernatant fraction (S9 
fraction), cytosol and microsomes (von Jagow et al., 1965; Hub-
bard et al., 1985; Graham, 2002; Richardson et al., 2016). The S9 
fraction, which is also commercially available from a variety of 
species, contains both the enzymes present in the cytosol (e.g., 
SULTs, GSTs) and those bound in the microsomes (e.g., CYPs, 
UGTs). After cell lysis, a solution containing broken cells, small 
fragments of the plasma membrane and the endoplasmic reticu-
lum is obtained, while the organelles (e.g., mitochondria, nuclei, 
lysosomes) remain intact. 

This lysate then can be subjected to a series of centrifugation 
steps in an ultracentrifuge to be fractionated into several com-
ponents, e.g., into microsomes and cytosol (1 h at 104’000 × g).  
The microsomal fraction consists of vesicles that are formed from 
the endoplasmic reticulum, containing phase I and phase II en-
zymes (Kedderis, 2018; Sanchez and Kauffman, 2010). Micro-
somes are widely used to evaluate the metabolic stability and 
metabolite formation of a compound. Accordingly, they can be 
used to identify possible metabolization of undesirable substanc-
es that enter the animal after being absorbed from the gut. For 
this, the substance of interest is incubated with a buffer contain-
ing the microsomes and cofactors (Jia and Liu, 2007; Knights 
et al., 2016). The activity of the CYPs and UGTs, however,  
can vary depending on the buffer. In general, 50-100 mM Tris 
HCl (pH 7.5 at 37°C) or potassium or sodium phosphate buffer 
(pH 7.4) is suitable, but UGTs appear more active in Tris buffers 
than in phosphate buffers (Boase and Miners, 2002; Engtrakul et 
al., 2005; Argikar et al., 2016; Badée et al., 2019). Metabolism 
studies require the addition of cofactors for the target enzyme, 
e.g., 1-4 mM NADPH for CYPs or 2 mM uridine diphosphate 
glucuronic acid (UDPGA) for UGTs. The protein concentration 
of the enzyme solution can be adjusted depending on the applica-
tion and susceptibility of the substrate (Jones and Houston, 2004). 
Metabolization can be started by preheating the substrate, buffer 
and cofactors at 37°C and adding the cold enzyme fraction. An al-
ternative approach is to preheat the enzymes, substrate and buf-
fer and start metabolization by adding the cofactor. The reaction 
is stopped at specified times by adding ice-cold organic solvent 
(e.g., methanol, acetonitrile optionally acidified with formic acid 
or ammonium formiate). The samples should then be well mixed 
by vortex and stored for at least 20 min at -20°C to -80°C to facil-
itate precipitation of proteins and salts, which can finally be sedi-
mented by centrifugation (Jia and Liu, 2007; Knights et al., 2016). 
The enzymatic degradation of the substrate and the identification 
of metabolites may be investigated using, e.g., liquid chromatog-
raphy coupled to mass spectrometry, nuclear magnetic resonance 
spectroscopy, UV or radioactivity detection (Wen and Zhu, 2015; 
De Vijlder et al., 2018; Foroutan et al., 2019; Zhang et al., 2019; 
Thiel et al., 2019; Tolonen and Pelkonen, 2015). 

In vitro hepatic metabolism studies have been conducted for 
numerous contaminants (e.g., Maul et al., 2012; Kolrep et al., 

imental animals, little is known about the occurrence of uptake 
transporters in ruminant tissues. It was shown that OATPs can al-
so be found in cattle tissues (Liu et al., 2013; Xiao et al., 2014). 

After uptake, hepatocytes are responsible for converting lipo-
philic (toxic) xenobiotics such as dietary and environmental pol-
lutants (plant and fungal toxins, pesticides, herbicides, etc.) and 
drugs into water-soluble forms, so-called metabolites, which can 
be eliminated from the body via the excretory organs, i.e., kidney 
and intestine. However, this process can sometimes activate pre-
viously non-toxic substances into toxic metabolites or increase 
the potency of already toxic substances. Accordingly, the liver 
not only has a high detoxification capacity, but also an activating 
potential of xenobiotics (e.g., pyrrolizidine alkaloids; Mattocks, 
1986; Roeder, 2000; Wiedenfeld and Edgar, 2011; or aflatoxins; 
Kuilman et al., 2000; Alvarado et al., 2017). 

