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chemical hypothesis, which is invalid for compounds with poor 
passive permeability where tissue concentrations are modulated 
by either active uptake or efflux membrane transporters (Zhang 
et al., 2019a). For certain compounds, it has been found that the 
steady-state ratio of unbound tissue concentrations against un-
bound plasma concentration (Kp,uu) can be much greater than 
one, indicating tissue accumulation. For example, the rosuvas-
tatin (RSV) liver Kp,uu (Kp,uu,liver) was estimated to be 57, repre-
senting a 57-fold higher unbound RSV concentration in the liv-
er versus plasma (Zhang et al., 2019b). Therefore, the unbound 
plasma concentration can be an inappropriate measure of the un-
bound tissue concentrations. Conventionally, intracellular un-
bound concentrations are assessed by harvesting tissues of an-
imals dosed with the compound of interest. However, with the 

1  Introduction

A quantitative understanding of the free or unbound concentra-
tions of a chemical compound within various tissues of the body 
is necessary to fully appreciate its pharmacodynamic or toxico-
dynamic potential (Chu et al., 2013). It is accepted that only the 
intracellular unbound fraction of a biologically active compound 
interacts with its molecular target, driving the potential for effica-
cy or toxicity. In the pharmaceutical sector, where clinical stud-
ies using human subjects are performed frequently, the unbound 
plasma concentration (measured plasma concentration multi-
plied by fraction unbound (fu,p)) is frequently assumed to be a 
surrogate measure of unbound tissue concentrations (Ryu et al., 
2020). However, this relies on the assumption of the free drug/
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Abstract
Advances in physiologically-based biokinetic (PBK) modelling, in vitro-to-in vivo extrapolation (IVIVE) methodologies, 
and development of permeability-limited biokinetic models have allowed predictions of tissue drug concentrations without 
utilizing in vivo animal or human data. However, there is a lack of in vivo human tissue concentrations to validate these 
models. Herein, we validated the performance of our previously published bottom-up rosuvastatin (RSV) PBK model with 
clinical data from a recently published study that made use of positron emission tomography (PET) imaging to quantify the 
hepatic concentrations of [11C]RSV drug-drug interaction (DDI) with cyclosporine A (CsA). Simulated RSV area under the 
plasma concentration-time curve (AUC0h-t) and maximum plasma concentration (Cmax) before and after DDI were within 
1.5-fold of the observed data. Simulated AUC0-30min and Cmax ratios in the DDI setting matched the observed ratios 
closely (within 1.1-fold). To predict RSV hepatic concentrations, the model inputs were modified to account for RSV in the 
bile canaliculi after biliary excretion. The model recapitulated the observed hepatic concentrations before DDI and the 
decrease in hepatic concentrations after DDI. Simulated area under the liver concentration-time curve (AUC0-30min,liver), 
maximum liver concentration (Cmax,liver), AUC0-30min,liver ratio and Cmax,liver ratios were predicted within 1.5-fold  
of the observed data. In summary, we validated the ability of bottom-up PBK modelling to predict RSV hepatic concen-
trations with and without DDI with CsA. Our findings confirm the importance to account for drug distributed within the bile  
canaliculi for accurate prediction of hepatic tissue drug levels when compared against in vivo liver PET scan data. 
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kinetic measurements to permit in vitro-to-in vivo extrapolation 
(IVIVE) for the prediction of human ADME parameters. Impor-
tantly, using appropriate scaling factors, one can robustly predict 
the plasma concentration time-course using purely in vitro da-
ta (bottom-up approach). We have recently published an exam-
ple illustrating this approach using three metabolism- and trans-
porter-dependent compounds (RSV, fluvastatin and pitavastatin) 
(Chan et al., 2019).

Besides predicting plasma concentrations, recent advances 
in PBK modelling have led to the development of permeabil-
ity-limited biokinetic models for specific organs that have sig-
nificantly improved the IVIVE of transporter-dependent com-
pounds. Such models have been developed for different organs 
including the liver and kidney (Jamei et al., 2014; Steffansen et 
al., 2015; Huang and Isoherranen, 2018). Permeability-limited 

growing shift towards non-animal testing methods for risk as-
sessment of chemicals, there is a need for alternative methods to 
obtain unbound chemical concentrations in human tissues. This 
in turn has driven the development of various in silico methods 
to obtain unbound tissue concentrations, such as physiological-
ly-based biokinetic (PBK) modelling. 

PBK modelling, also commonly described as physiological-
ly-based pharmacokinetic/toxicokinetic (PBPK/PBTK) model-
ling, utilizes an anatomically and physiologically accurate math-
ematical representation of the human body to predict the bioki-
netics of chemical compounds. It incorporates key parameters, 
such as tissue volumes, blood flow, protein binding, and meta-
bolic enzyme and transporter expression levels that influence the 
absorption, distribution, metabolism and excretion (ADME) of 
chemicals. PBK models can be parameterized with in vitro bio-

Fig. 1: Full physiologically-based 
biokinetic model framework used within 
Simcyp® to simulate the plasma and 
organ tissue concentration-time profile, 
including the associated permeability-
limited liver model used to describe 
the hepatic distribution of rosuvastatin 
between the vascular space (VS), 
extracellular water (EW) and intracellular 
water (IW) compartments 
The VS consists of blood supply 
arriving from the portal vein and hepatic 
artery. Distribution of the unbound, 
unionized compound between the VS 
and EW is instantaneous, while the 
distribution between the EW and IW 
would depend on the rate of passive 
diffusion (CLPassiveDiffusion), active 
uptake (CLUptake,Basolateral), and active 
efflux (CLEfflux,Basolateral). Elimination 
of the unbound compound from the IW 
would depend on the rate of metabolism 
(CLMetabolism) and rate of biliary excretion 
(CLBiliaryExcretion). The fraction unbound  
in the intracellular water (fuIW) is influenced 
by the binding of the compound to 
intracellular neutral phospholipids (NP), 
neutral lipids (NL), and acidic phospholipids 
(AP). The three equilibrium processes  
refer to (a) binding to plasma protein, NP, 
NL and AP, (b) ionization of the compound, 
and (c) instantaneous equilibrium of 
unbound, unionized compound between 
the VS and EW.
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biokinetic models divide the organ into three compartments: in-
tracellular, extracellular and vascular space. An example of a 
permeability-limited model for the liver is illustrated in Figure 
1. Typically, it is assumed that blood capillaries do not present a 
barrier to small molecule solutes; hence the unbound, unionized 
compound undergoes instantaneous equilibrium between the 
vascular and extracellular space. From the extracellular space, 
the unbound compound crosses the biological membrane bar-
rier via passive diffusion, transporter-mediated uptake or both. 
Within the intracellular compartment, the unbound compound 
can exit the cell through passive diffusion and transporter-medi-
ated efflux back into the extracellular space via the basolateral 
membrane or be excreted via the apical membrane. Additional-
ly, it may undergo metabolic clearance in the intracellular com-
partment. In each compartment, the fraction of each chemical 
that is free or unbound is a critical parameter that influences the 
kinetics of all these processes. The structure of such permea-
bility-limited biokinetic models allows for mechanistic model-
ling of the concentration and time-course of permeability-lim-
ited compounds in the intracellular and extracellular compart-
ments. The use of permeability-limited biokinetic models, 
parameterized by in vitro passive and active transport data, has 
significantly improved the predictions of plasma concentrations 
(Chan et al., 2019). 

