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(OECD, 2021), but such data are generally scarce or unavailable 
for non-pharmaceuticals. Even though PBK models are increas-
ingly parameterized based on in vitro and in silico input data, in vi-
vo data are currently still needed to assess the validity of the model 
predictions for a given chemical. Moreover, when certain kinetic 
processes cannot be parameterized based on in vitro or in silico ex-
periments, they are usually obtained by fitting model predictions to 
in vivo data (Peters and Dolgos, 2019; Tsamandouras et al., 2015). 
Given that human kinetic data are difficult to obtain, other strate-
gies to evaluate the adequacy of in vitro- and in silico-based PBK 
models to estimate in vivo kinetics are needed. 

Initial estimates of plasma and tissue concentrations of orally 
consumed compounds can effectively be made with minimal ge-
neric PBK models that are defined based on 1) a first order intes-

1  Introduction

Physiologically based kinetic (PBK) modelling has a crucial role 
in next-generation (non-animal) risk evaluations to predict inter-
nal human plasma (or tissue) concentrations and to relate these 
concentrations to in vitro biological effect concentrations (Blaau-
boer, 2010; Fabian et al., 2019; Louisse et al., 2017; Punt et al., 
2019, 2021; Wetmore et al., 2015; Yoon et al., 2015). The ultimate 
applicability of PBK models in next generation (non-animal) risk 
evaluations will, however, depend on being able to make predic-
tions without the support of animal in vivo kinetic data (e.g., plas-
ma or tissue concentrations) (Paini et al., 2019; Peters and Dolgos, 
2019). When available, human kinetic data as well as data from 
chemical analogues may be applied for PBK model development 
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models that have been developed for these compounds, allowing 
us to evaluate which additional kinetic processes may need to be 
added to the generic PBK models to better describe their in vivo 
kinetics and improve plasma Cmax estimations. 

2  Materials and methods

Chemical selection and collection of human  
in vivo Cmax values
A dataset of 44 model compounds was created to evaluate the 
performance of the Cmax predictions by the PBK model based on 
different in vitro and/or in silico input approaches. The starting 
point for the selection of the model compounds was the availabil-
ity of in vitro human intrinsic hepatic metabolic clearance data as 
key input to PBK model development. The R httk package (ver-
sion 2.0.4.) by Pearce et al. (2017) was used as primary source 
for these in vitro metabolic clearance data, based on which the 
clearance data for 40 compounds could be derived. The dataset 
was extended to include rosuvastatin and fluvastatin, which are 
structurally related compounds for which transporter-mediat-
ed processes in liver and kidney play a main role in the kinetics 
(Chan, 2019). Further, ochratoxin A and coumarin were added to 
extend the dataset to also include non-pharmaceuticals. In vivo 
human kinetic studies are available for the latter 4 compounds, 
and their intrinsic clearance was measured in the present study in 
incubations with human liver S9. 

A literature search for the selected compounds was performed 
in Scopus™1 to identify human kinetic studies that report peak 
plasma concentrations of the compounds after a single oral dose 
or within the first 24 hours of a repeated oral dose study. The  
 following key words were used for this literature study: ( ( TITLE 
( “compound name” ) AND ALL ( bioavailability OR pharmaco-
kinetics OR kinetics ) ) AND ( ( human OR man OR volunteer OR 
subject ) ) AND (Cmax OR “c max” OR “maximal concentration” 
OR “maximum concentration” OR “peak concentration” ) ). The 
studies that were identified for each compound were subsequent-
ly filtered to exclude 1) results obtained for specific patient groups 
like patients with renal impairment or gastric by-pass, 2) studies 
with children, and 3) studies using slow or extended-release for-
mulations. Description of kinetics in such situations requires spe-
cific model adjustments, which was beyond the scope of the pres-
ent study which focusses on the applicability domain of a generic 
PBK model for an average healthy adult. The final list of model 
compounds and related in vivo Cmax data (and related oral dos-
es) from 421 different published studies that were obtained in the 
search are provided in the supplementary Excel file2 (SM1).

Generic PBK model code and input parameters
PBK model predictions were performed based on a published ge-
neric human PBK model code by Jones and Rowland-Yeo (2013) 
that was implemented as R script3 by Punt et al. (2021) with mi-

tinal absorption rate (ka) and a fraction absorbed (fa), 2) intrinsic 
hepatic clearance (CLint), 3) tissue:plasma partition coefficients, 
4) the fraction unbound in plasma (fup), and 5) passive renal ex-
cretion (defined as the glomerular filtration rate times the unbound 
concentration of the compound in plasma (GFR × cPlasma × fup) 
(Jones and Rowland-Yeo, 2013). Gaining confidence in PBK 
model predictions requires confidence in the quality of the input 
data that are used to parameterize these kinetic processes (Gouli-
armou et al., 2018; Louisse et al., 2020; Utsey et al., 2020). In ad-
dition, it is important to determine for which compounds a mini-
mal PBK model as described above provides a sufficient level of 
prediction, and for which compounds additional kinetic processes 
need to be added to the model (for example, extrahepatic metabo-
lism and/or transporter-mediated kinetics). 

Recently, we evaluated the predictions made for Cmax in rats 
(upon a single exposure) for 44 compounds with a minimal rat 
PBK model, applying different methods to obtain chemical-specif-
ic input parameters (Punt et al., 2022). This analysis revealed that 
Cmax predictions ranged up to six orders of magnitude for some of 
the compounds as a result of the input parameters that were used. 
Cmax predictions were typically found to be within 5-fold of the 
observed Cmax for those compounds for which the unbound in-
trinsic clearance was low (< 1 L/h) or relatively high (> 20 L/h). 
However, one must be cautious with generalization of these find-
ings to other compounds with different physicochemical proper-
ties, and findings obtained with the generic rat PBK model may 
not be applicable to a generic human PBK model. Since within 
next generation risk assessment predominantly human PBK mod-
el predictions will be required, it is crucial to find means to specif-
ically evaluate human PBK model predictions in the absence of 
human in vivo data. 

The goal of the present study was to assess the predictive per-
formance of a minimal generic human PBK model, as described 
above, based on in vitro and in silico input data to predict plas-
ma Cmax. The Cmax was selected as the most critical kinetic  
parameter that is most frequently used in PBK modelling-based 
reverse dosimetry approaches to predict in vivo toxicity from in 
vitro data (Louisse et al., 2017), particularly when the biological 
effect has a threshold-related mechanism of action (Groothuis et 
al., 2015). To evaluate the predictive performance of the minimal 
human generic PBK model to predict Cmax values of a chemical, 
a literature search was performed to gather human in vivo plasma 
concentrations for a range of compounds. Cmax predictions were 
subsequently made upon a single oral dose based on a variety of 
input approaches for estimating the chemical-specific parameters 
(CLint, fup, partition coefficients, ka, and fa) and compared to 
the observed Cmax values as reported in the collected literature. 
Based on the data obtained, we characterized the contribution 
of different input approaches to the variation in Cmax outcomes 
for individual compounds. In addition, for the compounds that 
were not predicted within 5-fold of the observed Cmax, a litera-
ture study was performed to find existing chemical-specific PBK 

1 www.scopus.com (last accessed 22.12.2021)
2 doi:10.14573/altex.2108301s1
3 https://www.R-project.org/ 
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these two software packages with respect to the log P and pKa es-
timates, the influence of these differences on the PBK model pre-
dictions was evaluated. The log P, log D and pKa(s) that were ob-
tained for the 44 compounds with each of the two software pack-
ages are provided in the Github repository4. 

For the parameterization of fup values, two in silico approach-
es were compared with in vitro measured values. One in silico ap-
proach for the calculation of fup is a method of Lobell and Sivara-
jah (2003). Log P and information on the pKa(s) are required input 
parameters for this calculation. The R code for this calculation is 
provided in the Github repository4. As second in silico approach, 
the fup calculations were obtained with the ADMET Predictor  
software5. The in vitro-derived human-specific fup values for 39 
compounds were taken from the httk package with the original da-
ta measured by Wambaugh et al. (2019), Sohlenius-Sternbeck et 
al. (2012), Obach (1999), Lombardo et al. (2018), Ito et al. (2004), 
Wetmore et al. (2015), and Shibata et al. (2000). 

