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Summary
Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology 
is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. 
Quality assurance, however – from experimental design, sample preparation, metabolite identification, to bioinformatics 
data-mining – is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In 
contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been 
fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety 
sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this 
discussion, an expert workshop discussed the quality assurance needs of metabolomics. 
The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, 
with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish 
and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved 
regarding best practices to make sure sound, useful, and relevant information is derived from these new tools. 

Keywords: metabolomics, toxicometabolomics, quality assurance, human toxome

this is an Open Access article distributed under the terms of the Creative 
Commons Attribution 4.0 International license (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution and reproduction 
in any medium, provided the original work is appropriately cited. 

*A report of t4 – the transatlantic think tank for toxicology, a collaboration of the toxicologically oriented chairs in Baltimore, Konstanz and Utrecht sponsored by 
the Doerenkamp-Zbinden Foundation; participants do not represent their institutions and do not necessarily endorse all recommendations made.

1  Introduction

Recent developments in safety testing regulations have initiated 
global changes in risk assessment. Emerging techniques like 
omics technologies could make toxicity testing more efficient in 
terms of time, cost, mechanistic understanding, and relevance to 
humans. Many challenges, however, need to be addressed to en-
sure robust and informative results sufficient for solid decision-
making. Even though some omics technologies have been used 

for more than a decade, there is still ongoing discussion about 
the reproducibility of experiments and the comparability of re-
sults at different sites and on different platforms. 

In Baltimore, Maryland in November 2013, the Johns Hop-
kins Center for Alternatives to Animal Testing (CAAT) organ-
ized a “Quality Assurance of Metabolomics” workshop with 
members of the NIH Research Project “Human Toxome” con-
sortium (Bouhifd et al., 2014, 2015) together with invited ex-
perts from academia, industry, and regulatory agencies. This 
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report highlights aspects of the presentations and discussions 
that took place at the workshop. It should be noted that this is 
not a consensus report, i.e., not every aspect of the report repre-
sents the view of all coauthors or their organizations.

Recent publications from the National Research Council, 
the US EPA’s (Environmental Protection Agency) computa-
tional toxicology research programs, along with the European 
REACH (Registration, Evaluation, Authorisation and Restric-
tion of Chemicals) and other cosmetics legislation, are among 
the drivers of the current landscape changes in risk assessment 
and toxicity testing (Hartung, 2010, 2011). At the center of 
this unique advance is the conviction that emerging sciences 
and techniques, such as omics technologies, high-throughput 
screening, and computational toxicology, could make toxicity 
testing more efficient in terms of time, cost, animal use, and 
relevance to human mechanisms (Leist et al., 2008; Hartung, 
2009). This conceptual framework offers many opportunities 
for modern toxicology, but many challenges need to be ad-
dressed to ensure sufficiently robust and informative results. 
The omics technologies, in particular, contribute to our under-
standing of toxicity mechanisms and, although some have been 
extensively used for more than a decade (e.g., microarrays), the 
reproducibility of experiments and the comparability of results 
at different sites and on different platforms is still subject to 
ongoing debate. Consensus has yet to be achieved concerning 
best practices in many critical topics, such as the experimental 
design and protocols for sample preparation and handling, data 
processing, statistical analysis, and interpretation. One major 
challenge is how to ensure that sound, useful and relevant in-
formation is derived from these new tools. Quality assurance is 
the first response. The diversity of the technological platforms, 
complexity of biological systems, and variety of analytical and 
computational methods make it critical to adopt measures and 
procedures for ensuring the quality of the data. 