While it is possible to predict tissue concentrations using these 
models, the major challenge lies in obtaining relevant in vivo hu-
man tissue concentrations for model validation. Quantitative im-
aging methods such as positron emission tomography (PET), con-
trast enhanced magnetic resonance imaging, and γ-scintigraphy 
may be used to measure tissue concentrations (Guo et al., 2018). 
Due to the cost of conducting clinical imaging studies, such stud-
ies are not routinely performed. Instead, it has been suggested 
that quantitative imaging of a small number of probe transporter 
substrates may be performed to validate and refine existing PBK 
models and build confidence in the predictions of tissue concen-
trations (Guo et al., 2018; Billington et al., 2019). 

In 2019, a landmark study published by Billington et al. uti-
lized PET imaging to quantify the concentrations of [11C]RSV 
in various organs including the liver and kidney with and with-
out drug-drug interaction (DDI) with cyclosporine A (CsA) (Bil-
lington et al., 2019). This was a first-of-its kind study that pro-
vided crucial in vivo tissue level data needed to validate predic-
tions of hepatic RSV concentrations in humans. As a compound 
with high solubility but poor metabolism and permeability, RSV 
is classified as a Biopharmaceutics Drug Disposition Classifica-
tion System (BDDCS) class 3 compound (Benet et al., 2011). As 
a result, elimination of RSV relies on hepatic uptake transport-
ers. It is an FDA recommended probe substrate for hepatic up-
take transporters such as organic-anion transporting polypeptide 
1B1 and 1B3 (OATP1B1 and OATP1B3) and efflux transport-
ers such as breast cancer resistant protein (BCRP) (US Food and 
Drug Adminstration, 2020). Thus, RSV is an ideal compound to 
study the effect of transporters on modulating intracellular he-
patic concentrations. Furthermore, it undergoes minimal metab-
olism, reducing confounding effects from possible metabolites 
of [11C]RSV when quantifying hepatic [11C]RSV concentrations 

from PET scan images. This is because PET imaging is unable to 
discriminate between signals arising from the parent [11C]RSV  
and its metabolite (Kaneko et al., 2018). Finally, as CsA is a 
validated clinical probe inhibitor of OATP1B1, OATP1B3 and 
BCRP transporters, it allows an assessment of the impact of 
transporter-level interactions on RSV hepatic concentrations (US 
Food and Drug Adminstration, 2020). The results from the PET 
imaging study afforded a unique opportunity to validate the abil-
ity of our previously published proteomics-informed bottom-up 
PBK model of RSV to predict hepatic concentrations (Chan et 
al., 2019). 

In the present study, we made use of our previously published 
model of RSV and integrated it with a middle-out PBK model of 
CsA modified with updated transporter inhibitory constant (Ki) 
values. First, we performed a validation of the PBK models in 
predicting the plasma concentrations of RSV and CsA separately. 
A second level of validation was performed by predicting RSV 
plasma concentrations during a DDI with CsA. Subsequently, 
we applied our models to simulate the hepatic concentrations of 
RSV alone, as well as after DDI with CsA, using [11C]RSV PET 
imaging data to validate the predicted tissue biokinetic profiles. 
The results of our simulations demonstrate that by using a per-
meability-limited liver model incorporating extensive transport-
er uptake, efflux and inhibition kinetics, we are able to robustly 
predict both plasma and hepatic concentrations of RSV before 
and after DDI with CsA. Finally, the model was applied to pre-
dict the Kp,uu,liver of rosuvastatin and to perform a pharmacoki-
netic/pharmacodynamic (PK/PD) correlation for the lowest clin-
ically used dose of RSV. To the best of our knowledge, this is the 
first study in which a bottom-up PBK model has been validated 
to predict both human plasma and hepatic concentrations for a 
transporter-dependent compound. The results of our study will 
build further confidence in the ability of bottom-up PBK model-
ling as an alternative to animal testing to predict both plasma and 
tissue biokinetics.       

2  Materials and methods 

2.1  Model development

PBK model of RSV
The population-based ADME Simcyp® simulator (Version 18, 
Release 1, Certara UK Ltd, Simcyp Division, Sheffield, UK) was 
used to develop all our PBK models. Compound-dependent in-
put parameters for RSV are found in Table 1. The PBK model of 
RSV was identical to the bottom-up model we published previ-
ously (Chan et al., 2019). Briefly, the full PBK model was used 
to describe the perfusion-limited distribution of RSV into vari-
ous organ compartments. The Rodgers and Rowland (2007) tis-
sue composition method was used to predict the tissue-to-plas-
ma equilibrium distribution ratios for each organ compartment. 
The permeability-limited liver (PerL) model was incorporated 
into the full PBK model (Fig. 1) to describe the permeability-lim-
ited distribution of RSV into the liver (Jamei et al., 2014). The 
PerL model divides the liver into 3 compartments: intracellular 
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water (IW), extracellular water (EW) and vascular space (VS). 
It is assumed that unbound, unionized compounds within the 
EW and VS are in instantaneous equilibrium, and the distribu-
tion between both compartments through the capillary barrier is 
not a rate-limiting process. In contrast, distribution between the 
EW and IW is governed by the compound’s passive and active 
transport across the plasma membrane. Several transporters fa-
cilitate the saturable uptake of RSV at the basolateral membrane 
from the EW to IW: OATP1B1, OATP1B3, OATP2B1 and so-

dium-taurocholate co-transporting polypeptide (NTCP) (Chan 
et al., 2019). Conversely, multidrug resistance-associated pro-
tein 4 (MRP4) is responsible for the efflux of RSV back into the 
EW from the IW at the basolateral membrane. At the canalicular 
membrane, two efflux transporters are responsible for the excre-
tion of RSV into the bile canaliculi, BCRP and possibly P-glyco-
protein (P-gp). An overall canalicular efflux intrinsic clearance 
(CLint) was used to define the transporter-mediated biliary clear-
ance of RSV in the model (Chan et al., 2019).    

Tab. 1: PBK model input parameters of RSV  
Retrieved from Chan et al. (2019).

Parameter	 Value	 Method/reference
Molecular weight	 481.54	 Jamei et al., 2014 
(g/mol)
log P	 2.4	 Jamei et al., 2014
Compound type	 Monoprotic acid	
pKa	 4.27	 Jamei et al., 2014
B/P	 0.625	 Jamei et al., 2014
fu,p	 0.107	 Jamei et al., 2014
Main plasma	 Human serum  
binding protein	 albumin	
Absorption
fugut	 1	
Peff,man (10-4 cm/s)	 0.1843941	 Predicted in Simcyp 
		  Sun et al., 2002
Permeability assay	 Caco-2	
Apical pH : baso-	 7.4 : 7.4 
lateral pH	
Activity	 Passive & active	
PappA:B (10-6 cm/s)	 0.4	 Li et al., 2011
Reference compound	 Propranolol	
Reference compound	 43	 Li et al., 2011 
PappA:B (10-6 cm/s)	

Scalar	 1	
Distribution
Distribution model	 Full PBK model	
VSS (L/kg)	 0.1178358	 Predicted in Simcyp 
		  using Method 2
		  Rodgers et al., 2005;  
		  Rodgers and  
		  Rowland, 2006
Predicted tissue:plasma partition coefficients
Adipose	 0.052	
Bone	 0.116	
Brain	 0.083	
Gut	 0.190	
Heart	 0.193	
Lung	 0.246	
Muscle	 0.069	
Skin	 0.319	