In case of the calculation of partition coefficients, three ap-
proaches were compared, including the in silico approaches of (i) 
Rodgers and Rowland (2006), (ii) Berezhkovskiy (2004), which 
corresponds to the corrected method of Poulin and Theil (2002), 
and (iii) the in silico approach of Schmitt (2008). Log P and in-
formation on the pKa(s) and fup are required input parameters 
for these calculations. The R codes for these different calcula-
tions were obtained from Utsey et al. (2020) and were adjust-
ed to fit the pipeline of the PBK model calculations of the cur-
rent study. The codes can be found in the Github repository4. In 
case of the method of Rodgers and Rowland, the effect of includ-
ing lysosomal trapping in the calculation method, as described 
by Schmitt et al. (2021), was tested. However, as this adjustment 
did not lead to substantial differences in predicted partition coef-
ficients (SM12), only the original approach of Rodgers and Row-
land was included in the final dataset. In case of the method of 
Schmitt (2008), the membrane affinity (log MA) was calculated 
from the log P based on a QSAR from Yun and Edginton (2013) 
as provided in the code. The harmonized tissue composition data 
from Utsey et al. (2020) were used as input.

Three different approaches to obtain model parameter values 
for hepatic intrinsic clearance were compared. These included 
i) an in silico approach using ADMET Predictor5, ii) an in vitro  
approach based on clearance studies with primary human he-
patocytes, and iii) an in vitro approach based on clearance stud-
ies with human liver S9. For the in silico based approach, the 
cytochrome P450-dependent human hepatic clearance rates of 
the 44 compounds (CYP_HLM_CLint) were predicted with the  
ADMET Predictor5. These predicted clearance rates, expressed 
as µL/min/mg microsomal protein, were scaled in the model to 
the whole liver based on a microsomal protein yield of 40 mg 
microsomes/gram liver (Barter et al., 2007). The primary hu-
man hepatocyte clearance data were derived from the database 
of the R httk package containing the values that were originally 

nor modifications as summarized in the model code provided on 
GitHub4. The model consists of 13 compartments, correspond-
ing to the major organs in the body and the arterial and venous 
blood compartment. The model requires chemical-specific pa-
rameters for intestinal uptake, distribution (i.e., partition coeffi-
cients, blood:plasma ratio (assumed to be 1 in the present study 
for all compounds), fraction unbound in plasma), hepatic clear-
ance, and renal clearance (assumed to be the glomerular filtration 
rate times the free plasma concentration). Table 1 provides an 
overview on how these different input parameters were parame-
terized using a range of in vitro and/or in silico methods. Further 
details on these input approaches are given in the text below. The 
differential equations of the model are solved with the deSolve 
package (Soetaert et al., 2010). 

Absorption from the gastrointestinal tract was described in the 
model by a first-order uptake process from the intestine to the liv-
er compartment and requires an absorption rate constant (ka) and 
fraction absorbed (fa) as input (Jones and Rowland-Yeo, 2013). 
For the parameterization of these input constants, an in silico ap-
proach based on a QSAR from Hou et al. (2004) was applied that 
predicts the Caco-2 apparent permeability (Papp) based on the to-
pological polar surface area (TPSA) of the compounds (Equa-
tion 1). For 30 of the 44 compounds, the QSAR-based approach 
was compared with in vitro measured Papp coefficients in Caco-2 
transwell absorption experiments. These in vitro measured Caco- 
2 absorption data were partly obtained from Punt et al. (2022) and 
partly generated in the present study. Details of the QSAR calcu-
lations and Caco-2 experiments are provided in the supplementa-
ry information (SM25). Both the QSAR-derived Papp values and 
the in vitro measured values were scaled to ka and fa based on the 
following equations. 

Log Papp (cm/s) = -4.36 − 0.01*TPSA Eq. 1
Log Peff (10-4 cm/s) =  
0.4926*log Papp (10-6 cm/s) − 0.1454 Eq. 2
ka (/h) = Peff*2 (cm/s) /R (cm) * 3600 (s/h) Eq. 3
fa = 1 − (1 + (2*Peff*<Tsi>)/(7*R))-7 Eq. 4, 

in which Equation 2 scales the Caco-2 apparent permeability to 
an human effective permeability based on Sun et al. (2002), and 
Equations 3 and 4 describe how the effective permeabilities are 
converted to ka and fa as described by Yu and Amidon (1999). 
For the calculation of ka and fa with Equations 2 and 3, an intes-
tinal radius (R) of 1 cm and a small intestinal transit time <Tsi> 
of 3.32 h were used (Grandoni et al., 2019). 

Physicochemical data (log P, log D and pKa values, TPSA), 
which are used as input to calculate the fup and tissue:plasma 
partition coefficients and intestinal uptake were derived with 
ADMET Predictor6 (v9.0, Simulation Plus, Lancaster, CA, 
USA) and with ChemAxon7 (ChemAxon Ltd., Budapest, Hun-
gary). Given that slight differences occur between the results of 

4 https://github.com/wfsrqivive/human_PBK.git (last accessed 22.12.2021)
5 doi:10.14573/altex.2108301s2
6 www.simulations-plus.com (last accessed 22.12.2021)
7 www.chemaxon.com (last accessed 22.12.2021)
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same exposure conditions as applied in the in vivo studies from 
which the reported Cmax values were obtained. For each chem-
ical, the predicted Cmax was divided by the observed Cmax as 
marker of the quality of the PBK model prediction for that com-
pound. As a result of the different input combinations, a range 
of predicted:observed ratios was obtained for each chemical of 
which the median was calculated. Median predicted Cmax values 
that were more than 5-fold higher than the observed Cmax val-
ues were considered overestimated, and median Cmax values that 
were more than 5-fold lower than the observed Cmax values were 
considered underestimated, though the latter did not occur in the 
present data set (see Results section). We also assessed the num-
ber of chemicals that were predicted within 2-fold, which is often 
used as a requirement when a PBK model is used within a reg-
ulatory context to demonstrate that the proposed model is fit for 
purpose (Shebley et al., 2018). The effect of different input ap-
proaches on the Cmax predictions was determined by comparing 
for each input approach and compound the median Cmax and pre-
dicted:observed ratios and determining the differences between 
the input approaches in predicted median Cmax values. 

A sensitivity analysis was performed for the predictions by 
changing the input value of a parameter by 1% and determining 

measured by Wambaugh et al. (2019), Sohlenius-Sternbeck et al. 
(2012), Obach (1999), Lombardo et al. (2018), Ito et al. (2004), 
Wetmore et al. (2015), and Shibata et al. (2000). For 18 out of the 
44 compounds, the intrinsic hepatic clearance was also measured 
in incubations with human liver S9 in the present study. The pro-
tocol for these incubations is provided in the supplementary file 
(SM25). The primary hepatocyte intrinsic clearance data were 
scaled to the whole liver based on a hepatocellularity (number of 
hepatocytes per gram liver) of 117.5 x 106 (Barter et al., 2007), 
whereas the S9-derived clearance data were scaled based on an 
S9 protein yield of 121 mg/g liver (Houston and Galetin, 2008). 
Corrections for unspecific binding of the compounds to the he-
patocytes or S9 in the in vitro incubations was applied based on 
a calculation method of Kilford et al. (2008) for primary hepato-
cytes and a method of Hallifax and Houston (2006) for the S9. 
Although the latter calculation method was developed to predict 
the unbound intrinsic clearance in microsomal incubations, it 
was assumed to also be applicable to S9 incubations. 

Human PBK model predictions and data analysis
By combining different input approaches, a total of 38,772 Cmax 
predictions were made for the different model compounds at the 

Tab. 1: Input approaches applied in the PBK model predictions 

Applied input  Method reference Method name used Number of compounds 
	 	 in	the	figures	 for	which	the	respective 
	 	 	 data	are	available
Intestinal uptake (ka and fa)
QSAR based on the topological Hou et al., 2004  QSAR 44 
surface area (TPSA)
Caco-2 Papp This work and Punt et al., 2022 In vitro 30
Physicochemical characteristics 
log P, log D, pKa, TPSA  ADMET Predictor ADMET 44
log P, log D, pKa, TPSA ChemAxon ChemAxon 44
Tissue:plasma	partition	coefficients
Berezhkovskiy Berezhkovskiy, 2004 Berezhkovskiy 44
Rodgers and Rowland Rodgers and Rowland, 2006 RodgersRowland 44
Schmitt Schmitt, 2008 Schmitt 44
Intrinsic hepatic clearance (CLint)
(Cryopreserved) primary hepatocytes  Data derived from the httk package  Hep 40  
 (Pearce et al., 2017) 
S9 This work S9 18
In silico predicted CYP clearance ADMET predictor In silico 44
Fraction unbound plasma
In vitro with rapid equilibrium dialysis Data derived from the httk package In vitro 44 
 (Pearce et al., 2017) 
In silico predicted based on log P,  Lobell and Sivarajah, 2003 Lobell and Sivarajah 44 
log D and pKa   
In silico predicted based on the SMILES ADMET predictor ADMET 44
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3  Results

3.1  Evaluation of the collected data on human plasma  
concentrations 
For 41 of the 44 compounds, two or more in vivo studies were 
available from which the peak plasma concentrations could be 
derived. For these compounds, the variation in reported plas-
ma concentrations between studies was assessed by calculating 
the normalized Cmax (Cmax/dose) for each study and assessing 
the distribution of these normalized Cmax values. For 22 of the 
44 compounds, the difference in normalized Cmax values be-
tween the different studies ranged between 1.3- and 3-fold and 
for 10 compounds between 3 and 5-fold (see SM12). For the 
remaining 12 compounds, larger differences between studies 
are observed, with the highest difference occurring for metopr-
olol (16-fold difference normalized Cmax values between stud-
ies) and dextromethorphan (13-fold difference normalized Cmax 
values between studies). These compounds are both CYP2D6 
substrates (Frank et al., 2007) and are therefore prone to large 
interindividual variation in humans. The PBK model predic-
tions (based on combinations of input approaches) were com-

the relative change in Cmax, expressed as the normalized sensi-
tivity coefficient (NSC) according to Equation 5.