Metabolomics, an interdisciplinary science that combines ana-
lytical chemistry, biochemistry, statistics, and bioinformatics, is 
one of the most promising omics tools in the post-genome era. It 
is primarily the comparative analysis of the endogenous metabo-
lites present in any biological system at a given physiological 
state. Metabolomics also includes aspects of patho-biochemis-
try, systems biology, and molecular diagnostics when applied 
to toxicology (Griffiths et al., 2010). Its approaches have been 
applied in clinical settings and have been increasingly expanded 
to other fields (such as toxicology), because they have the abil-
ity to provide information that allows to better understand the 
mechanisms of toxicity (Craig et al., 2006; Heijne et al., 2005; 
Ruepp et al., 2002; Schnackenberg et al., 2006, 2009; Montoya 
et al., 2014). From an analytical perspective, the goal of me-
tabolomics in toxicology studies is to “achieve a comprehensive 
measurement of the metabolome and how it changes in response 
to stressors, with biological payoff being an illumination of the 
relationship between the perturbations and affected biochemi-
cal pathways” (Robertson and Lindon, 2005). Toxicological ap-
plications have been detailed in many publications (Ramirez et 
al., 2013; Bouhifd et al., 2013; Robertson, 2005). In early 2000, 
metabolomics was suggested for the first time as a new tech-
nique for rapid toxicity screening (Robertson and Bulera, 2000), 

was used in academic research (to predict liver and kidney tox-
icity in vivo) Lindon et al., 2005)), and also in industry to elu-
cidate toxicological modes of action allowing for early safety 
decisions and lowering the cost through reduced animal studies 
(van Ravenzwaay et al., 2012). In vitro applications are emerg-
ing and have been driven by two major factors: 1) the call for a 
better understanding of biochemical changes induced by a toxic 
insult in a defined and controllable experimental system and 2) 
the increasing requirement to move towards the use of human-
relevant, non-animal alternatives (Ramirez et al., 2013). In vit-
ro measurements of intracellular metabolites have allowed for 
organ-specific in vitro toxicity testing, e.g., neurotoxicity (van 
Vliet et al., 2008), renal toxicity (Ellis et al., 2011), hepatotoxic-
ity (Ruiz-Aracama et al., 2011), mitochondrial toxicity (Balcke 
et al., 2011), and lung toxicity (Vulimiri et al., 2009). 

Undoubtedly, the promise of metabolomics in various sci-
entific disciplines, including in vitro toxicology, is recognized. 
Nevertheless, many obstacles must be addressed before the 
discipline can achieve its full potential. Besides the challenges 
inherent to any toxicological study, we discussed the issues spe-
cific to metabolomics with an emphasis on in vitro applications. 
These included quality assurance practices in academia and reg-
ulatory agencies and also aspects of conducting metabolomics 
studies in industrial settings. 

2  Quality assurance in toxicology studies

Quality assurance is fundamental to all good scientific practice. 
The maintenance of high standards is essential for ensuring the 
reproducibility, reliability, credibility, acceptance, and proper 
application of the results generated. The challenges and limita-
tions of models and test methods in toxicology have been rec-
ognized and discussed (Hartung, 2009, 2011, 2013). Currently, 
toxicological risk assessments rely mainly on in vivo animal 
experimentation that is often expensive and follows test guide-
lines that are usually a few decades old. (However, by adding 
omics measurements to such studies, the information content 
and therefore scientific quality of such in vivo studies can be sig-
nificantly increased). The throughput is low, preventing many 
substances from being adequately assessed (Grandjean and 
Landrigan, 2006; Judson et al., 2009). Selecting a test species 
that will best predict the human response is also challenging. On 
the other hand, in vitro toxicology studies depend significantly 
on cell models that differ in many aspects from normal physi-
ology, making them difficult to reproduce in culture (Hartung, 
2007a). Besides these intrinsic challenges, the discipline suffers 
from a lack of standards in methods and model standardization, 
and inefficient documentation and reporting. 

Despite these problems, guidance has been developed that ac-
knowledges the inherent variation of in vitro test systems and 
promotes standardization. Good Cell Culture Practice (GCCP) 
sets the minimum standards for any in vitro work involving cell 
and tissue cultures (Hartung et al., 2002). It aims to reduce un-
certainty in the development and application of in vitro proce-
dures by encouraging the establishment of principles for greater 
international harmonization, standardization, and rational imple-
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of emerging methods and technologies (such as omics), espe-
cially in toxicity testing (Hartung, 2007b; Leist et al., 2012).

A pragmatic approach would adapt some of the principles 
and criteria listed above for ensuring some degree of quality 
that could lay the ground for a quality assurance system in toxi-
cometabolomics studies. In other words, toxicometabolomics 
needs quality-controlled model systems, and simply adding an 
omics endpoint does not make a test better.