Predicted tissue:plasma partition coefficients
Spleen	 0.134	
Pancreas	 0.096	
Metabolism
Enzyme	 CYP3A4
Pathway	 Pathway 1
CLint (μL/min/mg 	 1.1	 Fujino et al., 2004 
protein)
fumic	 0.937	 Simcyp Prediction  
		  Toolbox
Enzyme	 UGT 1A1
Pathway	 Pathway 1
Vmax (pmol/min/mg 	 17	 Schirris et al., 2015 
protein)
Km (μM)	 16	 Schirris et al., 2015
rUGT scalar	 0.92	 Simcyp Database
Enzyme	 UGT 1A3
Pathway	 Pathway 1
Vmax (pmol/min/mg 	 105	 Schirris et al., 2015 
protein)
Km (μM)	 220	 Schirris et al., 2015
rUGT scalar	 1	
Permeability limited liver model
CLPD (μL/min/	 0.0025	 Jamei et al., 2014 
million hepatocytes)
fuIW	 0.9673012	 Predicted
		  Jamei et al., 2014
fuEW	 0.1869325	 Predicted
		  Jamei et al., 2014
Transporter	 SLC10A1 (NTCP)	
CLint,T (μL/min/	 3.4	 Bi et al., 2013 
million)
RAF/REF	 1.353	 Chan et al., 2019
Transporter	 SLCO1B1  
	 (OATP1B1)
Jmax (pmol/min/	 103	 Izumi et al., 2018 
million)
Km (μM)	 9.31	 Izumi et al., 2018
RAF/REF	 8.656	 Chan et al., 2019
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hibitor of several transporters involved in the transport of RSV. Ki 
values of CsA for the inhibition of OATP1B1, OATP1B3, OAT-
P2B1, NTCP and BCRP were obtained from the literature and ap-
plied to the model (Jamei et al., 2014; Vildhede et al., 2014; Wang 
et al., 2017). To permit inhibition of canalicular efflux of RSV, Ki 
of CsA for the inhibition of BCRP was used as the input parameter.

PBK model of CsA
Physicochemical properties and metabolism kinetics of CsA were 
adopted from the Simcyp compound file library. Compound-de-
pendent input parameters for CsA are found in Table 2. Similar to 
RSV, the full PBK model and Rodgers and Rowland method were 
used to describe perfusion-limited tissue distribution. CsA is an in-

Permeability limited liver model
Transporter	 SLCO1B3  
	 (OATP1B3)	
Jmax (pmol/min/	 111.3	 Bosgra et al., 2014 
million)
Km (μM)	 16.5	 Bosgra et al., 2014
RAF/REF	 8.036	 Chan et al., 2019
Transporter	 SLCO2B1  
	 (OATP2B1)
Jmax (pmol/min/	 17.3	 Bosgra et al., 2014 
million)
Km (μM)	 26.1	 Bosgra et al., 2014
RAF/REF	 100	 Chan et al., 2019
Transporter	 ABCC4 (MRP4)
Jmax (pmol/min/	 1140	 Pfeifer et al., 2013 
million)
Km (μM)	 21	 Pfeifer et al., 2013
RAF/REF	 0.028	 Chan et al., 2019
Transporter	 Canalicular efflux  
	 (liver)
CLint,T (μL/min/	 1.5	 Jones et al., 2012 
million)
RAF/REF	 1.611	 Chan et al., 2019

Mechanistic kidney model
CLPD,basal 	 0.00507	 Verhulst et al., 2008 
(mL/min/million  
proximal tubular  
cells)		
CLPD,apical 	 0.00507	 Verhulst et al., 2008 
(mL/min/million  
proximal tubular  
cells)		
fukidney,cell	 0.985129	 Predicted in Simcyp
		  Rodgers et al., 2005;  
		  Rodgers and  
		  Rowland, 2006
fuurine	 1	
Transporter	 SLC22A8 (OAT3)	
Function	 Uptake
Jmax (pmol/min/	 546	 Verhulst et al., 2008 
million cells)
Km (μM)	 20.4	 Verhulst et al., 2008
Transporter	 ABCC4 (MRP4)
Function	 Efflux
Jmax (pmol/min/	 546	 Verhulst et al., 2008 
million cells)
Km (μM)	 20.4	 Verhulst et al., 2008

Tab. 2: PBK model input parameters of CsA

Parameter	 Value	 Method/reference
Molecular weight	 1202	 Jamei et al., 2014 
(g/mol)
log P	 2.96	 Jamei et al., 2014
Compound type	 Neutral	
B/P	 1.36	 Jamei et al., 2014
fu,p	 0.0365	 Jamei et al., 2014
Main plasma binding	 Human serum 
protein	 albumin	
Distribution
Distribution model	 Full PBK model	
Vss (L/kg)	 1.480513	 Predicted in Simcyp  
		  using Method 2
		  Rodgers et al., 2005;  
		  Rodgers and  
		  Rowland, 2006
Predicted tissue:plasma partition coefficients
Adipose 	 2.637	
Bone	 2.532	

Predicted tissue:plasma partition coefficients
Brain	 2.325	
Gut	 1.927	
Heart	 0.709	
Kidney	 0.993	
Liver	 1.571	
Lung	 0.358	
Muscle	 0.941	
Skin	 1.162	
Spleen	 1.067	
Pancreas	 1.536	
Metabolism and excretion
Enzyme	 CYP3A4
Pathway	 M1 (AM9)
Vmax (pmol/min/	 1.7081	 Simcyp Compound 
pmol)		  File
Km (μM)	 3.02	
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VEW-eff  = VEW +    VVS  		  (5)
                               KEW:B 	
VEW-eff represents the effective EW liver volume, and KEW:B is 
a drug-dependent parameter that represents the ratio of CEW to 
CB,VS (Jamei et al., 2014). VEW-eff accounts for the distribution 
of chemical compounds found within the VS and EW of the liver 
(Jamei et al., 2014). Finally, to calculate the Aliver, we made use 
of the following equation

Aliver  =   Cu,IW  ×  VIW  +   Cu,EW
   × VEW-eff	 (6)                  fu,IW	                     fu,EW

where 

Aliver =  Cu,IW  ×  fIW × Vliver +  Cu,EW  × ( fEW  +   
fVS    ) × Vliver                 fu,IW	  	         fu,EW		    KEW:B

			   		  	 (7)

fu,EW and fu,IW represent the fractions unbound of RSV in the EW 
and IW of the liver, which are predicted in Simcyp to be 0.187 
and 0.967, respectively. fIW, fEW and fVS represent the fractions 
of IW, EW and VS out of the total liver volume and are defined 
by Simcyp to be 0.835, 0.16 and 0.05, respectively. Hepatic con-
centrations from the PET imaging study were normalized against 
the mass of the liver and the intravenous dose of RSV given in 
kilobecquerels (kBq/g). For ease of comparison between simu-
lated and measured values, the liver density value of 1.08 g/mL  
from Simcyp and the RSV dose given were applied to convert the 
hepatic concentrations measured in the imaging study to ng/mL. 