NSC = (C′ – C)/(P′ – P) x (P/C)   Eq. 5, 

where C is the initial value of the model output, C′ is the modi-
fied value of the model output resulting from an increase in pa-
rameter value, P is the initial parameter value, and P′ is the mod-
ified parameter value. The sensitivity analysis was performed at 
an equal oral dose of 1 mg/kg bw for all compounds and input 
combinations. The R codes for the above analyses can be found 
in the Github repository4. 

To better understand the potential causes of why the Cmax of 
certain compounds could not be predicted within 5-fold of the ob-
served Cmax, a literature study was performed to explore critical 
differences between the current minimal PBK model and exist-
ing PBK models for the different compounds. For this literature 
study, the following keywords were used: ( ( ALL ( “compound 
name”) AND ALL (PBPK OR PBK OR PBBK OR PBTK) ). The 
obtained results were manually screened for the presence of PBK 
model codes for the given substance. 

Fig.	1:	Ratios	between	PBK	model-predicted	Cmax	values	and	in vivo	observed	Cmax	values	observed	for	44	reference	
compounds in humans 
Per chemical, different predicted Cmax values are obtained by running simulations with the different input approaches (in vitro or in silico 
approaches to parameterize input parameters) as presented in Table 1. Each predicted Cmax is then compared with the in vivo Cmax values for 
the chemical in the dataset. The median of these predicted:observed ratios is depicted along the individual datapoints. Datapoints between 
the dashed horizontal lines are within 5-fold of the observed Cmax and the datapoints between the dotted horizontal lines are within 2-fold of 
the observed Cmax. Compounds for which the median predicted Cmax is more than 5-fold overestimated are depicted in light grey. 
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ing a median predicted Cmax that is > 5-fold higher than the ob-
served Cmax). Although some of the input combinations led to 
significant underpredictions for various compounds, the median 
of none of the compounds was more than 5-fold underpredicted.  
In figure 1, ochtratoxin is on the border of 5-fold underpredic-
tion, but not more than 5-fold underpredicted.

3.3  Sensitivity analysis
Improving the predictive value of the minimal PBK model re-
quires insight into the critical input parameters that affect the 
model predictions. To this end, a sensitivity analysis was per-
formed for the predictions by changing the input value of a pa-
rameter by 1% and determining the relative change in Cmax, ex-
pressed as the normalized sensitivity coefficient (NSC) at a dose 
of 1 mg/kg bw. Figure 2A shows the results for the most influen-
tial input parameters that affect the Cmax predictions (max. NSCs 
> 0.5 in absolute value). The NSCs of remaining input parame-
ters can be found in Figure S15. Figure 3 reveals that the scaled 
unbound intrinsic clearance (CLint,u), the fraction unbound 
(fup), and parameters that determine the blood flow to and the 
volume of the liver (FVli, FQh, Fqgu) are among the most crit-

pared to each of the in vivo reported Cmax from all the different 
studies of the 44 compounds. 

3.2  Performance of the generic PBK model 
based on different input approaches 
In Figure 1, the ratios between PBK model-predicted Cmax val-
ues and in vivo observed Cmax values are shown. A large varia-
tion (1-4 orders of magnitude) in predicted:observed ratios can 
be observed, which is predominantly the result of the differ-
ent input approaches that were applied and to a lesser extent re-
flects the experimental variation between the in vivo studies to 
which the PBK-model predictions are compared (as described 
above). The highest range in predicted:observed ratios is ob-
served for curcumin. Depending on the input combinations, a 
12- to 16,654-fold overprediction of the reported Cmax values is 
obtained. Despite the variation in predicted:observed ratios for 
the different model compounds in the dataset, the median Cmax 
of the majority of the compounds (32 out of the 44) is within 
5-fold of the observed Cmax values, and the Cmax of 19 out of 44 
compounds could be predicted within 2-fold. The Cmax values 
of 12 compounds were predominantly overestimated (i.e., hav-

Fig.	2:	(A)	Normalized	sensitivity	coefficients	(NSCs)	of	the	Cmax predictions to different input parameters for the different 
compounds.	(B)	NSCs	for	CLint,u	plotted	against	CLint,u	values	used	as	input	
The datapoints in the figures correspond to the NSCs for a random selection of 12 Cmax simulations based on different input approaches  
per chemical. BP, blood plasma ratio; CLint,u, unbound intrinsic liver clearance; fa, fraction absorbed; FQgu, blood flow fraction to the gut; 
FQh, blood flow fraction to the liver; fup, fraction unbound in plasma; FVli, volume fraction liver; ka, intestinal uptake rate; QC, cardiac output
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and in vitro input values for intrinsic clearance only occurred for 
chlorpromazine, coumarin, curcumin, and naloxone (Fig. 3B). 
For those compounds, the in silico calculated clearance values 
led to (higher) overestimations of the observed Cmax values com-
pared with the in vitro measured clearance values. For the com-
pounds for which S9 data were available, the clearance values 
strongly correlated with the hepatocyte clearance data (R2 = 0.75, 
Fig. 3C). Significant differences (> 3-fold) in Cmax predictions 
between the latter two approaches were only observed for nalox-
one (Fig. 3B). A relatively lower number of compounds could be 
predicted within 2-fold when parameterized based on S9 clear-
ance data. This was, however, expected as the S9 clearance data 
are not equally distributed over the dataset and contain a relative-
ly high number of chemicals that are > 5-fold overpredicted (irre-
spective of the input approach).

Figure 3C reveals that the highest number of compounds was 
predicted within 2-fold when the in silico predicted fup values 
based on the method of Lobell and Sivarajah (2003) or the in  
vitro measured fup values were used. Although these two ap-
proaches appeared to perform equally well, the use of in vitro 
measured unbound fractions particularly led to overestimations of 
the Cmax of buspirone, carvedilol, coumarin, prazosin, and resver-
atrol. The Cmax predictions based on the ADMET predicted fup 
frequently led to underpredictions. Regarding the sources for the 
physicochemical characteristics (ADMET versus ChemAxon) and 
intestinal uptake data (in vitro Caco-2 data versus in silico predic-
tions), no substantial (> 3-fold) differences in Cmax predictions oc-
curred between the different input approaches.

Figure 4 depicts the results of the dataset in which the most 
significant outliers described above have been removed. This in-
cludes removal of the simulations based on 1) the methods of 
Berezhkovskiy and Schmitt for the partition coefficients, 2) the in  
silico intrinsic hepatic clearance data, and 3) the ADMET pre-
dicted and in vitro measured fup values. The results of the re-
duced dataset show a significant reduction in the variation in 
Cmax predictions and the related predicted:observed Cmax ratios. 
Within the reduced dataset, the median Cmax values of 34 out of 
the 44 compounds are predicted within 5-fold, and the Cmax val-
ues of 19 compounds are predicted within 2-fold. Ten out of the 
12 initially overestimated reference compounds remain overes-
timated by more than 5-fold. The median Cmax predictions for 
chlorpromazine and coumarin now fall within 5-fold of the ob-
served Cmax. No underestimations of more than 5-fold occur. 