3  Toxicometabolomics quality assurance 

The comprehensive analysis of small molecules and their 
changes in response to stressors is a challenging exercise. The 
success of a toxicometabolomics study often depends on multi-
ple experimental, analytical, and computational steps. A typical 
workflow used in metabolomics studies is outlined in Table 1. 
This process involves many steps, starting from the actual study 
design, which depends on the adopted metabolomic approach. 
Indeed, many approaches are currently used in metabolomics 
studies ranging from fingerprinting to non-targeted profiling 
to targeted analysis (Robertson et al., 2011). The study design 
involves the selection of the test system (e.g., animal model, 
in vitro cell culture), the type of the stressor, and the route of 
exposure. The choice of the biological matrix is also important; 
typical matrices analyzed include blood, serum, and urine, as 
well as intra- and extra-cellular extracts. The extraction method 
has to be specifically developed and optimized for each matrix 
before sample preparation and analysis. Once the metabolite 
data are generated, they are handled in order to prepare and re-
duce analytical instrument raw data (e.g., MS chromatograms) 
to data matrices for further analysis. This typically involves the 
execution of a series of tasks ranging from low-level process-

mentation of laboratory practices, quality control systems, safety 
procedures, and reporting (Coecke et al., 2005). This guidance is 
comparable to the OECD Principles of Good Laboratory Prac-
tice (GLP) (OECD, 2004) (the two have actually cross-fertilized 
each other), which cannot normally be fully implemented in ba-
sic research because of cost and lack of flexibility. The require-
ment that all personnel need to be fully trained before executing 
tests, in particular, cannot be met in an academic setting, where 
much of the work is done by students. However, through some 
simple actions based on GLP principles, a higher level of quality 
can be achieved even in academic research. 

Quality assurance of in vitro methods could be further rein-
forced by the principles of validation. The term ‘validation’ is 
used differently in different contexts. All fields of science and 
engineering technically validate methods with regard to the in-
ternal performance parameters of a method. Formal validation 
was introduced for the acceptance of regulatory test methods to 
help agencies decide on the implementation of new tools, espe-
cially those replacing animal experiments. Predictivity, usually 
in comparison to the traditional (animal) test method, is also 
validated in addition to the internal performance characteristics 
(reliability). Guidelines were primarily developed by three or-
ganizations: the Organisation for Economic Cooperation and 
Development (OECD) (OECD, 2005), the European Centre 
for the Validation of Alternative Methods (ECVAM) (Hartung 
et al., 2004), and the Interagency Coordinating Committee on 
the Validation of Alternative Methods (ICCVAM). Criteria to 
be addressed in a validation exercise include: test definition (in-
cluding purpose, need, and scientific basis), relevance of the test 
method, repeatability and reproducibility, inter-laboratory trans-
ferability, predictive capacity, and applicability domain. Ques-
tions arise about whether the validation process, as it has been 
formalized over the last two decades, might meet the challenges 

Tab. 1: Typical metabolomics workflow

Study design Problem formulation 
	 Experimental	condition	definition 
 toxicant treatment (time, route, formulation, etc.)

Sample preparation Harvesting/sampling/preparing/storage 
 Metabolite extraction

Data generation Measurement (e.g., lC-MS) 
 Data processing 
 Feature selection

Confirmation	 Metabolite	identification 
	 Metabolite	quantification

Conclusions Modeling 
(biological relevance) Data interpretation 
	 Hypothesis	generation	and/or	verification 
 Reporting
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Ravenzwaay et al., in press). In addition, the use of quality con-
trol (QC) samples is recommended and has been increasingly 
adopted (Dunn et al., 2012). These are usually representative 
of all the samples being analyzed in the study to represent a 
“mean” of all analyzed metabolites (Gika et al., 2007). A QC 
sample in the context of metabolomics could be obtained by 
pooling all samples in the study or by using additional con-
trol groups and pooling the samples derived from these control 
groups. Aliquots of a unique “pooled” QC sample, applied for 
an entire study at regular intervals, can help determine varia-
tions of all processes involved in terms of data acquisition (e.g., 
retention time and abundance) and also in data pre-processing 
(e.g., feature extraction). Furthermore, blank samples, which 
are analyte-free and prepared exactly as the test samples, give 
an idea of the overall levels of contamination and carryover. 
An additional quality measure in the experimental design is 
randomization of the sample analysis sequence. This procedure 
minimizes the bias introduced when preparing and analyzing 
replicate samples jointly. According to our own experience, 
QC samples account for about 30% and up to 50% of the total 
number of injections in an LC-MS run.