The two phases of biotransformation of both endogenous and 
exogenous compounds are referred to as phase I and phase II re-
actions. Phase I reactions are catalyzed by enzymes such as cy-
tochromes P-450 (CYPs) or other oxidoreductases. Often, nucle-
ophilic groups are introduced into the molecules, e.g., hydroxyl 
groups. Further phase I reactions are hydrations and dehydra-
tions. Phase II enzymes such as uridine diphosphate glucurono-
syltransferases (UGTs), glutathione S-transferases (GSTs), sul-
fotransferases (SULTs) or amino acid transferases conjugate 
nucleophilic groups of xenobiotics or their oxidized phase I me-
tabolites with highly ionized hydrophilic molecules such as glu-
curonic acid (He et al., 2010; Maul et al., 2012; Li et al., 2017a), 
glutathione (Larsson et al., 1994; Muluneh et al., 2018), sul-
fate (Smith and Shelver, 2002; Li et al., 2017a) or amino acids 
(Knights et al., 2007). For this purpose, phase II enzymes re-
quire cofactors. Conjugates can be further metabolized or passed 
through an enterohepatic cycle. Excretion of phase I metabolites 
or conjugates can occur renally, biliarily, by sweat or by breath.

Species differences in metabolism between humans and animal 
species are of great importance for the risk assessment of xeno-
biotics. If the metabolism of compounds in humans and animals 
varies qualitatively or quantitatively, this leads to different con-
centrations of the given compound and its metabolites in the tar-
get organ or in the food of animal origin. Consequently, sensi-
tivity to the compound also differs between the target species at 
the same administered dose. For example, of the 57 human CYP 
isoforms known to date, CYP1A1, 1A2, 2A6, 2A13, 2B6, 2C8, 
2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 3A4, 3A5, 3A7 are attribut-
ed relevance for the metabolism of foreign substances. The iso-
forms mentioned have a low catalytic specificity, are often induc-
ible and show considerable intra- and inter-species differences in 
their enzyme activities (Guengerich, 1997). Orthologous CYPs 
in the liver of humans, rats and ruminants can vary considerably 
with regard to their expression levels, substrate selectivities and 
catalyzed reactions (Pelkonen et al., 1998; Dacasto et al., 2005). 

An in vitro model for the metabolism of contaminants should 
reflect the in vivo situation of the liver as closely as possible. Be-
sides the perfused ex vivo liver described in Section 5.1, estab-
lished in vitro models include liver slices (Viviani et al., 2017), 
primary hepatocytes (Ehrhardt and Schmicke, 2016; Witte et al., 
2019), immortalized (transgenic) cell lines (Kuroda et al., 2015; 
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5.1  Kidney and liver perfusion models
The isolated and perfused liver already was described for 
various animal species almost a century ago (Plattner, 1924; 
Höber and Titajew, 1930; Haywood et al., 1945; Gunberg et 
al., 1955). The first model of a perfused bovine (calf) liver was 
described in the 1960s (Chapman et al., 1961). Studies using 
isolated perfused porcine and dog kidneys were conducted 
even earlier to study factors influencing urine formation (Loe-
bell, 1849; Starling et al., 1925; Nizet, 1975). Today, studies 
are performed with porcine livers and kidneys from slaugh-
tered animals due to their anatomical similarity to humans, 
their model role for circulatory death, and their accessibility 
(Grosse-Siestrup et al., 2003; Dondossola et al., 2019). The 
isolated porcine or bovine liver or kidney can be perfused with 
modified artificial fluids or heparinized blood and allows the 
study of the biotransformation of molecules of interest (e.g., 
contaminants), excretion through the venous blood, urine or 
bile, and possible adverse effects on hepatic or renal function. 
Sampling of arterial and venous fluids as well as bile allows 
toxicokinetic modelling at whole-organ level. 