Calculation of hepatic RSV concentrations
In the bottom-up PBK model we published for RSV, the PerL 
model was utilized to account for the effect of numerous uptake 
transporters that mediate the distribution of RSV into the liver. 
The PerL within Simcyp has been described extensively previ-
ously (Jamei et al., 2014). Since the PerL model predicts the un-
bound IW and EW concentrations in the liver (Cu,IW and Cu,EW) 
separately, there is a need to amalgamate the predicted concentra-
tions from the PerL model into an overall hepatic concentration 
for comparison with the [11C] PET imaging data. As a result, the 
overall hepatic concentration is:

Hepatic concentration = Aliver ÷ Vliver			  (1)

where amount of RSV in the liver (Aliver) is calculated as: 

Aliver = AIW + AEW + AVS 			   (2)

Aliver = CIW × VIW + CEW × VEW + CB,VS × VVS	 	 (3)

VIW, VEW and VVS represent the volume of the IW, EW and VS 
in the liver, and CIW, CEW and CB,VS represent the concentration 
of the compound found within the IW, EW and blood of the VS 
in the liver. This equation can be simplified further into

Aliver = CIW × VIW + CEW × VEW-eff 			   (4)

where

Metabolism and excretion
Enzyme	 CYP3A4
Pathway	 M17 (AM1)
Vmax (pmol/min/	 1.8395 	 Simcyp Compound 
pmol)		  File
Km (μM)	 3.02	
Enzyme	 CYP3A4
Pathway	 M21 (AM4N)
Vmax (pmol/min/	 1.6424	 Simcyp Compound 
pmol)		  File
Km (μM)	 3.02	
Enzyme	 CYP3A5
Pathway	 M17 (AM1)
Vmax (pmol/min/	 9.061	 Simcyp Compound 
pmol)		  File
Km (μM)	 3.02	
Active uptake into 	 1.534	 Simcyp Compound 
hepatocyte		  File
CLint (bile) 	 0.45	 Simcyp Compound 
(μL/min/106 cells)		  File
CLR (L/h)	 0.029	 Simcyp Compound  
		  File

Inhibition
Transporter	 SLC10A1 (NTCP)
Organ	 Liver
Ki (μM)	 0.63	 Jamei et al., 2014
Transporter	 SLCO1B1  
	 (OATP1B1)
Organ	 Liver
Ki (μM)	 0.014	 Jamei et al., 2014
Transporter	 SLCO1B3  
	 (OATP1B3)
Organ	 Liver
Ki (μM)	 0.007	 Jamei et al., 2014
Transporter	 SLCO2B1  
	 (OATP2B1)
Organ	 Liver
Ki (μM)	 13	 Vildhede et al., 2014
Transporter	 Canalicular Efflux  
	 (Liver)
Organ	 Liver
Ki (μM)	 0.07	 Wang et al., 2017
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ma concentrations of RSV and CsA from the PET imaging study 
extracted using WebPlotDigitizer (San Francisco, California, 
USA). To validate the RSV PBK model, a two-fold criterion was 
applied to compare the predicted against observed biokinetic pa-
rameters including maximum plasma concentration (Cmax) and 
area under the plasma concentration-time profile (AUC0-30min). 
For the CsA model, visual inspection of the predicted against ob-
served plasma-concentration time profile was used for validation 
because biokinetic parameters of CsA were not reported by Bill-
ington et al. (2019).  

Simulating plasma concentrations of RSV post-DDI with CsA
A second level of validation was performed to ascertain that our 
PBK models were able to predict the DDI between RSV and 
CsA. Using the same population database and trial design, a CsA 
2.5 mg/kg/h IV infusion over 2 h followed by a RSV 0.91 µg IV 
bolus dose 45 min after the initiation of the CsA IV infusion was 
simulated. Similarly, a two-fold criterion was applied to com-
pare the predicted against observed biokinetic parameters, Cmax, 
AUC0-30min and Tmax for RSV after the DDI with CsA. Cmax and 
AUC0-30min ratios were evaluated using the quotient of the val-
ues after and before DDI. 

2.3	 Model application

Simulating hepatic concentrations of RSV pre- and post-DDI  
with CsA
Using the same trial design mentioned, we applied the bottom-up 
RSV PBK model to simulate RSV hepatic concentrations after 
a 0.91 µg RSV IV bolus dose. As mentioned previously, during 
initial simulations of the unchanged RSV PBK model, predic-
tions of hepatic concentrations were suboptimal. Modification of 
the PerL model biliary excretion parameter was performed to ac-
count for distribution of RSV within the bile canaliculi. Com-
parison of the simulations before and after this modification was 
done to understand the impact of this modification. Furthermore, 
as PET imaging scans are unable to differentiate the parent [11C]
RSV and its metabolite, metabolism of RSV in the PBK model 
was switched off to recapitulate this effect when predicting RSV 
hepatic concentrations. After the above optimization of the PBK 
model of RSV to predict hepatic concentrations, we proceeded to 
predict the effect of a DDI with CsA on RSV hepatic concentra-
tions. Comparison of the simulated maximum hepatic concentra-
tion (Cmax,liver), area under the hepatic concentration-time profile 
(AUC0-30min,liver), time needed to reach Cmax,liver (Tmax,liver), and 
AUC0-30min,liver/AUC0-30min ratio against the observed data was 

All calculations were performed in Microsoft® Excel® for Office 
365 (Microsoft, Redmond, WA, USA). Graphs were plotted and 
analyzed using GraphPad Prism 8 (GraphPad Software, La Jol-
la, CA, USA).

From a physiological perspective, the permeability-limited 
model does not fully account for the physiology of biliary ex-
cretion. Biliary excretion begins when hepatic canalicular ef-
flux transporters in the hepatocyte excrete a compound via active 
transport. The excreted compound will enter the bile canaliculi, 
pass through the canals of Hering into the intrahepatic ducts, fol-
lowed by consolidation into the common hepatic duct before it 
leaves the liver via the common bile duct and drains into the gall 
bladder (Boyer, 2013). We expect hepatic concentrations mea-
sured from PET images to be a composite of the concentrations 
found not only in the EW and IW space of liver cells but also 
within the bile canaliculi and possibly the intrahepatic ducts. It 
is mentioned by Billington et al. (2019) that the bile ducts were 
excluded from the PET scan images of the liver. However, this 
did not exclude RSV distributed into the bile canaliculi. As RSV 
is reliant on biliary excretion for its elimination, a substantial 
proportion of RSV hepatic concentration from the PET imaging 
study is expected to be found within the bile canaliculi during the 
initial phase of RSV disposition. Therefore, there was a need to 
adapt the PerL model parameters to account for distribution into 
the bile canaliculi. We employed a workaround that would ac-
count for the bile canaliculi concentration by removing the bili-
ary excretion component of RSV via changing the liver canalic-
ular efflux intrinsic clearance (CLint) input value to 0. This had 
the effect of combining RSV that would normally be found in 
the bile canaliculi with RSV found within the IW and EW space, 
thus allowing us to account for the fraction of RSV that resides in 
the bile canaliculi in the initial phase of its disposition. 