5  Sampling and extraction

Differences in methods to collect, prepare, store, and otherwise 
handle samples are important sources of bias in life sciences 
in general and have been a major problem in biomarker detec-
tion as, for example, noted by Teahan et al. (2006), where al-
legedly promising results were sometimes difficult to reproduce 
and validate. Diverse biological systems, such as microorgan-
isms, plants, biofluids or mammalian cells, are studied in me-
tabolomics, making it challenging to devise a unique method or 
guideline for sample collection and preparation. 

There are rather general good practices and examples, such 
as those included in the NCI best practices for biospecimen 
resources (National Cancer Institute, 2011). Although the 
guideline is primarily intended for human specimens, it pro-
vides technical and operational best practices to ensure levels 
of consistency and standardization. It also identifies a variety of 
factors that may affect biospecimen quality and thus research 
results. Recommendations include, where possible, the use of 
validated methods, training of technical staff, inclusion of ap-
propriate quality control and reference samples, randomization, 
and standardized methods for documenting. Guidelines for the 
use of biofluids in proteomics studies (Rai et al., 2005) are also 
applicable to metabolomics. They evaluate a number of pre-
analytical variables that can potentially impact the outcome. 
These include, among others, the sample type, the collection 
system, the processing methods, and storage parameters. Dur-
ing the workshop, Dr Hennicke Kamp reported that standardi-
zation of all steps, from collecting the sample from a biological 
system through sample preparation and metabolite extraction is 
essential to obtaining robust and reliable metabolome data. The 
large diversity of physico-chemical properties of the metabo-
lome poses an additional challenge. Chemical compounds ana-
lyzed differ in molecular weight, polarity, boiling and melting 

ing (background correction, feature detection, normalization, 
alignment, etc.) to higher level processing consisting of various 
tools and methods for interpretation and visualization of the pre-
processed data.

In his presentation during the workshop, Dr Donald Rob-
ertson stated, “In the past fifteen years, I have been involved 
in approximately 500 metabolomic studies. Of those studies 
that failed, more than 90% of the failures could be attributed 
to errors in study design, study conduct, sample collection, 
or sample preparation. Relatively few failed due to analytical 
reasons.” Furthermore, the American Society for Mass Spec-
trometry (ASMS) survey of about 600 participants at its 2009 
conference (American Society for Mass Spectrometry, 2009) 
clearly showed that the analytical element was considered of 
less concern than the interpretation of metabolomics data and its 
biological significance. We will summarize below the main ele-
ments of a metabolomics study in toxicology and related quality 
measures.

4  Study design

The suitable design of scientific studies is the first necessary 
condition to ensure robust and trustworthy conclusions. By 
definition, experimental design is the process of planning data 
gathering in order to meet predefined objectives and answer 
the research question of interest as clearly as possible. Experi-
mental design takes into account specific considerations for 
the experiment type (e.g., treatment vs. control), experimental 
variables (e.g., dose response, time dependence), experiment 
controls, and acceptance criteria. The number of replicates con-
sidered in the study is a critical determinant of the quality of the 
experiment. There is no “magic” number relative to the number 
of replicates needed, since this will depend on the multiple 
sources of variability in the experiment. The Metabolomics 
Standards Initiative (MSI) (Sumner et al., 2007) suggests a 
minimum of three to five replicates, with a preference of bio-
logical replication (i.e., repetitive analyses of different samples 
obtained under the same experimental conditions) over techni-
cal replication (repetitive analyses of the same sample). It is a 
good practice, however, to conduct a preliminary pilot study 
to evaluate the data variation under the specific conditions and 
to perform a power analysis to guide the determination of the 
optimal number of replicates. Traditional power analysis would 
calculate the number of replicates based on the expected effect 
strength, the significance level aimed for, and the variability of 
the measurement in the model. This is not as easy for metabo-
lomics, as effect strengths are typically small, multiple parallel 
measurements have to be accounted for (false discovery rate 
corrections), and the very different variability for different me-
tabolites impair such calculations. Therefore, extensive evalu-
ation of (control) variability over time is needed to a) ensure 
reproducibility and robustness, and therefore reliability of the 
measurements and b) enable the identification of biologically 
significant results. For the latter, statistically significant chang-
es occurring in an experiment can be compared to the historical 
control data and variability of the respective metabolite (van 
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notation of the entity in question. One needs first to convert the 
raw analytical data to metabolites (namely chemicals). 