5.2  The perfused bovine udder
A variable amount of systemically available contaminants is 
excreted with the milk. This depends on their lipophilicity and 
degree of ionization, because the pH of milk (pH 6.5 to 6.7) is 
lower than that of blood. Therefore, partitioning of weak acids 
through the blood milk barrier is limited. Accordingly, the ratio 
of the ionized and the non-ionized form of compounds is high in 
the blood plasma. 

The penetration of the blood-milk barrier by a compound can 
be predicted in silico based on the pH, pK-dependent partitioning 
phenomenon. Ziv and Rasmussen (1975), Shen-Tov et al. (1997) 
and others calculated the transfer rate of various compounds 
from blood plasma into milk and found a good correlation of the 
predicted data with results of in vivo studies (concentration in 
milk samples of treated cows). Possible inducible active trans-
port processes should also be considered (Halwachs et al., 2013; 
Mahnke et al., 2016). 

First perfusion models of the bovine udder already were de-
scribed in the 1950s (Peeters and Massart, 1952; James et al., 
1956; Verbeke et al., 1957). Since the isolated perfused bovine 
udder first was used to study the distribution of antibiotics in 
the udder tissue (Kietzmann et al., 1993), various ex vivo stud-
ies were performed to study the tissue distribution of β-lactam 
antibiotics, marbofloxacin and cefquinom (Ehinger and Kietz-
mann, 1998, 2000a,b, 2001, 2006; Kietzmann et al., 2008). Ad-
vantages of using the isolated perfused udder are that both tissue 
and milk samples can be taken repeatedly at various time points. 
A disadvantage is the relatively short duration of tissue viabili-
ty of up to about 8 h, which must be controlled during perfusion. 
Suitable viability parameters that can be measured in the perfu-
sate include glucose consumption, lactate production, and lactic 
dehydrogenase (LDH) concentration. Additionally, cell viability 
can be determined in tissue samples by cell viability tests. Anoth-
er disadvantage is that isolated organs are deprived of nervous 
regulation and lymph drainage.

2018). Hayes et al. (1977) determined more than five phase I me-
tabolites after incubation of aflatoxin B1 with bovine liver micro-
somes. In a subsequent feeding study, one of these metabolites, 
aflatoxin M1, was extracted using organic solvents from kidney, 
liver and mammary gland obtained from a cow receiving 7.31 
mg/day aflatoxin B1 over a 14-day period. 

The metabolism of various toxic pyrrolizidine alkaloids pres-
ent in many plants belonging to the families of Asteraceae has 
also been studied using liver tissue fractions from cattle (Huan 
et al., 1998; Duringer et al., 2004; He et al., 2010; Fashe et al., 
2015; Kolrep et al., 2018; Muluneh et al., 2018). In vivo studies 
with cows provide evidence that some of these pyrrolizidine al-
kaloids or their metabolites are transferred to milk (Dickinson et 
al., 1976; Johnson, 1976; Candrian et al., 1991; Hoogenboom et 
al., 2011). 

When the in vitro liver metabolism is known and the metabo-
lites can be identified, it can be judged whether there is a need to 
measure these metabolites in food of animal origin (e.g., milk, 
meat). However, due to the often-lacking standards for the result-
ing metabolites, their discovery remains a challenging task. 