2.2  Model validation

Independent simulation of plasma concentrations of RSV and CsA 
Validation of the PBK models of RSV and CsA were conducted 
by performing simulations that matched the design of the PET 
imaging clinical study. Using the Simcyp Healthy Volunteers 
population database, simulations for two separate trials were per-
formed for a 0.91 µg IV bolus dose of RSV and 2.5 mg/kg/h IV 
infusion of CsA. Refer to Table 3 for details of the population 
characteristics. As a range of doses (0.91-2.57 µg, equivalent 
 to 309-689 MBq) were administered to the subjects in the PET 
imaging study, the lowest dose of RSV 0.91 µg was chosen. Sim-
ulated plasma concentrations were compared against the plas-

Tab. 3: Details of the simulated clinical trial population characteristics

Simulation trial	 Number of	 Number of	 Proportion	 Age range	 Reference 
	 trials	 participants	 of females	 (years)

PET imaging study	 10	 10	 0.66	 24-28	 Billington et al., 2019

Predicting hepatic Kp,liver and Kp,uu,liver	 10	 10	 0.5	 25-55	

PK/PD correlation	 10	 10	 0.5	 25-55	
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tives of our sensitivity analysis were: (1) identify key model in-
put parameters that influenced the predicted plasma and/or hepat-
ic biokinetic parameters, and (2) investigate our hypothesis that 
modification of the PerL model by removing the biliary excre-
tion component is necessary to recapitulate the RSV hepatic con-
centrations from the PET imaging study. Model input parameters 
for the PerL model were increased and decreased by 2, 4, 8 and 
16-fold. The corresponding change in output parameters such as 
Cmax, AUC0-30min pre-and post-DDI were investigated. As the 
local sensitivity analysis function only outputs the variation in 
Cu,IW pre-DDI, both Cmax,IW and AUC0-30min,IW were regard-
ed as a suitable surrogate measure of the hepatic biokinetic pa-
rameters. We were unable to investigate the impact of varying the 
model input parameters for hepatic biokinetic parameters post-
DDI due to limitations in the local sensitivity analysis function.

3  Results

3.1  Model validation of RSV and CsA
Results of our simulations for the 0.91 µg IV bolus dose of RSV 
and the 2.5 mg/kg/h IV infusion of CsA demonstrate that the in-
dependent models accurately predicted the clinical results of the 
PET imaging study. The plasma concentration-time profile for 
the RSV and CsA simulations are presented in Figures 2 and 3, 
respectively. It should be noted that RSV plasma concentrations 
from only a single subject from the PET imaging study were 
available for comparison. Predicted AUC0-30min and Cmax of the 
whole study cohort for RSV (Tab. 4) were within 1.5-fold of the 
observed clinical data (fold difference of 0.879 and 1.279). Bio-
kinetic parameters for CsA were not reported in the PET imaging 
study and are not assessed here. 

After validating the RSV and CsA models independently, we 
moved on to validate the DDI model between RSV and CsA. The 
predicted plasma concentration-time profiles before and after 
the DDI are presented in Figure 4. Similarly, only clinical data 
for the RSV plasma concentration-time profile of a single sub-

performed. For the DDI trial, ratios of Cmax,liver, AUC0-30min,liv-
er and AUC0-30min,liver /AUC0-30min post-DDI to pre-DDI were 
evaluated.

Comparison of hepatic tissue concentrations predicted using 
a permeability-limited versus perfusion-limited approach 
To further evaluate the performance of a permeability-limited 
approach in predicting the transporter-mediated distribution of 
RSV into the liver, a simulation was performed to calculate the 
liver tissue:plasma partition coefficient (Kp,liver) and Kp,uu,liver of 
RSV using the PerL model. Using the Simcyp Healthy Volunteer 
population database, a 1.0 mg/kg/h IV infusion was administered 
for 96 h to obtain equilibrium concentrations of RSV in the plas-
ma and liver (Tab. 3). Subsequently, the ratio of AUC0-96h,liver  
to AUC0-96h was calculated to obtain Kp,liver. To determine 
Kp,uu,liver, the ratio of unbound AUC0-96h,liver of the IW com-
ponent (AUC0-96,liver,IW) to unbound AUC0-96h was calculated, 
where unbound AUC0-96h,liver,IW was obtained from the product 
of fu,IW and AUC0-96,liver,IW, while unbound AUC0-96h was ob-
tained from the product of fu,p and AUC0-96.

Evaluating the PK/PD correlation of rosuvastatin
The RSV PBPK model was utilized to perform a PK/PD correla-
tion of RSV with the predicted plasma and hepatic concentra-
tion-time profile. The lowest clinically used oral dose of 5 mg re-
peated once daily over a duration of 7 days was simulated using 
the Simcyp Healthy Volunteer population database (Tab. 3). The 
predicted RSV Cu,IW, plasma concentration (Cp) and unbound Cp 
(Cu,p) were compared against the reported 50% inhibitory con-
centration (IC50) against HMG-CoA reductase (McTaggart et al., 
2001) to assess whether our PBPK model was able to replicate 
the clinical efficacy observed at this dose.

Sensitivity analysis of the input parameters within  
the PerL model
Parameter sensitivity analyses were performed using the local 
sensitivity analysis function available within Simcyp. The objec-

Fig. 2: RSV plasma concentration-time profile for simulations of 0.91 µg IV bolus dose of RSV in both linear (A) and  
log10 y-axis scale (B)
The black circles represent the RSV clinical data from the PET imaging study; the solid black lines represent the simulated  
mean RSV plasma concentrations with the 95th and 5th percentile bounded by the grey shaded area.
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Tab. 4: Simulated versus observed plasma biokinetic parameters for RSV pre- and post-DDI with CsA

Biokinetic parameter	 Observed	 Predicted	 Fold difference

Plasma	 Mean (SD)	 Geometric mean	 Predicted/observed 
		  (5th - 95th percentile)

	                              Before DDI

Cmax (ng/mL)	 0.346 (0.100)	 0.304 (0.247-0.390)	 0.879

AUC0-30min (ng/mL*h)	 0.016 (0.002)	 0.021 (0.017-0.026)	 1.279

	                                After DDI

Cmax (ng/mL)	 0.319 (0.100)	 0.304 (0.248-0.390)	 0.956

AUC0-30min (ng/mL*h)	 0.023 (0.002)	 0.028 (0.022-0.038)	 1.209

Cmax ratio	 0.921	 1.002	 1.088

AUC0-30min ratio	 1.453	 1.372	 0.945

Fig. 3: CsA plasma concentration-time profile for simulations of 2.5 mg/kg/h IV infusion of CsA in both linear (A) and  
log10 y-axis scale (B) 
The black circles represent the CsA clinical data from the PET imaging study with the standard deviation represented by the error bars; the 
solid black lines represent the simulated mean CsA plasma concentrations with the 95th and 5th percentile bounded by the grey shaded area.