The accuracy and confidence in this conversion (identifica-
tion, in other words) vary widely because of the complexity of 
the process and its dependence on the analytical platform and 
robustness of the methods applied, as well as the databases and 
resources used (Creek et al., 2014). Indeed, this process should 
discriminate not only between metabolites with different mass-
es, but also those with the same nominal mass but different mo-
lecular formula and monoisotopic mass, and also metabolites 
with the same nominal and monoisotopic masses but different 
chemical structures. In addition, a single metabolite can form 
multiple different ion types (in the case of electrospray ioni-
zation, for example) such as sodium and potassium adducts, 
along with the standard protonated form (Dunn et al., 2013). 
Diverse strategies have been adopted with different levels of 
confidence. These confidence levels were divided into four 
categories by a dedicated working group of the Metabolomics 
Standards Initiative (MSI) and the following definitions were 
proposed (Sumner et al., 2007): 
1. Confidently identified compounds where at least two or-

thogonal properties (e.g., m/z, RT, fragmentation mass 
spectrum) of the candidate metabolite are verified with an 
authentic reference standard under the same analytical con-
ditions; 

2.  Putatively annotated compounds where the physicochemi-
cal properties are compared to chemical library without 
reference to authentic standards; 

3.  Putatively characterized compound classes based upon 
characteristic physicochemical properties of a chemical 
class of compounds (e.g., lipids), or by spectral similarity 
to known compounds of a chemical class, and; 

4.  Unknown compounds which are unidentified and unclassi-
fied metabolites that can still be differentiated using spec-
tral data. 

Although the exact basis for what constitutes valid metabolite 
identification could be debated, a major contribution of the MSI 
is the detailed formulation of the reporting needs of the iden-
tification procedure and its performance. Different strategies 
could be adopted, but metabolites are typically characterized 
on the basis of accurate mass, retention time, and tandem mass 
spectrometry (MS/MS) data. First, m/z values are searched in 
metabolite databases (peak annotation). When a hit is returned 
within the expected error of the mass spectrometer, the annota-
tion is still putative and sometimes needs manual curation. To 
increase the level of confidence as described above, an authentic 
reference standard is used, and retention time and/or MS/MS 
data is generated in the same analytical conditions and com-
pared to that from the biological sample (Patti et al., 2012). 
Following this description, two important elements emerge re-
garding quality assurance – namely, metabolite databases and 
reference standards. 

Databases (DBs) are sources of chemical information in the 
form of web-based or locally hosted services, and fulfill many 
objectives. They are of different types and contain diverse in-
formation such as metabolic pathway information, compound-
specific information, spectral information, disease/physiology 

point, functional groups, etc. Moreover, these compounds are 
present in concentrations that span orders of magnitude within 
the same sample (Maier et al., 2010). 

Metabolomics involves, therefore, the analysis of a hetero-
geneous chemical space and across a broad dynamic range, 
which makes considerations for standardization of protocols 
challenging. An efficient method would allow the adequate re-
covery of the largest number of metabolites from samples while 
preventing the exclusion of compounds due to their physical or 
chemical properties (Winder et al., 2008). While it is obvious 
that no unique analytical method can fulfill these requirements, 
consistent quenching, extraction protocols, as well as adequate 
sample storage would limit variability in metabolite extraction 
and analysis (Zhou et al., 2012). Documentation in the form of 
Standard Operating Procedures (SOPs), optimized for the specif-
ic metabolomic application, should be detailed enough to allow 
an unambiguous and reproducible execution of the procedure 
(Bouhifd et al., 2013). 