In phase III of metabolism, the metabolites as well as unme-
tabolized substrates are transported out of the hepatocytes by a 
transporter-mediated efflux either via the basolateral membrane 
into the portal blood for renal excretion or via the canalicular 
(apical) membrane into the bile for fecal excretion (Döring and 
Petzinger, 2014; Müller and Jansen 1997; Marin, 2012). These 
transport proteins belong to the superfamily of ATP-binding cas-
sette (ABC) transporters and are well characterized in humans. 
The data on the occurrence of efflux transport proteins in farm 
animals is as limited as on uptake transport proteins. Results ex-
ist on the expression of efflux transporter ABCG2/BCRP in tis-
sue barriers of lactating dairy cows, sheep and goats (Lindner 
et al., 2013). The large data gaps regarding the transport mech-
anisms of xenobiotics in farm animal tissues have been point-
ed out by several scientists (Martinez et al., 2018; Virkel et al., 
2019; Rosa, 2020). There remains an urgent need for research on 
this topic.

5  Ex vivo organ perfusion models 

Biotransformation processes are the result of a complex inter-
play of different metabolic and cellular systems that cannot be 
captured with simple cell culture models. Excretion pathways 
via bile, urine or milk, putative re-absorption from the intestinal 
tract or further metabolism after initial hepatic biotransformation 
contribute to the complexity. Thus, ex vivo perfusion models in-
cluding whole organs or even body parts may help to generate 
information about the fate of contaminants in the body without 
using live animals (Daniel et al., 2018). Organs may often be ob-
tained from slaughterhouses instead of from purpose-killed ani-
mals (Grosse-Siestrup et al., 2002). Such perfusion models have 
a long tradition in toxicological testing and for studying and im-
proving the preservation conditions for organs intended for trans-
plantation in humans. They may also be used to gain insight into 
the metabolism and transfer of contaminants. 
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ter case they are called physiologically-based toxicokinetic mod-
els (PBTK). Techniques exist to reduce the complexity incurred 
by including many physiological tissues and combine them in-
to simpler compartment models, bridging TK and PBTK models 
(Pilari and Huisinga, 2010). Both flows and reactions in the com-
partments are represented with corresponding parametric differ-
ential equations, which yield the change in amount or concentra-
tion in each compartment over time.

Interest in PBTK models is growing, as their ability to accu-
rately reflect the physiology of the underlying modelled process-
es makes them more accurate provided sufficient data is avail-
able. Modeling physiological processes may increase the predic-
tive ability of PBTK models compared to empirical TK models. 
There is much potential in this field, and research is progressing 
fast, especially in the field of animal health (Lin et al., 2016).  
PBPK/TK models have been developed for ruminants (goats, 
cows) by Leavens et al. (2012) and Li et al. (2018). While the 
goat model by Leavens et al. (2012) was developed for veteri-
nary purposes, the cow model was developed to ensure compli-
ance with maximum residue levels of penicillin in milk. 

In vitro-to-in vivo extrapolation (IVIVE) in conjunction with 
PBPK/TK is an approach to bridge in vitro and in vivo data and 
to examine the key mechanisms determining the kinetics. PBTK 
modeling has also been used to address IVIVE for animal-free 
risk assessment (Fabian et al., 2019). In that study, an eight com-
partment PBTK rat model was developed and its predictive effi-
cacy assessed by comparing it to relevant in vivo studies. 

Kinetic models can be built using available knowledge about 
physical and computational chemistry, animal physiology (mod-
els of systems), animal experimental data (empirical models) or 
a combination thereof (hybrid models) (Bonate, 2011). To de-
scribe the fate of a substance in an organism with (PB)TK mod-
eling, the optimal kinetic equation parameters must be estimat-
ed, i.e., the parameters that ensure the model equations follow a 
time trajectory consistent with what one would observe in vivo. 
Data from in vivo feeding experiments can be used and fitted to 
the model equations to identify the kinetic parameters of inter-
est (Bonate, 2011). Alternatively, one can use data derived from 
the literature, i.e., from in vitro models and from in silico predic-
tion algorithms (computational toxicology) (Bolt and Hengstler, 
2020) to obtain estimates for TK parameters, reducing or elim-
inating altogether the need for animal experiments (Paini et al., 
2019). This approach poses challenges but at the same time has 
much potential (Lin and Wong, 2017), both for the sake of an-
imal and human health and for saving time and money in the 
risk assessment of new undesirable substances. In the following, 
we present a summary of how (PB)TK models can be used as 
the final step to validate, complete and integrate the information 
gained from in vitro models of ruminants, such as the ones pre-
sented in the previous sections.

