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Abstract  
In vitro toxicokinetic data are critical in meeting an increased regulatory need to improve chemical safety 
evaluations towards a better understanding of internal human chemical exposure and toxicity. In vitro intrinsic 
hepatic clearance (CLint), the fraction unbound in plasma (Fup), and the intestinal apparent permeability (Papp) 
are important parameters as input in a physiologically based kinetic (PBK) model to make first estimates of internal 
exposure after oral dosing. In the present study we explored the experimental variation in the values for these 
parameters as reported in the literature. Furthermore, the impact that this experimental variation has on PBK model 
predictions of maximum plasma concentration (Cmax) and the area under the concentration time curve (AUC0-24h) 
was determined. As a result of the experimental variation in CLint, Papp, and Fup, the predicted variation in Cmax 
for individual compounds ranged between 1.4- to 28-fold and the predicted variation in AUC0-24h ranged between 
1.4- and 23-fold. These results indicate that there are still some important steps to take to achieve robust data that 
can be used in regulatory applications. To gain regulatory acceptance of in vitro kinetic data and PBK models 
based on in vitro input data, the boundaries in experimental conditions as well as the applicability domain and the 
use of different in vitro kinetic models need to be described in guidance documents. 
 
 
 
1 Introduction 
 
In 2020, the European Commission launched its EU Chemicals Strategy for Sustainability under the Green Deal. Key aspects 

of this strategy are to ban most harmful chemicals, to improve safe and sustainable chemicals by design, and to obtain a better 

account of potential ‘cocktail effects’ (i.e. effects upon combined exposure) of chemicals (European Commission, 2019, 2020). 

Such additional insights in chemical safety cannot only be obtained with traditional animal testing, which is costly and time-

consuming, and therefore not applicable to large numbers of compounds. Therefore, there is an increasing need for the 

regulatory use of animal-free testing strategies (Arnesdotter et al., 2021; Paul Friedman et al., 2020; de Boer et al., 2020). 

Insights in the absorption, distribution, metabolism and excretion of compounds, i.e. the kinetics, have a critical role in such 

animal-free testing strategies, particularly to improve the interpretation of in vitro toxicity results, allowing to estimate the 

internal plasma and tissue concentrations in humans after oral, dermal, or inhalation exposures, that can be related to the in 

vitro effect concentrations (Louisse et al., 2017; Blaauboer, 2014; Coecke et al., 2013). In addition, kinetic data are important 

in the interpretation of data from human biomonitoring studies, for example to translate measured urine concentrations of a 

compound or its metabolite(s) to related external exposures (Zare Jeddi et al., 2021). Finally, kinetic data are key to obtain 

better insights in dose-, species-, and route of exposure-dependent differences in internal exposure, as well as considerations 

of human interindividual variation and interactions between compounds (Punt et al., 2020; Paini et al., 2021).  

Given that particularly human toxicokinetic data are generally scarcely available for non-pharmaceuticals, insights 

in kinetics are increasingly obtained with in vitro test systems. These include approaches that capture, for example, the 

intestinal, dermal, or pulmonary permeability of compounds, or test systems that capture metabolic conversions, plasma or 

tissue binding, or influx or efflux transporter kinetics (Blaauboer, 2014; Punt et al., 2017; Wilk-Zasadna et al., 2015). Stand-

alone data from such studies can, in general, not directly be used in safety evaluations, as the combined effects of different 

kinetic processes determines the internal exposure. Therefore, data obtained with the different test systems need to be 

integrated, for example with help of PBK modelling (Louisse et al., 2017; Bessems et al., 2014; Choi et al., 2019) while taking 

the uptake and kinetics of various ports of entry (oral, dermal and inhalation) into account. To gain confidence in the outcomes 

obtained with PBK models that rely on in vitro input data, it is important to have insight into the robustness of the in vitro 

 
*  
Received February 13, 2022; Accepted July 22, 2022;     
Epub July 25, 2022; © The Authors, 2022.    
        
ALTEX 39(#), ###-###. doi:10.14573/altex.2202131     

         
Correspondence: Ans Punt, PhD  
Wageningen Food Safety Research  
P.O. Box 230, 6700 AE, Wageningen, The Netherlands  
(ans.punt@wur.nl) 

https://doi.org/10.14573/altex.2202131
mailto:ans.punt@wur.nl


ALTEX, accepted manuscript  
published July 25, 2022 

doi:10.14573/altex.2202131 
 

2 
 

input data that are used and the combined impact of experimental variation in each of the individual parameters on the model 

predictions. In addition, each in vitro kinetic assay has its own inherent boundaries with respect to the conditions under which 

the in vitro experiments should be performed, including, for example, boundaries with respect to the applied substrate 

concentration, enzyme concentration, or incubation time (Hubatsch et al., 2007; Gouliarmou et al., 2018; Seibert and Tracy, 

2014). There are furthermore restrictions with respect to the applicability domain of different in vitro kinetic studies. For 

example, in vitro kinetic constants, measured under linear conditions, can only be used for predictions at dose-levels that would 

not lead to saturation of enzymes or transporters (Peters, 2012). To achieve regulatory use of in vitro kinetic studies, the 

robustness, experimental conditions under which the in vitro experiments need to be performed, and applicability domain of 

different in vitro kinetic studies need to become more apparent.  