3.5  Characteristics of the compounds for which 
the Cmax is more than 5-fold overpredicted
Irrespective of the input method applied, the majority of the Cmax 
predictions for bisphenol A, buspirone, curcumin, desipramine, 
dextromethorphan, fluvastatin, genistein, naloxone, resveratrol, 
and rosuvastatin were more than 5-fold overpredicted. Underpre-
dictions of more than 5-fold did not occur. To obtain insight in-
to the common causes for the overpredictions, a literature search 
was performed to explore available chemical-specific PBK mod-
els for all model compounds. The overpredictions either indicate 
that the bioavailability of the compounds is predicted to be too 
high or that the volume of distribution is predicted to be too low. 

ical input parameters. All these parameters determine the avail-
ability of the compounds for metabolic clearance. Other import-
ant input parameters that affect the Cmax predictions relate to the 
oral absorption (ka and fa) and the blood flow (QC). The B:P 
ratio also was identified as a sensitive parameter. This parame-
ter was set to a default value of 1 for all compounds in the pres-
ent study since measured data on B:P ratios are generally lacking 
and no in silico tools are available to estimate the B:P ratio. Al-
together, these most influential parameters can be summarized 
as factors that affect the bioavailability of the compound, such 
as the fraction absorbed and the liver clearance, and factors that 
influence the volume of distribution, such as the fup, B:P, and to 
a lesser extent the tissue:plasma partition coefficients (Fig. S15). 
Figure 2A reveals that not all compounds are equally sensitive 
to the different input parameters. The observed differences be-
tween compounds in sensitivity were found to relate to the extent 
of metabolic clearance: the sensitivity increases with increasing 
CLint,u until a maximum sensitivity is reached for compounds 
with a high CLint,u (Fig. 2B). A similar relation is observed be-
tween the CLint,u of the compounds and the sensitivity towards 
the other input parameters like ka, fa, and QC (Fig. S25). 

3.4  Effect of the input approaches on Cmax predictions 
Given the sensitivity of the Cmax predictions to chemical-specif-
ic input parameters like CLint, fup, fa, and ka, and to a lesser 
extent to the partition coefficients, the quality of the input ap-
proaches for these parameters can have a substantial effect on 
the Cmax predictions. It is therefore important to understand if 
certain input approaches perform better than others. To this end, 
we determined whether differences occur in median Cmax pre-
dictions between the different input approaches. In Figure 3, the 
Cmax predictions with more than 3-fold differences between the 
applied input approaches are highlighted. These results reveal 
that differences in Cmax predictions (and corresponding predict-
ed:observed ratios) occur most frequently as a result of differ-
ences in calculation methods for the partition coefficients (Fig. 
3A), with the method of Rodgers and Rowland performing best. 
The median Cmax of 19 compounds was predicted within 2-fold 
of the observed Cmax values with the Rodgers and Rowland 
method. With the methods of Berezhkovskiy and Schmitt, 12 
and 13 compounds were predicted within 2-fold of the observed 
Cmax, respectively. Particularly for acidic compounds (pKa < 6),  
like bosentan, diclofenac, fluvastatin, ibuprofen, ochratoxin A, 
naproxen, S-warfarin, and tolbutamide, the method of Berezh-
kovskiy resulted in relatively high partition coefficients and low 
Cmax predictions compared with the other input approaches (Fig. 
3A). The method of Schmitt resulted in overpredictions of the 
Cmax of particularly lipophilic compounds, like bisphenol A, 
bosentan, clozapine, and midazolam. 

In case of the parameterization of the intrinsic hepatic clear-
ance, the in silico calculated clearance values were found to on-
ly provide rough estimates of the intrinsic clearance values as no 
direct correlation was observed between the in vitro (hepatocyte) 
measured clearance data and in silico (ADMET microsomal) 
predicted ones (R2 = 0.06, Fig. S3A5). Yet, substantial differenc-
es (> 3-fold) in median Cmax predictions between the in silico 
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Fig.	3:	Differences	in	
predicted:observed	
Cmax ratios related  
to the applied  
input approaches 
Results for which 
a more than 3-fold 
difference in median 
Cmax predictions occurs 
between the applied 
input approaches are 
highlighted.  
(B) S9-derived 
intrinsic clearance 
data are included in 
the comparison of 
input approaches for 
compounds marked 
with an asterisk.  
For each approach,  
the number of 
compounds that was 
predicted within 2-fold 
of the observed Cmax 
is provided between 
brackets. 
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S-warfarin. In this context, the inclusion of active hepatic uptake 
in the PBK model may increase the liver concentration, result-
ing in enhanced metabolism and/or biliary excretion and reduced 
(initial) peak plasma concentrations. Biliary excretion might in-
crease plasma concentrations again at later time points due to en-
terohepatic circulation. Intestinal efflux transport and renal ac-
tive reabsorption and excretion have only been considered for ro-
suvastatin in the identified PBK models. 

4  Discussion

Adequate predictions of internal dosimetry, such as Cmax, are 
crucial in the transition towards next generation (animal-free) 
testing strategies for chemical safety evaluations to convert in  
vitro toxicity data into in vivo dose-response or at least potency 
information (e.g., Fabian et al., 2019; Louisse et al., 2017; Punt 
et al., 2019; Wetmore et al., 2015). To facilitate the application of 
PBK models in next generation risk assessment, it is important 
to gain confidence in the predictive performance of these models 
without case-by-case validation against in vivo data (e.g., plasma 
concentrations). The goal of the present study was to assess the 
predictive performance of a minimal generic human PBK model 
based on in vitro and in silico input data to predict the Cmax. 

This means that additional kinetic processes need to be consid-
ered that are related to either a reduced bioavailability or an in-
creased volume of distribution. The PBK model predictions of 
the present study were performed based on a minimal PBK mod-
el that includes the intrinsic liver clearance, partition coefficients, 
and the fraction unbound in plasma as main input parameters, 
lacking description of kinetic processes that could reduce the bio-
availability like, for example, extrahepatic metabolism or active 
efflux transport. In addition, parameters that affect the volume 
of distribution, like the fup, partition coefficients, or tissue up-
take transport, might be different in the current model compared 
with the chemical-specific PBK models. The key differences be-
tween the chemical-specific PBK models for the different com-
pounds available in the literature and the current generic mod-
el were explored. Table 2 reveals the results of this comparison 
and shows that phase I metabolism or glucuronidation by intes-
tinal epithelial cells is most frequently considered in the chem-
ical-specific PBK models. This is particularly true for the com-
pounds that were substantially overpredicted in the present study, 
but also for some of the compounds that were predicted with-
in 5-fold (i.e., lorazepam, midazolam, sildenafil, and verapamil). 
Apart from intestinal metabolism, hepatic uptake and biliary ex-
cretion by active transport have been considered for the kinetic 
models of bosentan, bisphenol A, fluvastatin, rosuvastatin, and 

Fig.	4:	Ratios	between	PBK	model-predicted	Cmax	values	and	in vivo Cmax	values	observed	for	44	reference	compounds	in	
humans	as	obtained	after	removal	of	the	simulations	based	on	input	methods	that	led	to	significant	differences	between	
predicted	and	observed	ratios	as	described	in	the	main	text	
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ences between in vivo studies to which the model predictions are 
compared tend to be higher than 2-fold themselves, possibly re-
lated to inter-individual differences in biology or technical as-
pects (Shebly et al., 2018). This was also observed in the pres-
ent study, revealing that the variation in normalized in vivo Cmax 
values generally ranges between 1.3 to 5-fold, but can also be 
as high as 16-fold. Based on these results, a 5-fold cut-off value  
was selected to determine whether a compound fits the applica-

Two cut-off values (2-fold and 5-fold) were used as perfor-
mance indicators in the current study. Discussions on what level 
of deviation between predicted and observed kinetics is accept-
able within a regulatory context are presently still ongoing (She-
bly et al., 2018). The 2-fold cut-off value is frequently request-
ed within a regulatory context to demonstrate that the proposed 
model is fit for purpose (Peters and Dolgos, 2019; Sager et al., 
2015). A key challenge with this 2-fold value is that the differ-

Tab.	2:	Overview	of	identified	kinetic	processes	included	in	chemical-specific	PBK	models	that	were	not	included	in	 
the	generic	PBK	model	of	the	present	study	

Predicted	within	5-folda	 	 More	than	5-fold	overpredicted
Compound	 Kinetic	process(es)		 References	 Compound	 Kinetic	process(es)	 References 
 included in   included in the  
	 the	chemical-specific		 	 	 chemical-specific 
 PBK model   PBK model 

a For the compounds antipyrine, caffeine, carvedilol, clozapine, diazepam, diclofenac, ibuprofen, imipramine, ketanserin, naproxen, omeprazole, 
phenacetin, propranolol, and tolbutamide no additional kinetic processes like extrahepatic metabolism or transporter activity were identified in the 
explored chemical-specific PBK models. For the compounds bufuralol, chlorpromazine, disopyramide, ketoprofen, ochratoxin A, pindolol, prazos-
in, prednisolone, and timolol no chemical-specific PBK models were found. NA, not applicable (no specific additional kinetic processes (like extra-
hepatic metabolism or transporter activity) included in the PBK model; ND, not determined (no PBK models available for the compound)

Bosentan 
 
 