6.2  Integrating in vitro and ex vivo data  
using kinetic modeling
PBTK models are powerful tools that can be used to simulate the 
change in concentration of a xenobiotic in tissues (local inter-
nal exposure) of interest upon (external) exposure. They can be 

Medium sized udders of slaughtered healthy lactating cows 
are used. Directly after slaughtering, blood clots in the gland’s 
vessels are cleared using heparinized Tyrode’s solution. In the 
laboratory, the udder can be fixed in a “natural” position using 
a metal frame. The perfusion must be started within minutes af-
ter insertion of silicone tubes into the large arteries of each ud-
der half. The large veins are also cannulated to allow sampling 
and removal of the perfusate. Smaller veins are closed using ar-
tery forceps. After an equilibration period, the perfusion is con-
tinued with a fluid containing the test compound. In most exper-
iments by Ehinger and Kietzmann (1998, 2000a,b, 2001, 2006) 
and Kietzmann et al. (2008), the isolated bovine udder was per-
fused with Tyrode’s solution, which resembles lactated Ringer’s 
solution but contains magnesium, a sugar (usually glucose) as 
an energy source, and bicarbonate and phosphate instead of lac-
tate. Perfusion with heparinized and diluted blood also is possi-
ble. However, selecting the most suitable perfusion medium de-
pends on the solubility of the test compound in the perfusion flu-
id. When the time-dependent blood plasma concentration of a 
test compound or its metabolites is known, the udder perfusion 
can be performed with its adapted concentrations to simulate re-
alistic situations. The measured tissue and milk concentrations 
allow calculating the amount of test compound that is eliminat-
ed via milk. 

Unlike in vivo experiments on intact animals, the isolated per-
fused bovine udder model enables the investigator to retain con-
trol over various internal and external variables, such as type 
and composition of the perfusate or a certain treatment before or 
during the experiment, e.g., the impairment or improvement of 
organ physiology. 

6  Integrating in vitro and in silico generated 
data using kinetic modelling

In vitro, ex vivo and in silico methods produce data about indi-
vidual in vivo physiological processes describing the transfer of 
undesirable substances in ruminants. To integrate these data from 
individual methods into a coherent whole, a systems biology ap-
proach like kinetic modelling is required. 

6.1  Toxicokinetic modelling
Kinetic modelling is a mathematical tool used to predict absorp-
tion, distribution, metabolism and excretion (ADME) of a sub-
stance of interest in live organisms. The substance may be a 
drug, in which case the term used is pharmacokinetics (PK), or 
a toxin or toxicant, in which case the term used is toxicokinetics 
(TK). Kinetic models describe the fate of a substance entering 
an organism by compartmentalizing the organism and using dif-
ferential equations based on biochemical principles to describe 
the mass flows between various compartments and the chemi-
cal reactions happening within. These compartments may be ad-
hoc groups of tissues and organs (Numata et al., 2014) or repre-
sent well-defined physiological structures, e.g., the extracellular 
space of the liver (Savvateeva et al., 2020). In the former case, 
the models are called compartment TK models, and in the lat-
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cause of the heterogeneity of gut microbiota, which may metab-
olize the modelled substance. The digesta flow can be estimat-
ed from physiological equations and animal science literature. 
Absorption into the blood can be estimated with data from Uss-
ing chamber experiments. Predicting the chemical reactions that 
a substance may undergo requires a different approach. As dis-
cussed above, continuous or batch culture models can be used to 
investigate the metabolization of contaminants by ruminal mi-
crobiota. If reaction rates for metabolites can be obtained, they 
can be included in the model, improving its performance and ac-
curacy.