6  Metabolomics data complexity

A fundamental characteristic of metabolomics is the huge diver-
sity of chemicals involved. Unlike a genome, which involves 
only four bases, and the proteome with its twenty amino acids, 
the metabolome consists of at least a few thousand chemicals 
(Wishart, 2011). The various chemical and physical properties 
of these molecules would require a combination of analytical 
technologies to obtain good coverage. Historically, the analyti-
cal tools of choice in metabolomics have been NMR and MS. 
The latter is combined with a chromatographic separation tech-
nique such as liquid chromatography (LC) or gas chromatog-
raphy (GC). The characteristics, advantages, limitations, and 
differences between the technologies and platforms have been 
extensively described in several review articles and will not be 
addressed here (Kaddurah-Daouk et al., 2008; Robertson, 2005; 
Dunn and Ellis, 2005). 

Despite the recent technology advances, no single analytical 
platform is a perfect tool for metabolomics, with all having ad-
vantages and limitations, although LC-MS now appears to be 
the preferred technology in many studies. Besides the biological 
variability described earlier, metabolomics data can suffer from 
analytical variability. This includes mainly drifts in retention 
times, altered instrument sensitivity, and – very rarely – drifts in 
measured mass to charge ratio (m/z) values. Although the tech-
nologies involved are complex, it is well accepted in the com-
munity that the analytical process is not the main limitation. 

One of the biggest challenges in metabolomics remains me-
tabolite identification. An accurate identification of the chem-
icals involved in any particular study is necessary to derive 
meaningful biological information. It is now a very common 
practice to generate metabolomic datasets comprising thou-
sands of “features,” but their identification is certainly not 
straightforward. A mass spectrometry measurement typically 
results in a list of entities represented by mass-to-charge (m/z) 
ratio, retention time (RT), and intensity. These parameters 
might be informative but do not provide a direct chemical an-
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The present workshop was prompted by the ongoing Human 
Toxome project (Bouhifd et al., 2013, 2014). This project aims 
for the identification of pathways of toxicity (Kleensang et al., 
2014) by using a multi-omics approach (Hartung and McBride, 
2011). For the purpose of this project, it will be necessary to 
assess especially whether intracellular metabolomics, i.e., the 
metabolomic analyses of cell extracts, are sufficiently robust to 
allow reliable and consistent identification of specific changes 
in newly produced or altered metabolites in response to a known 
toxicant stimulus. This is a prerequisite for unambiguous iden-
tification of the underlying molecular mechanisms or pathways 
of toxicity. The overall strategy would consist of generating 
standardized biological samples and assessing within-run, with-
in-lab, and between-lab reproducibility of metabolomics analy-
sis. Unfortunately, such quality assurance studies lack appeal 
for most funding bodies, but they have the potential not only to 
move forward a given project but to further the proper use of an 
entire technology.
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ther aspects of quality assurance beyond what was discussed in 
this workshop. The Human Toxome project is pioneering some 
of this (Bouhifd et al., 2015) and not surprisingly prompted the 
need for discussion about quality assurance via this workshop.

8  Future directions:  
Need for collaborative activities

The discussions of this workshop showed that a combination of 
expert consensus – for example, reporting standards and good 
practices – and experimental assessments (e.g., ring trials be-
tween laboratories) is needed. The importance of both analytical 
and biological validation was emphasized. Validation in a broad 
sense demonstrates suitability for an intended purpose or “fit-
ness for purpose.” To simplify, we may distinguish two main 
components: reliability (robustness/quality/confidence) and 
relevance (usefulness/biological utility). These two elements, 
if satisfied, will ensure reproducible and meaningful research. 
Such discussions took place for transcriptomics a decade ago 
(for example, the first transatlantic consensus workshop on vali-
dation of transcriptomics (Corvi et al., 2006)).
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