Lorazepam 
 

Midazolam 
 
 
 
 

Metoprolol 

Quinidine 

Sildenafil 
 

S-warfarin 

Verapamil

Bisphenol A 
 
 

Buspirone 
 

Curcumin 
 
 
 
 

Desipramine 

Dextromethor-
phan

Diltiazem 
 

Fluvastatin 

Genistein 
 

Naloxone

 
Resveratrol

Rosuvastatin

‒ Intestinal  
   glucuronidation  
‒ Hepatic uptake  
   transport

Intestinal phase I 
metabolism (CYP3A4) 

Intestinal  
glucuronidation  
 
 
 

Intestinal phase I 
metabolism (CYP2D6)

Intestinal phase I 
metabolism (CYP2D6)

Intestinal phase I 
metabolism (CYP3A4)

 
Hepatic uptake trans-
port and biliary efflux

Intestinal  
glucuronidation  

Intestinal  
glucuronidation 

ND

‒ Intestinal efflux 
‒ Hepatic uptake and 
   biliary efflux  
‒ Active renal excretion 

Hepatic uptake  
transport and biliary 
efflux  

Intestinal  
glucuronidation  

Intestinal phase I 
metabolism (CYP3A4) 
 
 
 

Intestinal phase I 
metabolism (CYP2D6)

Intestinal efflux  

Intestinal phase I 
metabolism (CYP3A4, 
CYP2C9)

Hepatic uptake  
transport

Intestinal phase I 
metabolism (CYP3A4) 

Kawamoto et al., 2007; 
Teeguarden et al., 2005

 
 
Heikkinen et al., 2012; 
Gertz et al., 2011;  
Karlsson et al., 2013

Adiwidjaja et al., 2020

 
 
 
 
 
Barter et al., 2013

 
Barter et al., 2013

 
Zhang et al., 2009 

 
Chan, 2019;  
Jones et al., 2012

Boonpawa et al., 2017

 
 
Docci et al., 2020;  
German et al., 2019 

Bowman et al., 2021; 
Emami Riedmaier  
et al., 2016;  
Chan, 2019

Li et al., 2015;  
Yang et al., 2020;  
Jones et al., 2012; 
Posada et al., 2020

Docci et al., 2020 

 
Karlsson et al., 2013; 
Heikkinen et al., 2012; 
Cao and Jusko, 2012; 
Gertz et al., 2011;  
Nguyen et al., 2016; 
Jamei et al., 2009

Chow et al., 2016

 
Harwood et al., 2013

 
Ghoneim and  
Mansour, 2020;  
Karlsson et al., 2013

Bi et al., 2018

 
Karlsson et al., 2013; 
Heikkinen et al., 2012; 
Cao and Jusko, 2012
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P450-dependent human hepatic clearance, and not sulfation or 
glucuronidation reactions. In general, in vitro input parameters 
therefore remain the preferred input approach for these input pa-
rameters. In contrast, the values of the in silico calculated frac-
tions unbound in plasma were found to correlate better with the 
in vitro measured ones (R2 = 0.6) and even provided better Cmax 
predictions in the present study than the in vitro measured val-
ues. This might be due to challenges with measuring this parame-
ter in vitro, particularly for highly lipophilic or chemically unsta-
ble compounds (Bowman et al., 2021; Emami Riedmaier et al., 
2016; Wambaugh et al., 2019).

Given the importance of the in vitro measured input data for 
PBK model development, the quality of these measurements is 
crucial. This is true for the measurements of the fraction unbound 
as described above as well as for in vitro intrinsic hepatic clear-
ance measurements and Caco-2 permeability studies. Recent-
ly, Louisse et al. (2020) evaluated the influence of experimental 
conditions of clearance studies on intrinsic clearance (CLint) val-
ues obtained from literature data. The CLint values for the ma-
jority of compounds differed by more than one order of magni-
tude, which is expected to partly depend on the in vitro protocol 
that was used. Such variation can have a large impact on the Cmax 
predictions. These results highlight the importance of obtaining 
harmonized in vitro approaches (Gouliarmou et al., 2018; Lou-
isse et al., 2020; Paini et al., 2019) to parameterize PBK models. 

The frequently observed overpredictions indicate that particu-
larly kinetic processes that are related to reduced predicted bio-
availability or increased predicted volume of distribution are 
missing in the minimal PBK model. Comparison of the current 
model structure with chemical-specific PBK models reported in 
literature revealed that particularly the intestinal first pass metab-
olism (CYP3A4-mediated oxidation or glucuronidation), which 
was not included in the current generic PBK model structure, is 
frequently considered as an additional kinetic process. In addi-
tion, active hepatic uptake and biliary excretion have been in-
cluded in the literature on chemical-specific PBK models of some 
of the compounds of the present study (Emami Riedmaier et al., 
2016). Intestinal efflux and active renal excretion and/or reab-
sorption are less frequently considered, yet might also be import-
ant. Solubility and dissolution issues might also be relevant, re-
sulting in a poorer intestinal fraction absorbed. New approaches 
to describe passive renal excretion based on Caco-2 permeability 
data might also help in obtaining better estimates of plasma con-
centrations (Scotcher et al., 2016). Further work will be needed to 
determine whether the Cmax predictions can be improved by in-
clusion of some of these additional kinetic processes. 

The current study focused on Cmax predictions with the mini-
mal PBK model. This is a critical kinetic parameter within PBK 
modelling-based reverse dosimetry approaches to predict in vivo  
toxicity from in vitro data (Louisse et al., 2017). Further work 
will, however, be needed to also evaluate the predictive per-
formance with respect to other relevant kinetic descriptors like 
the area under the plasma concentration-time curve (AUC) and 
steady state plasma concentrations (Css). Together these differ-
ent parameters describe the full kinetic profile of a chemical, 
and it remains to be elucidated to what extent the optimized se-

bility domain of the applied minimal PBK model. Overall, the 
medians of the predicted Cmax values for 34 out of the 44 com-
pounds, corresponding to 77%, were within 5-fold of the ob-
served Cmax values, whereas 19 compounds could be predicted 
within 2-fold, corresponding to 43%. The medians of the pre-
dicted Cmax values of 10 out of 44 compounds (23%) were more 
than 5-fold overestimated. Underestimations of the median Cmax 
(higher than 5-fold) did not occur. A bias towards overestima-
tions has been reported before for PBK model predictions based 
on minimal input (i.e., liver clearance, partition coefficients, and 
passive intestinal uptake) and might indicate that such minimal 
PBK model predictions represent a worst case approach for pre-
dicting Cmax values (Wambaugh et al., 2018). The choice of the 
calculation method for tissue:plasma partition coefficients had a 
high impact on the Cmax predictions. In addition, occasional dif-
ferences in Cmax predictions were observed as a result of differ-
ences between input approaches (in silico, in vitro) for the frac-
tion unbound in plasma and the different input approaches (in sil-
ico, primary hepatocytes, or S9) for intrinsic hepatic clearance. In 
case of the calculation methods for the partition coefficients, the 
calculation method of Berezhkovskiy particularly led to under-
predictions of the Cmax of acidic compounds (pKa < 6). For these 
compounds, the predicted partition coefficients for the different 
organs (except for the adipose tissue) were higher than with the 
method of Rodgers and Rowland or the method of Schmitt, re-
sulting in lower plasma concentrations. The method of Berezh-
kovskiy takes the charge of the molecules into account for the 
calculation of the partition coefficient of the adipose tissues, but 
not for the other organs. This might explain the differences be-
tween the method of Berezhkovskiy and the calculation meth-
ods of Rodgers and Rowland and Schmitt, with the latter specif-
ically focusing on the impact of drug ionization on partitioning 
(Utsey et al., 2020). The calculation method of Schmitt appeared 
to work less well for lipophilic compounds. This was previously 
also observed by Punt et al. (2022) and might be due to the fact 
that the method of Schmitt largely depends on the membrane af-
finity as input, which is difficult to obtain for different chemicals. 
The applied QSAR from Yun and Edginton (2013) to calculate 
the membrane affinity might not be applicable to lipophilic com-
pounds. Overall, the calculation method of Rodgers and Row-
land performed best in the current study, resulting in the highest 
number of compounds for which the Cmax predictions were with-
in 2-fold (and 5-fold) of the observed Cmax.