Intestine
Two key parameters for the intestinal compartment are the ab-
sorption rate into blood and the rate of fecal excretion. The ab-
sorption rate from the intestine depends on a variety of factors, 
including the membrane’s permeability, the substance’s stability 
in the digesta, and the time available for absorption (Cho et al., 
2014). The stability can be assessed by using incubation meth-

extrapolated across species, doses, routes of administration and 
compounds, as well as used for IVIVE (Li et al., 2017b; Fabian et 
al., 2019; Lin et al., 2020). An example of how PBTK can be em-
ployed to extrapolate the fate of xenobiotics from dairy cattle to 
other species can be found in MacLachlan (2009). Such models 
require detailed knowledge on chemical attributes (e.g., partition 
coefficients) and, in the case of PBTK, of physiological variables 
(e.g., cardiac output, organ weights, and blood flow rates) (Lin et 
al., 2020), some of which can be challenging to obtain without in 
vivo data. In the next paragraphs, the feasibility of determining 
such essential variables using in vitro, ex vivo and literature data 
will be discussed for each of the organs and tissues most relevant 
for assessing the kinetics of xenobiotics in ruminants exposed 
through the oral route (Fig. 1).         

Rumen
The rumen compartment is of crucial importance when model-
ling the fate of xenobiotics after oral intake, not only because it 
determines the rate of digesta flow to the intestine, but also be-

Fig. 1: A representative example of a toxicokinetic model for ruminants
The colored compartments represent the various organs or tissues; the flows of contaminants in and out of compartments are represented 
by straight lines and the chemical reactions happening in specific compartments by curved lines. These flows and reactions are governed 
by kinetic parameters, which are given next to the corresponding arrow. The concentration change of a contaminant (and potentially its 
metabolites) in each compartment is expressed in the form of a parametrized differential equation. One subscript letter: internal reactions 
(e.g., liver metabolization, microbiome-mediated reactions, etc.). Two subscript letters: mass flow from one compartment (first letter) to 
another (second letter). Three subscript letters: excretion mass flow from one compartment (first letter) followed by the “o” for output 
(second letter), followed by the excretion route (last letter). f, feed; x, exposure route; r, ruminal solids; j, ruminal fluid; i, intestine; b, blood;  
l, liver; m, muscle tissue; a, adipose tissue; k, kidney; u, udder; of, out feces; om, out milk; ou, out urine
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roalkyl acids (PFAAs) (Forsthuber et al., 2020). This binding can 
be explicitly built into PBTK models, where only the free, un-
bound fraction is available for exchange with other tissue com-
partments (Loccisano et al., 2013). 

Liver
The liver plays an essential role in the metabolization of chemi-
cals in the body. It can act both as a sink (detoxification) or as a 
source (bioactivation) of xenobiotics. It is therefore important to 
establish whether and how a xenobiotic is processed in the liver 
and to determine hepatic clearance (the rate at which a substance 
is degraded or transformed in the liver). Theoretical models that 
describe hepatic clearance are available for humans (Laveé and 
Funk, 2007) and can be adapted to other mammals such as rumi-
nants. Information about the blood perfusion rate to the liver can 
be obtained from animal science literature (e.g., Lescoat et al., 
1996). The actual liver reactions can be investigated either using 
ex vivo perfused liver models or in vitro hepatic models as de-
scribed above. The liver biochemical reactions with their rate pa-
rameters can then be included in the PBTK model1, encompass-
ing possible self-induced metabolism (Savvateeva et al., 2020). 
Like other tissues, the liver may contain proteins that specifically 
interact with and store xenobiotics.