Recently, Louisse et al. (2020), collected reported intrinsic hepatic clearance (CLint) values from the literature for 

30 compounds obtained with human hepatocytes, as well as information on the experimental set-ups applied. They observed 

up to two orders of magnitude differences in literature reported in vitro hepatic CLint values as obtained from incubations with 

primary human hepatocytes and noticed that the experimental set-ups applied differed for many aspects between studies. In 

most studies, pooled hepatocytes were used, suggesting that differences between studies are not solely driven by interindividual 

differences in biotransformation activities (Louisse et al., 2020). Apart from the in vitro CLint values, the fraction unbound in 

plasma (Fup), and the intestinal apparent permeability (Papp) are also important parameters with which first estimates of 

internal concentrations can be made for oral exposure, upon using these data as input in a PBK model (Jones and Rowland-

Yeo, 2013). Experimental uncertainties related to small differences in experimental set-ups can also be expected for these 

input parameters. The goal of the present study was to obtain an insight in the experimental variation in CLint, Fup, and Papp, 

and to explore the impact of this experimental variation in the in vitro kinetic data on PBK model predictions. The results are 

discussed with respect to the importance of the development of guidance documents to 1) reduce experimental variation and 

2) to equip regulatory bodies with the means to evaluate the quality of in vitro kinetic data and the adequacy of an in vitro 

study design. 

 
 
2 Materials and methods 
 
2.1 Data collection 
A literature search was performed to obtain an indication of the experimental variation in in vitro measured CLint, Papp, and 

Fup. In case of CLint, the in vitro data as collected by Louisse et al. (2020) were included in the present study. In that study, 

Louisse et al. (2020) performed a literature search to obtain an indication of the experimental variation in intrinsic clearances 

values obtained with primary hepatocytes, predominantly obtained with the substrate depletion protocol. Given that the 

clearance data from Louisse et al. (2020) mainly covered pharmaceuticals, an additional literature search was performed in the 

present study to expand the chemical domain to non-pharmaceuticals. To this end, Scopus1 was used to identify papers or 

databases that provide relatively large datasets on in vitro metabolic clearances, measured with primary hepatocytes.  

For non-pharmaceuticals, the R httk database (EPA) and Black et al. (2021) were identified as major source for hepatic 

clearance data. For compounds for which two independent clearance measurements were found in these initial selected data 

sources, an additional search was performed with Google Scholar, to determine if additional clearance data could be obtained 

from individual scientific papers.  

In addition to the collection of CLint data, literature data were also collected to obtain an indication of the 

experimental variation in Caco-2 Papp and Fup values. To this end, Scopus was used to identify papers or databases that 

contain relatively large datasets of Caco-2 Papp values or Fup values. The final selection of Caco-2 Papp data were obtained 

from Estudante et al. (2015), Gertz et al. (2010), Hallifax et al. (2012), Hou et al. (2004), Larregieu & Benet (2014), Lee et al. 

(2017), Li et al. (2007), and Neuhoff et al. (2003). In case of Fup, the R httk database (EPA) and data from Ye et al. (2016), 

Wang et al. (2014), Srivastava et al. (2021), Jones et al. (2021), Ferguson et al. (2019), Chen et al. (2019), and Deshmukh and 

Harsch ( 2011) were selected. Table 1 provides a summary of the data obtained with the literature search on in vitro intrinsic 

hepatic clearance, Caco-2 Papp and Fup values for compounds from different chemical domains (pharmaceutical, chemical, 

food, cosmetic). A more extensive overview of the data and references is provided in supplementary file 12. 