The in silico input approaches that were used in the present 
study for the calculation of the apparent Caco-2 permeability, 
fraction unbound in plasma (particularly the method of Lobell 
and Sivarajah), and intrinsic hepatic clearance provided relevant 
Cmax predictions for the majority of the compounds. Howev-
er, particularly in case of the in silico calculated intrinsic clear-
ance values and the in silico calculated Caco-2 permeability, care 
should still be taken with using these in silico approaches for the 
parameterization of PBK models as direct comparisons of the in 
silico and in vitro measured values revealed poor correlations be-
tween the in vitro and in silico data (Fig. S35). It should also be 
noted that the in silico intrinsic clearance results5 that were ob-
tained with the ADMET Predictor only cover the cytochrome 
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Chan, J. (2019). Bottom-up physiologically-based biokinetic 
modelling as an alternative to animal testing. ALTEX 36, 597-
612. doi:10.14573/altex.1812051

Chow, E. C. Y., Talattof, A., Tsakalozou, E. et al. (2016). Us-
ing physiologically based pharmacokinetic (PBPK) model-
ing to evaluate the impact of pharmaceutical excipients on oral 
drug absorption: Sensitivity analyses. AAPS J 18, 1500-1511. 
doi:10.1208/s12248-016-9964-4

Docci, L., Umehara, K., Krähenbühl, S. et al. (2020). Construc-
tion and verification of physiologically based pharmacokinet-
ic models for four drugs majorly cleared by glucuronidation: 
Lorazepam, oxazepam, naloxone, and zidovudine. AAPS J 22, 
128. doi:10.1208/s12248-020-00513-5

Emami Riedmaier, A., Burt, H., Abduljalil, K. et al. (2016). More 
power to OATP1B1: An evaluation of sample size in pharma-
cogenetic studies using a rosuvastatin PBPK model for intesti-
nal, hepatic, and renal transporter-mediated clearances. J Clin 
Pharmacol 56, Suppl 7, S132-S142. doi:10.1002/jcph.669

Fabian, E., Gomes, C., Birk, B. et al. (2019). In vitro-to-in vivo 
extrapolation (IVIVE) by PBTK modeling for animal-free risk 
assessment approaches of potential endocrine-disrupting com-
pounds. Arch Toxicol 93, 401-416. doi:10.1007/s00204-018-
2372-z

Frank, D., Jaehde, U. and Fuhr, U. (2007). Evaluation of probe 
drugs and pharmacokinetic metrics for CYP2D6 phenotyping. 
Eur J Clin Pharmacol 63, 321-333. doi:10.1007/s00228-006-
0250-8

German, C., Pilvankar, M. and Przekwas, A. (2019). Computa-
tional framework for predictive PBPK-PD-Tox simulations of 
opioids and antidotes. J Pharmacokinet Pharmacodyn 46, 513-
529. doi:10.1007/s10928-019-09648-1

Gertz, M., Houston, J. B. and Galetin, A. (2011). Physiologically 
based pharmacokinetic modeling of intestinal first-pass metab-
olism of CYP3A substrates with high intestinal extraction. Drug 
Metab Dispos 39, 1633-1642. doi:10.1124/dmd.111.039248

Ghoneim, A. M. and Mansour, S. M. (2020). The effect of liver 
and kidney disease on the pharmacokinetics of clozapine and 
sildenafil: A physiologically based pharmacokinetic model-
ing. Drug Des Devel Ther 14, 1469-1479. doi:10.2147/DDDT.
S246229

Gouliarmou, V., Lostia, A. M., Coecke, S. et al. (2018). 
Establishing a systematic framework to characterise in vitro 
methods for human hepatic metabolic clearance. Toxicol In  
Vitro 53, 233-244. doi:10.1016/j.tiv.2018.08.004

Grandoni, S., Cesari, N., Brogin, G. et al. (2019). Building in- 
house PBPK modelling tools for oral drug administration from 
literature information. ADMET DMPK 7, 4-21. doi:10.5599/ 
admet.638

Groothuis, F. A., Heringa, M. B., Nicol, B. et al. (2015). Dose 
metric considerations in in vitro assays to improve quantita-
tive in vitro-in vivo dose extrapolations. Toxicology 332, 30-40. 
doi:10.1016/j.tox.2013.08.012

Hallifax, D. and Houston, J. B. (2006). Binding of drugs to hepat-
ic microsomes: Comment and assessment of current prediction 
methodology with recommendation for improvement. Drug 
Metab Dispos 34, 724-726. doi:10.1124/dmd.105.007658

lection of input parameters, as obtained in the present study for 
Cmax, will also work for other biokinetic parameters. In addition, 
it should be noted that the 44 reference compounds only repre-
sent a limited chemical space. Even though the chemicals with-
in the dataset are diverse (e.g., log P between -0.55 and 5.3, MW 
between 179 and 552, and different ionization characteristics), 
the observations made and conclusions drawn within the present 
study cannot be directly extrapolated to a larger dataset.

Overall, the results of the current study provide relevant in-
sights into the predictive performance of a minimal PBK model 
and the influence of different input approaches on the model pre-
dictions. Further work will be needed, in particular to find ways 
to determine when and which additional kinetic processes (like 
liver metabolism or transporter-mediated processes) need to be 
added in the absence of prior knowledge on the chemical’s in vi-
vo toxicokinetics. 

References
Adiwidjaja, J., Boddy, A. V and McLachlan, A. J. (2020). Phys-

iologically-based pharmacokinetic predictions of the effect of 
curcumin on metabolism of imatinib and bosutinib: In vitro and 
in vivo disconnect. Pharm Res 37, 128. doi:10.1007/s11095-
020-02834-8

Barter, Z. E., Bayliss, M. K., Beaune, P. H. et al. (2007). Scaling 
factors for the extrapolation of in vivo metabolic drug clearance 
from in vitro data: Reaching a consensus on values of human 
microsomal protein and hepatocellularity per gram of liver. 
Curr Drug Metab 8, 33-45. doi:10.2174/138920007779315053

Barter, Z. E., Tucker, G. T. and Rowland-Yeo, K. (2013). Differ-
ences in cytochrome P450-mediated pharmacokinetics between 
Chinese and Caucasian populations predicted by mechanistic 
physiologically based pharmacokinetic modelling. Clin Phar-
macokinet 52, 1085-1100. doi:10.1007/s40262-013-0089-y

Berezhkovskiy, L. M. (2004). Volume of distribution at steady 
state for a linear pharmacokinetic system with peripheral elimi-
nation. J Pharm Sci 93, 1628-1640. doi:10.1002/jps.20073

Bi, Y., Lin, J., Mathialagan, S. et al. (2018). Role of hepatic 
organic anion transporter 2 in the pharmacokinetics of R- 
and S-warfarin: In vitro studies and mechanistic evaluation. 
Mol Pharm 15, 1284-1295. doi:10.1021/acs.molpharmaceut. 
7b01108

Blaauboer, B. J. (2010). Biokinetic modeling and in vitro-in vivo 
extrapolations. J Toxicol Environ Health B Crit Rev 13, 242-
252. doi:10.1080/10937404.2010.483940

Boonpawa, R., Spenkelink, A., Punt, A. et al. (2017). In vitro-in 
silico -based analysis of the dose-dependent in vivo oestroge-
nicity of the soy phytoestrogen genistein in humans. Br J Phar-
macol 174, 2739-2757. doi:10.1111/bph.13900 

Bowman, C. M., Ma, F., Mao, J. et al. (2021). Examination of 
physiologically-based pharmacokinetic models of rosuvastatin. 
CPT Pharmacometrics Syst Pharmacol 10, 5-17. doi:10.1002/
psp4.12571

Cao, Y. and Jusko, W. J. (2012). Applications of minimal phys-
iologically-based pharmacokinetic models. J Pharmacokinet 
Pharmacodyn 39, 711-723. doi:10.1007/s10928-012-9280-2

https://doi.org/10.14573/altex.1812051
https://doi.org/10.1208/s12248-016-9964-4
https://doi.org/10.1208/s12248-020-00513-5
https://doi.org/10.1002/jcph.669
https://doi.org/10.1007/s00204-018-2372-z
https://doi.org/10.1007/s00204-018-2372-z
https://doi.org/10.1007/s00228-006-0250-8
https://doi.org/10.1007/s00228-006-0250-8
https://doi.org/10.1007/s10928-019-09648-1
https://doi.org/10.1124/dmd.111.039248
https://doi.org/10.2147/DDDT.S246229
https://doi.org/10.2147/DDDT.S246229
https://doi.org/10.1016/j.tiv.2018.08.004
https://doi.org/10.5599/admet.638
https://doi.org/10.5599/admet.638
https://doi.org/10.1016/j.tox.2013.08.012
https://doi.org/10.1124/dmd.105.007658
https://doi.org/10.1007/s11095-020-02834-8
https://doi.org/10.1007/s11095-020-02834-8
https://doi.org/10.2174/138920007779315053
https://doi.org/10.1007/s40262-013-0089-y
02/jps.20073
https://doi.org/10.1021/acs.molpharmaceut.7b01108
https://doi.org/10.1021/acs.molpharmaceut.7b01108
https://doi.org/10.1080/10937404.2010.483940
https://doi.org/10.1111/bph.13900
https://doi.org/10.1002/psp4.12571
https://doi.org/10.1002/psp4.12571
https://doi.org/10.1007/s10928-012-9280-2


Punt et al.