Kidneys
The kidney compartment in the model predicts the fraction of 
substance excreted via urine. Although no in vitro model exists 
that can simulate complete kidneys, the ex vivo perfused kid-
ney model or in silico models can be used to obtain data with-
out animal experiments. Kidneys are a challenging organ to mod-
el, since they are key not only to excretion processes but also to 
osmoregulation, which is subject to complex hormonal regula-
tion and causes kidney activity to steadily change in response to 
internal and external stimuli. Nevertheless, it is possible to fo-
cus on physiological parameters of central relevance: glomerular 
filtration, tubular reabsorption and secretion. Depending on the 
modelled substance, reabsorption and secretion may be exclud-
ed from the model, whereas the glomerular filtration rate (GFR) 
is indispensable. In fact, the GFR has been shown to be propor-
tional to renal drug clearance in some human PBPK renal mod-
els (Janků, 1993), making it one of the most relevant parameters 
for modelling renal excretion of xenobiotics. Although to date 
no such computational model exists for ruminants, the advances 
in predicting human renal clearance and urinal excretion (Dod-
dareddy et al., 2006; Huang and Isoherranen, 2018; Watanabe et 
al., 2019) suggest the feasibility of developing similar prediction 
models for ruminants.

Udder
The udder compartment can be modelled by knowing the blood 
perfusion rate and the milk production rate, available in animal 
science literature (e.g., NRC, 1988), as well as other kinetic pa-
rameters quantifying the transfer through the blood-udder barrier 

ods, as mentioned above. The time available for absorption is the 
transit time of digesta in the intestine, which can be found in an-
imal science literature. As with the rumen, the permeability of 
the intestinal walls to a substance and epithelial metabolism can 
be investigated with the Ussing chamber technique. Fecal excre-
tion rates can be calculated based on physiological equations and 
bioenergetics (Gabel et al., 2003). If the absorption rate of a sub-
stance into the blood and the frequency and amount of fecal ex-
cretion are known, substance concentrations in both feces and 
blood can be estimated.

Adipose, muscle and blood-tissue compartments
The blood-tissue compartment connects all other compartments 
in the (PB)TK model, reflecting the physical reality of the animal 
organism. The influx of substance from the GIT, which plays a 
significant role in determining the substance levels in blood, has 
already been described. Likewise important are the flows to and 
from the remaining compartments. Peripheral compartments are 
relevant for substances that accumulate in kinetically slower tis-
sues (such as lipophilic substances in adipose tissue or lead in 
bones), and muscle tissue may be relevant for substances that can 
bind to proteins. 

An effective approach in such cases is the estimation of par-
tition coefficients. A partition coefficient is the ratio of concen-
trations of a compound between two distinct phases (in this case 
tissues or groups of tissues) at equilibrium. To apply partition co-
efficients, it is unnecessary that the transfer kinetics for all pro-
cesses are in equilibrium or steady state, but it is crucial that the 
local distribution kinetics between the two relevant phases is fast 
compared to other kinetic processes (quasi-equilibrated state). 
The distribution of a substance from the blood to those tissues 
can be modelled as the diffusion between two phases of a solute, 
a process that may be adequately described by a partition coeffi-
cient. A range of such partition coefficient prediction algorithms 
exists, from those that use a simple octanol-water partition co-
efficient to account for the transfer of lipophilic substances into 
the tissue (Hermens et al., 2013) to more complex formulations, 
where the biological tissue is represented by a complex mixture 
of biochemicals (Schmitt, 2008; Poulin and Theil, 2000). Sever-
al in vivo and in silico methods are available to predict partition 
coefficients (Graham et al., 2012). More sophisticated predictors 
of partition coefficients, like those based on the polyparameter 
linear free energy relationship (pLFER) (Endo et al., 2013), can 
be used to capture the complex thermodynamics of biological 
molecules. Such an approach was applied by Savvateeva et al. 
(2020) to develop (PB)TK models of contaminants in growing 
pigs. Nevertheless, using partition coefficient prediction methods 
has limitations, given that they fail to represent differences in lip-
id types and other specific molecular interactions and non-cova-
lent binding relevant for biological systems.

Specific binding to blood proteins can be studied using in vitro 
methods (MacManus-Spencer et al., 2010). For instance, serum 
albumin is the most important blood protein carrier for perfluo-

1 Sontag, E. D. (2011). Lecture notes on mathematical systems biology. https://www.coursehero.com/file/41362918/Mathematical-Systems-Biologypdf/

https://www.coursehero.com/file/41362918/Mathematical-Systems-Biologypdf/
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