Fig. 4: RSV plasma concentration-time profile of the simulated drug-drug interaction between a 0.91 µg IV bolus dose of RSV and 
2.5 mg/kg/h IV infusion of CsA in both linear (A) and log10 y-axis scale (B)
The black circles and red triangles represent the RSV clinical data before and after the DDI with CsA. The solid black and red lines 
represent the simulated mean RSV plasma concentrations before and after the drug-drug interaction with the 95th and 5th percentile 
bounded by the grey and red shaded areas, respectively.
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3.2  Simulations of hepatic concentrations of RSV
Results for the simulations of RSV hepatic concentrations with 
and without modifying biliary clearance to account for distri-
bution into the bile canaliculi of the liver are illustrated in Fig-
ure 5. The predicted biokinetic parameters versus the observed 
values are found in Table 5. When the fraction distributed into 
the bile canaliculi was not accounted for, simulations for RSV 
hepatic concentrations predicted a gradual decrease in hepatic 
concentrations after 0.05 h. In this scenario, the fold difference 
of Cmax,liver, AUC0-30min,liver and Tmax were outside the two-
fold criterion, and the model was unable to recapitulate the ob-
served increase in RSV concentrations within the liver. Cmax,liver  

ject was available for comparison. After the DDI with CsA, the  
plasma concentrations of RSV increased. The predicted RSV 
AUC0-30min increased from 0.021 to 0.028 ng/mL with an  
AUC0-30min ratio of 1.372, whereas the predicted Cmax remained 
unchanged at 0.304 ng/mL with a ratio of 1.002. When compared 
against the observed data, predicted AUC0-30min and Cmax af-
ter the DDI with CsA were within 1.5-fold of the observed data 
(Tab. 4). Importantly, the predicted AUC0-30min and Cmax ratios 
exhibited a fold difference of 1.088 and 0.945 when compared 
against the observed data. The model was able to recapitulate 
the extent of increase in plasma concentrations and AUC0-30min  
as well as the unchanged Cmax of RSV after the DDI with CsA. 

Tab. 5: Simulated versus observed hepatic biokinetic parameters for the simulation of RSV hepatic concentrations with and 
without accounting for the distribution of RSV into the bile canaliculi

Biokinetic parameter	 Observed	 Predicted	 Fold difference

Hepatic	 Mean (SD)	 Geometric mean	 Predicted/observed 
		  (5th - 95th percentile)

Before accounting for distribution into bile canaliculi 

Cmax,liver (ng/mL)	 0.277 (0.087)	 0.120 (0.083-0.172)	 0.434

AUC0-30min,liver (ng/mL*h)	 0.129 (0.042)	 0.026 (0.016-0.040)	 0.206

Tmax,liver (h)	 0.432 (0.037)	 0.053 (0.061-0.058)	 0.123

   After accounting for distribution into bile canaliculi 

Cmax,liver (ng/mL)	 0.277 (0.087)	 0.273 (0.177-0.383)	 0.986

AUC0-30min,liver (ng/mL*h)	 0.129 (0.042)	 0.122 (0.080-0.169)	 0.951

Tmax,liver (h)	 0.432 (0.037)	 0.296 (0.209-0.368)	 0.686

Fig. 5: RSV hepatic concentration-time profile after a 0.91 µg IV bolus dose of RSV with and without accounting for distribution 
within the bile canaliculi in both linear (A) and log10 y-axis scale (B)
The circles represent the observed RSV hepatic concentrations for 6 individual subjects, each with a different color. The solid and  
dashed black lines represent the simulated hepatic concentrations with and without accounting for distribution within the bile canaliculi,  
and the grey shaded area bounds the 95th and 5th percentile of each simulation.
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3.4  Predictions of liver tissue:plasma concentration 
ratio and PK/PD correlation of rosuvastatin
After a 1.0 mg/kg/h IV infusion administered for 96 hours, the 
predicted mean Kp,liver and Kp,uu,liver were 1.13 and 11.70 when 
the original RSV model (Chan et al., 2019) was used. This rep-
resents a significant accumulation of the unbound drug in the liv-
er versus the plasma. Similarly, when the lowest clinical dose of 
RSV was simulated, the predicted RSV Cu,IW remained above the 
IC50 value of 2.6 ng/mL (McTaggart et al., 2001) for the majori-
ty of the dosing interval (Fig. 7). In contrast, the predicted Cp re-
mained below the IC50 threshold for most of the dosing interval,  
and the predicted Cu,p fell below the IC50 threshold for the entire 
dosing interval. Correlation between the PK/PD of RSV was best 
predicted when the predicted Cu,IW was used to compare against 
the IC50 threshold.

3.5  Sensitivity analyses
Upon varying the drug input parameters of the PerL model by 2- 
to 16-fold of their original value, the sensitivity analysis revealed 
that the plasma biokinetic parameters (Cmax and AUC0-30min  
before and after the DDI) were insensitive to changes in the in-
put parameters. In contrast, the predicted Cmax,IW was sensitive 
to changes in the OATP1B1 maximal transport rate (Jmax) and 
passive diffusion clearance (CLpd) input parameters (Fig. 8A).  
In particular, when CLpd increased by 16-fold, the resultant 
Cmax,IW decreased by 4-fold. A similar effect was observed for 
AUC0-30min,IW. 

To investigate if removing the biliary excretion component 
was necessary to recapitulate the hepatic concentrations from the 
PET imaging study, we utilized the unchanged PBK model of 
RSV and varied the input parameters of the PerL model by 2- 
to 16-fold. Other than the canalicular efflux CLint input parame-
ter, changing the input parameters of the PerL model led to min-
imal change in the output CIW. The model was sensitive only to 
changes in the canalicular efflux CLint (Fig. 8B). However, de-

and AUC0-30min,liver were underpredicted with a fold differ-
ence of 0.434 and 0.206. When the distribution of RSV into the 
bile canaliculi was included in the calculation of hepatic con-
centrations, the newly predicted Cmax,liver (0.273 ng/mL) and 
AUC0-30min,liver (0.122 ng/mL*h) closely matched the observed 
values (0.277 ng/mL and 0.129 ng/mL*h) with a fold differ-
ence of 0.986 and 0.951, respectively. Upon comparing the ra-
tio of AUC0-30min,liver/AUC0-30min, blood, the predicted value 
of 9.514 closely matched the observed value of 12.66 ± 5.83 
(mean ± SD) in the PET imaging study, with a fold difference of 
0.752. The model was also able to recapitulate the observed pla-
teau of RSV hepatic concentrations during the first 30 min after 
the IV bolus dose.

3.3  Simulations of hepatic concentrations RSV post-DDI  
with CsA
Having demonstrated the ability of our PBK model to predict 
RSV hepatic concentration-time profiles, we proceeded to sim-
ulate the effect of a DDI between RSV and CsA on the pre-
dicted RSV hepatic profiles. Our model was able to recapitu-
late the observed decrease in hepatic concentrations of RSV af-
ter a DDI with CsA (Fig. 6). After the DDI, predicted Cmax,liver 
decreased from 0.273 ng/mL to 0.175 ng/mL with a Cmax,liver  
ratio of 0.640 and predicted AUC0-30min,liver decreased from 
0.122 ng/mL*h to 0.079 ng/mL*h with a AUC0-30min,liver ratio 
of 0.645 (Tab. 6). Compared to the observed Cmax,liver (0.242 ng/ 
mL) and AUC0-30min,liver (0.108 ng/mL*h) after the DDI with 
CsA, the predicted parameters were slightly underpredicted but 
still fell within 1.5-fold (0.721 and 0.733) of the observed val-
ue, whereas the predicted Cmax,liver and AUC0-30min,liver ratio 
was 0.732 and 0.771-fold the observed values, respectively. 
While this demonstrates a slight overprediction of the impact 
of a DDI with CsA on RSV hepatic concentrations, the predict-
ed biokinetic parameters were within our two-fold acceptance 
criteria. 