ALTEX 39(2), 2022 233

Lombardo, F., Berellini, G. and Obach, R. S. (2018). Trend analy-
sis of a database of intravenous pharmacokinetic parameters 
in humans for 1352 drug compounds. Drug Metab Dispos 46, 
1466-1477. doi:10.1124/dmd.118.082966

Louisse, J., Beekmann, K. and Rietjens, I. M. C. M. (2017). Use 
of physiologically based kinetic modeling-based reverse dosi-
metry to predict in vivo toxicity from in vitro data. Chem Res 
Toxicol 30, 114-125. doi:10.1021/acs.chemrestox.6b00302

Louisse, J., Alewijn, M., Peijnenburg, A. A. C. M. et al. (2020). 
Towards harmonization of test methods for in vitro hepatic 
clearance studies. Toxicol In Vitro 63, 104722. doi:10.1016/j.
tiv.2019.104722

Nguyen, H. Q., Kimoto, E., Callegari, E. et al. (2016). Mechani- 
stic modeling to predict midazolam metabolite exposure from 
in vitro data. Drug Metab Dispos 44, 781-791. doi:10.1124/
dmd.115.068601

Obach, R. S. (1999). Prediction of human clearance of twen-
ty-nine drugs from hepatic microsomal intrinsic clearance da-
ta: An examination of in vitro half-life approach and nonspecif-
ic binding to microsomes. Drug Metab Dispos 27, 1350-1359. 

OECD (2021). Guidance Document on the Characterisation, Val-
idation and Reporting of Physiologically Based Kinetic (PBK) 
Models for Regulatory Purposes. Series on Testing and Assess-
ment No. 331. 

Paini, A., Leonard, J. A., Joossens, E. et al. (2019). Next 
generation physiologically based kinetic (NG-PBK) models in 
support of regulatory decision making. Comput Toxicol 9, 61-
72. doi:10.1016/j.comtox.2018.11.002

Pearce, R. G., Setzer, R. W., Strope, C. L. et al. (2017). httk: R 
package for high-throughput toxicokinetics. J Stat Softw 79, 
1-26. doi:10.18637/jss.v079.i04

Peters, S. A. and Dolgos, H. (2019). Requirements to establish-
ing confidence in physiologically based pharmacokinetic  
(PBPK) models and overcoming some of the challeng-
es to meeting them. Clin Pharmacokinet 58, 1355-1371. 
doi:10.1007/s40262-019-00790-0

Posada, M. M., Morse, B. L., Turner, P. K. et al. (2020). Predicting 
clinical effects of CYP3A4 modulators on abemaciclib and 
active metabolites exposure using physiologically based 
pharmacokinetic modeling. J Clin Pharmacol 60, 915-930. 
doi:10.1002/jcph.1584

Poulin, P. and Theil, F.-P. (2002). Prediction of pharmacokinetics 
prior to in vivo studies. II. Generic physiologically based phar-
macokinetic models of drug disposition. J Pharm Sci 91, 1358-
1370. doi:10.1002/jps.10128

Punt, A., Aartse, A., Bovee, T. F. H. et al. (2019). Quantitative in 
vitro-to-in vivo extrapolation (QIVIVE) of estrogenic and anti-
androgenic potencies of BPA and BADGE analogues. Arch 
Toxicol 93, 1941-1953. doi:10.1007/s00204-019-02479-6

Punt, A., Pinckaers, N., Peijnenburg, A. et al. (2021). 
Development of a web-based toolbox to support quantitative 
in-vitro-to-in-vivo extrapolations (QIVIVE) within nonanimal 
testing strategies. Chem Res Toxicol 34, 460-472. doi:10.1021/
acs.chemrestox.0c00307

Punt, A., Louisse, J., Pinckaers, N. et al. (2022). Predictive 
performance of next generation physiologically based kinetic 

Harwood, M. D., Neuhoff, S., Carlson, G. L. et al. (2013). Ab-
solute abundance and function of intestinal drug transporters: 
A prerequisite for fully mechanistic in vitro-in vivo extrapola-
tion of oral drug absorption. Biopharm Drug Dispos 34, 2-28. 
doi:10.1002/bdd.1810

Heikkinen, A. T., Baneyx, G., Caruso, A. et al. (2012). Applica-
tion of PBPK modeling to predict human intestinal metabo-
lism of CYP3A substrates – An evaluation and case study us-
ing GastroPlus™. Eur J Pharm Sci 47, 375-386. doi:10.1016/j.
ejps.2012.06.013

Hou, T. J., Zhang, W., Xia, K. et al. (2004). ADME evaluation 
in drug discovery. 5. Correlation of caco-2 permeation with 
simple molecular properties. J Chem Inf Comput Sci 44, 1585-
1600. doi:10.1021/ci049884m

Houston, J. and Galetin, A. (2008). Methods for predicting in 
vivo pharmacokinetics using data from in vitro assays. Curr 
Drug Metab 9, 940-951. doi:10.2174/138920008786485164

Ito, K., Brown, H. S. and Houston, J. B. (2004). Database anal-
yses for the prediction of in vivo drug-drug interactions from 
in vitro data. Br J Clin Pharmacol 57, 473-486. doi:10.1111/
j.1365-2125.2003.02041.x

Jamei, M., Turner, D., Yang, J. et al. (2009). Population-based 
mechanistic prediction of oral drug absorption. AAPS J 11, 
225-237. doi:10.1208/s12248-009-9099-y

Jones, H. M., Barton, H. A., Lai, Y. et al. (2012). Mechanistic 
pharmacokinetic modeling for the prediction of transporter-
mediated disposition in humans from sandwich culture hu-
man hepatocyte data. Drug Metab Dispos 40, 1007-1017. 
doi:10.1124/dmd.111.042994

Jones, H. M. and Rowland-Yeo, K. (2013). Basic concepts in 
physiologically based pharmacokinetic modeling in drug dis-
covery and development. CPT Pharmacometrics Syst Pharma-
col 2, e63. doi:10.1038/psp.2013.41

Karlsson, F. H., Bouchene, S., Hilgendorf, C. et al. (2013). Utility 
of in vitro systems and preclinical data for the prediction of hu-
man intestinal first-pass metabolism during drug discovery and 
preclinical development. Drug Metab Dispos 41, 2033-2046. 
doi:10.1124/dmd.113.051664

Kawamoto, Y., Matsuyama, W., Wada, M. et al. (2007). Develop- 
ment of a physiologically based pharmacokinetic model for bi-
sphenol A in pregnant mice. Toxicol Appl Pharmacol 224, 182-
191. doi:10.1016/j.taap.2007.06.023

Kilford, P. J., Gertz, M., Houston, J. B. et al. (2008). Hepato-
cellular binding of drugs: Correction for unbound fraction in 
 hepatocyte incubations using microsomal binding or drug  
lipophilicity data. Drug Metab Dispos 36, 1194-1197. doi:10. 
1124/dmd.108.020834

Li, R., Barton, H. and Maurer, T. (2015). A mechanistic pharma-
cokinetic model for liver transporter substrates under liver cir-
rhosis conditions. CPT Pharmacometrics Syst Pharmacol 4, 
338-349. doi:10.1002/psp4.39

Lobell, M. and Sivarajah, V. (2003). In silico prediction of 
aqueous solubility, human plasma protein binding and vol-
ume of distribution of compounds from calculated pKa and 
AlogP98 values. Mol Divers 7, 69-87. doi:10.1023/B:MODI. 
0000006562.93049.36

https://doi.org/10.1124/dmd.118.082966
https://doi.org/10.1021/acs.chemrestox.6b00302
https://doi.org/10.1016/j.tiv.2019.104722
https://doi.org/10.1016/j.tiv.2019.104722
https://doi.org/10.1124/dmd.115.068601
https://doi.org/10.1124/dmd.115.068601
https://doi.org/10.1016/j.comtox.2018.11.002
https://doi.org/10.18637/jss.v079.i04
https://doi.org/10.1007/s40262-019-00790-0
https://doi.org/10.1002/jcph.1584
https://doi.org/10.1002/jps.10128
https://doi.org/10.1007/s00204-019-02479-6
https://doi.org/10.1021/acs.chemrestox.0c00307
https://doi.org/10.1021/acs.chemrestox.0c00307
https://doi.org/10.1002/bdd.1810
https://doi.org/10.1016/j.ejps.2012.06.013
https://doi.org/10.1016/j.ejps.2012.06.013
https://doi.org/10.1021/ci049884m
https://doi.org/10.2174/138920008786485164
https://doi.org/10.1111/j.1365-2125.2003.02041.x
https://doi.org/10.1111/j.1365-2125.2003.02041.x
https://doi.org/10.1208/s12248-009-9099-y
https://doi.org/10.1124/dmd.111.042994
https://doi.org/10.1038/psp.2013.41
https://doi.org/10.1124/dmd.113.051664
https://doi.org/10.1016/j.taap.2007.06.023
https://doi.org/10.1124/dmd.108.020834
https://doi.org/10.1124/dmd.108.020834
https://doi.org/10.1002/psp4.39
https://doi.org/10.1023/B:MODI.0000006562.93049.36
https://doi.org/10.1023/B:MODI.0000006562.93049.36


Punt et al.