 
2.2 PBK model predictions 
For the compounds for which the experimental variation in all three parameters, i.e. CLint, Papp, and Fup, could be determined 

(see Table 1), simulations were performed to explore the impact of the experimental variation on predictions of the maximum 

plasma concentration (Cmax) and the area under the concentration time curve (AUC0-24h). For these simulations, a published 

generic human PBK model code by Jones and Rowland-Yeo (2013) was used. The original model code of Jones and Rowland-

Yeo (2013) was converted to R (R Core Team, 2021) and is provided on GitHub3. A description of the PBK model according 

to the OECD harmonized template is provided in supplementary file 24. The code was modified with respect to definition of 

the freely available concentration in the liver that is available for metabolism (CL*Fup), to the more commonly used 

description (CVL*Fup) in which CVL corresponds to the total concentration in the liver (CL) divided by the liver:plasma 

partition coefficient (Grandoni et al., 2019). The generic PBK model consists of 13 compartments, corresponding to the major 

organs in the body and an arterial and venous blood compartment. The model requires chemical-specific parameters for 1) 

intestinal uptake, 2) partition coefficients, 3) the blood:plasma ratio, 4) the fraction unbound in plasma and 5) hepatic clearance. 

 
1 www.scopus.com  
2 doi:10.14573/altex.2202131s1 
3 https://github.com/wfsrqivive/PBK_exp_variation.git  
4 doi:10.14573/altex.2202131s2 

http://www.scopus.com/
https://doi.org/10.14573/altex.2202131s1
https://github.com/wfsrqivive/PBK_exp_variation.git
https://doi.org/10.14573/altex.2202131s2
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Tab. 1: Model compounds and summary of in vitro kinetic data (mean, coefficient of variation (CV) and number of data 
entries (n)) collected for CLint, Papp and Fup 

Number Compounda CLint (µL/min/106 cells) Papp (10-6 cm/s) Fup 

Mean CVb n Mean CVb n Mean CVb n 

1 Antipyrine 0.19 75 8 48 93 8 
   

2 Disopyramide 0.28 41 8 
      

3 Lorazepam 0.51 74 7 
      

4 Dapsone 0.57 97 4 
      

5 Tolbutamide 1.1 120 11 
   

0.044 50 5 

6 Diazepam 1.4 110 15 38 50 5 0.028 86 9 

7 Caffeine 1.6 130 10 38 19 5 0.97 42 3 

8 Pindolol 1.9 29 7 
      

9 S-warfarin 1.9 150 5 30 29 3 0.013 46 9 

10 Omeprazole 2.4 63 5 
      

11 Timolol 2.7 82 8 
      

12 Naproxen 4.1 160 6 
      

13 Metoprolol 4.8 77 11 32 112 12 
   

14 Ketoprofen 4.8 56 11 
      

15 Prazosin 5.2 68 6 
      

16 Ibuprofen 5.3 37 5 
      

17 Diltiazem 6.2 55 12 45 55 4 0.37 38 5 

18 Quinidine 6.4 98 10 19 80 2 0.23 38 3 

19 Bosentan 7 200 7 
   

0.021 64 3 

20 Clozapine 7 59 11 
   

0.083 44 5 

21 Prednisolone 7.2 130 8 
      

22 Sildefil 7.6 54 15 
      

23 Lidocaine 8.8 78 6 
      

24 4-Nitroaniline 9.6 100 4 
      

25 Midazolam 14 91 18 39 46 3 0.034 46 8 

26 Dextromethorphan 17 120 9 
   

0.39 23 4 

27 Imipramine 17 110 19 
   

0.17 38 5 

28 3,3’ ,5,5’ -
Tetrabromobisphenol A 

18 120 4 
      

29 Phecetin 19 110 11 
      

30 Buspirone 21 79 6 
   

0.2 71 3 

31 Nifedipine 21 88 6 
   

0.042 5 2 

32 Desipramine 21 96 9 
      

33 Ketanserin 25 82 6 
      

34 Carvidelol 29 43 8 
      

35 Verapamil 30 100 15 35 79 10 0.2 38 9 

36 Diclofenac 31 120 15 
   

0.0066 69 9 

37 Bufuralol 33 110 5 
      

38 2,5-Di-tert-butylbenzene-
1,4-diol 

35 160 4 
      

39 Propanolol 37 220 12 
      

40 Chlorpromazine 52 140 10 
   

0.04 38 2 

42 Bisphenol A 76 70 3 36 87 3 
   

43 Ipcozole 120 80 4 
      

44 Benzylparaben 370 50 4 
      

45 Propranolol 
   

36 89 9 0.23 36 9 

46 Fluvastatin 
      

0.0061 42 2 

47 Rosuvastatin 
      

0.13 7.8 2 
a For the compounds highlighted in bold, the experimental variation in all three parameters, i.e. CLint, Papp and Fup could be 
determined.  
b CV corresponds to the coefficient of variation (CV = SD/mean x 100%) and is used as indicator of the variation in the reported 
kinetic values. 
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Renal clearance is described in the model based on the glomerular filtration rate times the fraction unbound in plasma and 

does therefore not require any additional chemical-specific input parameter. The partition coefficients were calculated with 

the calculation method of Rodgers and Rowland (2006). The blood:plasma ratio was assumed to be a fixed value of 1 for all 

compounds as there are currently insufficient data or calculators available to parameterize the blood:plasma ratio. The input 

parameters for the intestinal uptake, fraction unbound in plasma and hepatic clearance were obtained from in vitro experiments 

as described above. To explore the impact of the variation in CLint, Papp, and Fup on the Cmax and AUC0-24h predictions, 

simulations were performed with all possible combinations of CLint, Papp, and Fup for a specific compound. The codes to 

run these simulations are provided on5. The simulations were performed at a low single oral dose of 0.1 mg/kg bw at which 

linear clearance conditions can be expected for all compounds. 