 Tab. 6: Simulated versus observed hepatic biokinetic parameters for the DDI between RSV and CsA

Biokinetic parameter	 Observed	 Predicted	 Fold difference

Hepatic	 Mean (SD)	 Geometric mean	 Predicted/observed 
		  (5th - 95th percentile)

Before DDI

Cmax,liver (ng/mL)	 0.277 (0.087)	 0.273 (0.177-0.383)	 0.986

AUC0-30min,liver (ng/mL*h)	 0.129 (0.042)	 0.122 (0.080-0.169)	 0.951

Tmax,liver (h)	 0.432 (0.037)	 0.296 (0.209-0.368)	 0.686

After DDI

Cmax,liver (ng/mL)	 0.242 (0.087)	 0.175 (0.110-0.244)	 0.721

AUC0-30min,liver (ng/mL*h)	 0.108 (0.042)	 0.079 (0.047-0.111)	 0.733

Tmax,liver (h)	 0.450 (0.022)	 0.178 (0.104-0.265)	 0.395

Cmax,liver ratio	 0.875	 0.640	 0.732

AUC0-30min,liver ratio	 0.836	 0.645	 0.771
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creasing the CLint 16-fold was still insufficient to reach the pre-
dicted CIW obtained with the modified PBK model (Fig. 8C). 

4  Discussion

In this study, we hypothesized that bottom-up PBK modelling 
would be able to recapitulate the hepatic concentrations of RSV 
as well as accurately predict the impact of CsA on the hepatic 
concentrations of RSV, using the recently published PET im-
aging study by Billington et al. (2019) to validate our simula-
tions. In doing so, we aimed to build further understanding of 
the ability of bottom-up PBK modelling to predict tissue con-
centrations. We utilized the bottom-up PBK model of RSV that 
we published previously and adapted a CsA PBK model from 
the Simcyp compound file library with modifications to the in-
hibitory constants. By successfully recapitulating the plasma 
biokinetics of a RSV IV bolus dose prospectively, before and 
after a DDI with CsA, we demonstrated the robustness of PBK 
modelling in predicting the impact of a DDI on plasma concen-
trations. 

Fig. 6: RSV hepatic concentration-time profile before (A, C) and after (B, D) a simulated drug-drug interaction between  
a 0.91 µg IV bolus dose of RSV and 2.5 mg/kg/h IV infusion of CsA in both linear (A, B) and log10 y-axis scale (C, D) 
The circles and triangles represent the observed RSV hepatic concentrations before and after the drug-drug interaction, respectively  
for 4 individual subjects. Each subject is represented by circles and triangles of the same color. The solid black and red lines represent  
the simulated RSV hepatic concentrations before and after the drug-drug interaction, and the grey and red shaded areas bound  
the 95th and 5th percentile of each simulation.

Fig. 7: RSV unbound intracellular hepatic (Cu,IW), total plasma 
(Cp) and unbound plasma (Cu,p) concentration-time profile 
after a repeated once daily oral dose of 5 mg RSV for 7 days
The solid black, orange and red lines represent the simulated RSV 
Cu,IW, Cp and Cu,p. The dashed blue line represents the IC50 of 
RSV against HMG-CoA reductase.
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Due to its poor passive permeability, the uptake of RSV into the 
liver is permeability-limited and mediated by numerous hepatic 
transporters such as OATP1B1, OATP1B3, OATP2B1 and NTCP. 
As these active transporters facilitate the uptake transport of un-
bound drugs against the concentration gradient, this would lead to 
an accumulation of unbound drug in the intracellular space of the 
liver. Moreover, as the rate of passive permeability is much lower 
than the rate of active uptake for RSV, the accumulated intracel-
lular unbound drug would not be able to equilibrate with the vas-
cular space or extracellular water. Hence, this leads to asymmetri-
cal unbound RSV concentrations between the liver and plasma at 
steady state (Zhang et al., 2019b). This phenomenon is recapitu-
lated in our predicted Kp,uu,liver values of 11.70. These values are 
comparable to the Kp,uu,liver values of 11.6 and 6.36 measured us-
ing suspended human hepatocytes (Yoshikado et al., 2017). Other 
reported values for Kp,uu,liver include 35 and 57, measured using 
suspended rat hepatocytes and in an in vivo rat study (Riccardi et 
al., 2017). Collectively, these indicate that a permeability-limit-
ed approach can recapitulate the liver accumulation of RSV. Fur-
thermore, by utilizing the PerL model, our unchanged PBK model 
of RSV was able to replicate the observed clinical efficacy of the 
lowest clinical dose of RSV (5 mg daily dosing). This is demon-
strated by the predicted Cu,IW remaining above the IC50 value for 
most of the dosing interval of 24 hours. This highlights the impor-
tance of assessing tissue concentration, which represents the lo-
cation of the biological target. Plasma concentrations, which can 
be distant from the site of action, may provide misleading infor-
mation as demonstrated by our predictions of Cp and Cu,p falling 
below the IC50 threshold for most if not the entire dosing interval. 
Utilizing Cu,IW provided the most accurate PK/PD correlation for 
the lowest clinically used dose of RSV.

While OATP1B1, OATP1B3, OATP2B1 and NTCP mediate the 
active uptake of RSV into the liver, BCRP and possibly P-gp ac-
tively excrete RSV into the bile canaliculi, facilitating its elimi-
nation into bile. CsA being a potent inhibitor of OATP1B1, OAT-
P1B3 and BCRP would lead to an increase in plasma concentra-
tions of RSV, as the hepatic uptake and excretion of RSV is limited 
and clearance is reduced. This DDI has been observed not only 
in the PET imaging study but also clinically in heart transplant 
patients (Simonson et al., 2004). A dose reduction of RSV when 
co-administering RSV with CsA is recommended in the Crestor® 

product label (Astra Zeneca, 2003). While the change in plasma 
concentrations after a DDI with CsA is clear, it is crucial to under-
stand how a DDI with CsA will impact the unbound tissue con-
centrations of RSV. The change in unbound tissue concentrations, 
rather than the total or unbound plasma concentration (Chu et al., 
2013), is the key determinant of the efficacy and toxicity of RSV. 
As the Kp,uu,liver of RSV is much greater than 1, the unbound plas-
ma concentration of RSV is not a reliable surrogate measure for 
the unbound hepatic concentration of RSV. In other words, an in-
crease in unbound plasma concentrations of RSV after a DDI with 
CsA may not necessarily represent an increase in unbound hepatic 
concentration of RSV. This is because CsA inhibits both the hepat-
ic uptake and biliary efflux of RSV, rendering the change in hepat-
ic concentrations of RSV dependent on the relative magnitudes of 
inhibition of hepatic uptake (liver input) and biliary efflux (liver 

Fig. 8: Quantitative effect of the local sensitivity analysis  
on the predicted hepatic biokinetic parameters 
(A) Fold change in Cmax,IW with respect to changes in the OATP1B1 
Jmax and CLpd input parameters when the modified PBK model  
was utilized. (B) Fold change in AUC0-30min,IW with respect to 
changes in the OATP1B1 Jmax and canalicular efflux CLint input 
parameters when the unmodified PBK model was utilized. (C) 
Variation in the predicted RSV intracellular hepatic concentration-
time profile (CIW) where the dashed grey line represents the  
effect of decreasing canalicular efflux CLint by 2-, 4-, 8- and 16-fold;  
the black line represents the predicted CIW using the modified  
PBK model. 
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ter the administration of RSV since the mean terminal elimination 
half-life of RSV is 20.3 - 31.3 hours (Martin et al., 2002, 2003). 
To recapitulate the whole liver concentrations obtained from the 
PET imaging study, a custom permeability hepatic model can be 
constructed to include the distribution within the bile canaliculi as 
well as the canalicular bile flow. As doing so would require addi-
tional model construction and validation, we believe that the use 
of our previously validated PBK model of RSV to predict whole 
liver hepatic concentrations is sufficient to demonstrate the ability 
of PBK modelling to predict tissue concentrations.