ALTEX 39(2), 2022       234

Tsamandouras, N., Rostami-Hodjegan, A. and Aarons, L. (2015). 
Combining the “bottom up” and “top down” approaches in phar-
macokinetic modelling: Fitting PBPK models to observed clini-
cal data. Br J Clin Pharmacol 79, 48-55. doi:10.1111/bcp.12234

Utsey, K., Gastonguay, M. S., Russell, S. et al. (2020). Quantifi-
cation of the impact of partition coefficient prediction methods 
on physiologically based pharmacokinetic model output using 
a standardized tissue composition. Drug Metab Dispos 48, 903-
916. doi:10.1124/DMD.120.090498

Wambaugh, J. F., Hughes, M. F., Ring, C. L. et al. (2018). Eval-
uating in vitro-in vivo extrapolation of toxicokinetics. Toxicol 
Sci 163, 152-169. doi:10.1093/toxsci/kfy020

Wambaugh, J. F., Wetmore, B. A., Ring, C. L. et al. (2019). As-
sessing toxicokinetic uncertainty and variability in risk prior-
itization. Toxicol Sci 172, 235-251. doi:10.1093/toxsci/kfz205

Wetmore, B. A., Wambaugh, J. F., Allen, B. et al. (2015). Incor-
porating high-throughput exposure predictions with dosim-
etry-adjusted in vitro bioactivity to inform chemical toxicity 
testing. Toxicol Sci 148, 121-136. doi:10.1093/toxsci/kfv171

Yang, Y., Li, P., Zhang, Z. et al. (2020). Prediction of cyclospo-
rin-mediated drug interaction using physiologically based 
pharmacokinetic model characterizing interplay of drug trans-
porters and enzymes. Int J Mol Sci 21, 7023. doi:10.3390/
ijms21197023

Yoon, M., Blaauboer, B. J. and Clewell, H. J. (2015). Quantita-
tive in vitro to in vivo extrapolation (QIVIVE): An essential el-
ement for in vitro-based risk assessment. Toxicology 332, 1-3. 
doi:10.1016/j.tox.2015.02.002

Yu, L. X. and Amidon, G. L. (1999). A compartmental absorp-
tion and transit model for estimating oral drug absorption. Int 
J Pharm 186, 119-125. doi:10.1016/S0378-5173(99)00147-7

Yun, Y. E. and Edginton, A. N. (2013). Correlation-based pre-
diction of tissue-to-plasma partition coefficients using readily 
available input parameters. Xenobiotica 43, 839-852. doi:10.31
09/00498254.2013.770182

Zhang, X., Quinney, S. K., Gorski, J. C. et al. (2009). Semi- 
physiologically based pharmacokinetic models for the  
inhibition of midazolam clearance by diltiazem and its major 
metabolite. Drug Metab Dispos 37, 1587-1597. doi:10.1124/
dmd.109.026658

Conflict of interest
The authors declare that they have no conflicts of interest.

Acknowledgements
This work was financed by the Dutch Ministry of Agriculture, 
Nature and Food Quality (Topsector AgriandFood project num-
ber AF-18070).

(PBK)-model predictions in rats based on in vitro and in sili-
co input data. Toxicol Sci, kfab150. doi:10.1093/toxsci/kfab150

Rodgers, T. and Rowland, M. (2006). Physiologically based phar-
macokinetic modelling 2: Predicting the tissue distribution of 
acids, very weak bases, neutrals and zwitterions. J Pharm Sci 
95, 1238-1257. doi:10.1002/jps.20502

Sager, J. E., Yu, J., Ragueneau-Majlessi, I. et al. (2015). 
Physiologically based pharmacokinetic (PBPK) modeling and 
simulation approaches: A systematic review of published mod-
els, applications, and model verification. Drug Metab Dispos 
43, 1823-1837. doi:10.1124/dmd.115.065920

Schmitt, M. V., Reichel, A., Liu, X. et al. (2021). Extension of the 
mechanistic tissue distribution model of Rodgers and Rowland 
by systematic incorporation of lysosomal trapping: Impact on 
unbound partition coefficient and volume of distribution pre-
dictions in the rat. Drug Metab Dispos 49, 53-61. doi:10.1124/
dmd.120.000161

Schmitt, W. (2008). General approach for the calculation of tissue 
to plasma partition coefficients. Toxicol In Vitro 22, 457-467. 
doi:10.1016/J.TIV.2007.09.010

Scotcher, D., Jones, C., Rostami-Hodjegan, A. et al. (2016). Nov-
el minimal physiologically-based model for the prediction of 
passive tubular reabsorption and renal excretion clearance. Eur 
J Pharm Sci 94, 59-71. doi:10.1016/j.ejps.2016.03.018

Shebley, M., Sandhu, P., Emami Riedmaier, A. et al. (2018). Phys-
iologically based pharmacokinetic model qualification and re-
porting procedures for regulatory submissions: A consortium 
perspective. Clin Pharmacol Ther 104, 88-110. doi:10.1002/
cpt.1013

Shibata, Y., Takahashi, H. and Ishii, Y. (2000). A convenient in 
vitro screening method for predicting in vivo drug metabolic 
clearance using isolated hepatocytes suspended in serum. Drug 
Metab Dispos 28, 1518-1523.

Soetaert, K., Petzoldt, T. and Setzer, R. W. (2010). Solving diffe -
rential equations in R: Package deSolve. J Stat Softw 33, 1-25. 
doi:10.18637/jss.v033.i09

Sohlenius-Sternbeck, A. K., Jones, C., Ferguson, D. et al. (2012). 
Practical use of the regression offset approach for the predic-
tion of in vivo intrinsic clearance from hepatocytes. Xenobioti-
ca 42, 841-853. doi:10.3109/00498254.2012.669080

Sun, D., Lennernas, H., Welage, L. S. et al. (2002). Com-
parison of human duodenum and Caco-2 gene expres-
sion profiles for 12,000 gene sequences tags and correlation 
with permeability of 26 drugs. Pharm Res 19, 1400-1416. 
doi:10.1023/a:1020483911355

Teeguarden, J. G., Waechter Jr., J. M., Clewell III, H. J. et al. 
(2005). Evaluation of oral and intravenous route pharmacoki-
netics, plasma protein binding, and uterine tissue dose metrics 
of bisphenol A: A physiologically based pharmacokinetic ap-
proach. Toxicol Sci 85, 823-838. doi:10.1093/toxsci/kfi135

https://doi.org/10.1111/bcp.12234
https://doi.org/10.1124/DMD.120.090498
https://doi.org/10.1093/toxsci/kfy020
https://doi.org/10.1093/toxsci/kfz205
https://doi.org/10.1093/toxsci/kfv171
https://doi.org/10.3390/ijms21197023
https://doi.org/10.3390/ijms21197023
https://doi.org/10.1016/j.tox.2015.02.002
https://doi.org/10.1016/S0378-5173(99)00147-7
https://doi.org/10.3109/00498254.2013.770182
https://doi.org/10.3109/00498254.2013.770182
https://doi.org/10.1124/dmd.109.026658
https://doi.org/10.1124/dmd.109.026658
https://doi.org/10.1093/toxsci/kfab150
https://doi.org/10.1002/jps.20502
https://doi.org/10.1124/dmd.115.065920
https://doi.org/10.1124/dmd.120.000161
https://doi.org/10.1124/dmd.120.000161
https://doi.org/10.1016/J.TIV.2007.09.010
https://doi.org/10.1016/j.ejps.2016.03.018
https://doi.org/10.1002/cpt.1013
https://doi.org/10.1002/cpt.1013
https://doi.org/10.18637/jss.v033.i09
https://doi.org/10.3109/00498254.2012.669080
https://doi.org/10.1023/a:1020483911355
https://doi.org/10.1093/toxsci/kfi135