The value of this work lies in illustrating an approach by which 
PBK modelling, when parameterized by relevant in vitro data per-
taining to the tissue uptake and efflux of xenobiotics, is able to 
quantitatively describe local tissue biokinetics in humans. While 
this case study uses RSV as a model compound, the approach is 
generalizable to (1) other chemicals and (2) other organs where 
transporters influence tissue concentrations. This is useful for the 
following reasons: Firstly, animals are still the go-to model when 
assessments of tissue concentrations are required; however, we 
show here that modelling and simulation is able to accurately re-
produce the time-course of tissue levels within the human liver. 
We anticipate that this will spur a shift towards greater adoption 
of PBK modelling to reduce/replace the use of animals in ob-
taining tissue concentrations. Secondly, the approach we have 
demonstrated is not bespoke or applicable only to RSV, but to any 
chemical that utilizes transporters for tissue penetration and clear-
ance. The transporters studied here are well-known xenobiotic 
transporters that transport many exogenous organic acids. Once 
the relevant kinetics of uptake and efflux are characterized for a 
particular chemical, it is straightforward to parameterize the PBK 
model and estimate human tissue concentrations. Finally, this ap-
proach can be adapted for other organs with high transporter ex-
pression, such as the kidneys, provided the unique physiology of 
these organs is carefully accounted for in the model. 

In summary, we hope that our study will build further confi-
dence in the use of PBK modelling to recover tissue concentra-
tions of xenobiotics and encourage broader exploration and adop-
tion of this methodology in place of animal toxicokinetic studies 
for the risk assessment of xenobiotics (Punt et al., 2017). We an-
ticipate that PBK modelling can be applied in parallel with chem-
ical discovery and development, where it will form part of the de-
cision-making process when deciding whether a novel compound 
moves on to the next phase of development. To achieve this, fur-
ther development and verification of PBK models for a broader 
range of xenobiotic compounds must be performed alongside ro-
bust measurements of in vivo human tissue biokinetic data for the 
same compound coupled with the consultancy of regulatory au-
thorities (Paini et al., 2019). Eventually, this will help refine the 
design of in vivo biokinetic studies and thus reduce the number of 
animals needed for efficacy and safety testing of chemicals.

5  Conclusion

In conclusion, our study has demonstrated the ability of bot-
tom-up PBK modelling to accurately predict the plasma and liv-
er concentrations of RSV before and after a DDI with CsA. We 

output). In the PET imaging study, a decrease in overall hepatic 
RSV concentrations was observed, and we recapitulated the same 
results with our PBK model predictions after we modified the bil-
iary excretion input parameter to account for distribution within 
the bile ducts. The latter point highlights a limitation of in vivo tis-
sue imaging, which lacks sufficient resolution to further discrim-
inate between RSV found within tissue extracellular (such as bile 
canaliculi) and intracellular spaces (Guo et al., 2018).

In addition to the above, the PerL model is constructed such 
that any biliary excreted compound is transferred from the in-
tracellular liver into the enterohepatic compartment immediate-
ly, and the predicted liver concentrations will not account for the 
presence of RSV within the bile canaliculi. Hence, a discrepancy 
between model outputs and observed data could arise from (1) an 
inability of the imaging approach to discriminate between bili-
ary and intracellular RSV content, and/or (2) the absence of a bile 
canalicular compartment within the PerL model. To resolve this 
conundrum, we modified the input parameters of the PerL mod-
el by switching off biliary excretion in order to retain RSV with-
in the IW and EW liver compartments. We acknowledge that this 
may be an unconventional approach, as this results in the inclu-
sion of not just canalicular RSV but also of RSV accumulated in 
the gallbladder. In the analysis of [11C]RSV concentrations, Bil-
lington et al. (2019) excluded the gallbladder content (observed 
as a bright spot within the PET image), which indicates our ap-
proach may overestimate RSV levels. Nevertheless, we judged 
that our approach is an acceptable compromise for the following 
reasons: Firstly, the fasting volume of the gallbladder is around 
21.9 mL (Loreno et al., 2009), while the volume of the liver in a 
healthy adult reported in Simcyp is roughly 1650 mL. This sug-
gests that the RSV content within the gallbladder is a small frac-
tion of that found within total liver spaces. Secondly, the observed 
concentration of [11C]RSV remained constant throughout the 
dosing interval, which could be recapitulated by the simulation 
only when biliary excretion was set to zero, while a rapid decline 
is observed with biliary excretion activated. This is supported by 
our sensitivity analysis, which revealed that the predicted hepat-
ic concentrations were sensitive only to changes in the biliary ex-
cretion input parameter. In general, changes in hepatic concen-
trations required exaggerated changes in PerL input parameters 
that are unrealistic, given that these are in vitro measurements and 
not values predicted using in silico methods where a greater de-
gree of variability can be expected. In other words, this is consis-
tent with our postulation that the majority of RSV is still found 
within hepatocytes, interstitial spaces or bile canaliculi in the first 
30 minutes, and modification of the PerL model was necessary in 
order to recapitulate this observation. This point illustrates how 
modelling can discern a mechanistic explanation for observed da-
ta trends. Finally, we were able to recapitulate the observed [11C]
RSV hepatic profiles in two different regimens, i.e., RSV alone 
and with a CsA-mediated DDI, demonstrating the robustness of 
our approach under varying exposure regimens.

In addition to the above, our study has other limitations. For 
example, we were unable to account for the inhibition of biliary 
efflux of RSV by CsA, as we utilized an overall intrinsic biliary 
clearance in vitro parameter for RSV. However, we believe that the 
impact of this limitation is minimal during the first 30 minutes af-
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are unaware of other comparable studies that have demonstrat-
ed the ability of a well-parameterized bottom-up PBK approach 
to accurately predict human tissue chemical concentrations. Im-
portantly, our work also demonstrates that it is possible to predict 
the impact of co-administration of interacting mixtures of chem-
icals, provided the points of interaction are well-characterized. 
We hope that our study will encourage future application of bot-
tom-up PBK modelling in predicting both plasma and tissue con-
centrations during the development and risk assessment of nov-
el chemicals in place of animal biokinetic testing. Our study has 
also highlighted several limitations of using PET imaging stud-
ies to predict hepatic concentrations as well as the limitation of 
using the PerL model to recapitulate the hepatic concentrations 
obtained from such PET imaging studies. Future studies should 
be conducted to further understand the relevance of PET imag-
ing in obtaining tissue concentrations as well as to improve the 
PerL model by including a physiologically-relevant bile canalicu-
li compartment. Our work highlights that mechanistic PBK mod-
elling approaches can accurately predict tissue concentrations of 
chemicals, provided sufficient in vitro data is available to parame-
terize these models. Furthermore, utilizing PBK model predicted 
tissue concentrations will enable better PK/PD correlation versus 
the use of plasma concentration. We envision that our work will 
spur industry to characterize their chemicals with appropriate in 
vitro ADME assays and utilize PBK modelling to obtain critical 
in vivo human tissue biokinetic predictions and perform pharma-
codynamic/toxicodynamic correlations.
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