To determine which of the in vitro input parameters contributed most to the predicted variation in Cmax and 

AUC0-24h, a global sensitivity analysis was performed with RVis (McNally et al., 2018; Loizou et al., 2021). To this end, for 

each compound, the R code of the PBK model was loaded into the RVis software6. Simulations were subsequently performed 

within the “Sensitivity” tab, using the e-FAST method, by adding the observed in vitro distributions (mean and CV) to the 

CLint, Fup and Papp parameters. Additional details on how these simulations were performed are provided in supplementary 

file 24. The input data for the RVis simulations are provided in supplementary file 12.  

 
 
3 Results 
 
3.1 Evaluation of the in vitro experimental variation in CLint values 
Figure 1 shows the experimental variation in data from in vitro metabolic clearance studies as obtained from the literature. For 

many of the compounds, the CLint measurements varied over a 100-fold, generally ranging between values that are 5-fold 

higher and 20-fold lower than the mean of a specific compound. The results from Figure 1 also reveal that the variation in 

CLint is consistent over the different types of compounds and chemical domains. The highest variation in in vitro CLint values 

is observed for the pharmaceuticals bosentan (19) and naproxen (12) with a respective 172-fold and 164-fold range in CLint 

values. However, also for the food related compounds a large variation is found, exemplified for caffeine (7) and the food 

preservative 2,5-di-tert-butylbenzene-1,4-diol (38), with a 63-fold and 43-fold variation in in vitro reported CLint values, 

respectively. This consistency in experimental variation over the range of different compounds provides an indication of the 

variation that can be expected from in vitro metabolic clearance studies with primary hepatocytes.  

 
3.2 Evaluation of the in vitro experimental variation in Caco-2 Papp values 
Figure 2 shows the experimental variation in in vitro reported Papp values. For the three compounds for which most Caco-2 

Papp measurements are available (i.e., metoprolol (13), verapamil (35), and antipyrine (1)), the variation in Papp values 

appears to range over 13- to 60-fold, ranging between values that are about 3- to 4-fold higher and about 4- to 15-fold lower 

than the mean Papp value of a specific compound. For the remaining compounds, less data was available, and the results 

revealed a 1.5- to 5-fold variation.  

 

3.3 Evaluation of the in vitro experimental variation in Fup values 
Figure 3 reveals the experimental variation in in vitro derived Fup values for a range of compounds. Given that the Fup values 

can only range between 0 and 1, as the Fup is a fraction, the extent of variation in the Fup estimates is less than observed for 

CLint and Caco-2 Papp values as described above. The largest experimental variation is observed for diclofenac (36) with Fup 

values ranging from 0.0015-0.015, corresponding to a 10-fold range.  

 

 
Fig. 1: Variation in in vitro CLint (µL/min/106

 cells) measurements 
The histogram depicts the combined distribution of the variation over the different compounds. The values represent the 
normalized CLint values, corresponding to the CLint values obtained for a specific compound, divided by the mean of these 
values for the specific compound. The depicted compounds are numbered as described in Table 1 and grouped into four 
categories from low to high CLint values.  

 

 
5 https://github.com/wfsrqivive/PBK_exp_variation.git 
6 https://github.com/GMPtk/RVis/releases, v0.15, using R 4.1.1 

https://github.com/wfsrqivive/PBK_exp_variation.git
https://github.com/GMPtk/RVis/releases
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Fig. 2: Variation in reported in vitro Caco-2 Papp values (10-6 cm/s) 
The histogram depicts the combined distribution of the variation over the different compounds. The values represent the 
normalized Papp values, corresponding to the Papp values obtained for a specific compound, divided by the mean of these 
values for the specific compound. The depicted compounds are numbered as described in Table 1 and grouped into four 
categories from low to high Papp values. 
 

 

Fig. 3: Variation in in vitro Fup (unitless) measurements 
The histogram depicts the combined distribution of the variation over the different compounds. The presented values represent 
the normalized Fup values, corresponding to the Fup values obtained for a specific compound, divided by the mean of these 
values for the specific compound. The depicted compounds are numbered as described in Table 1 and grouped into four 
categories from low to high Fup values. 

 
3.4 Impact of the combined variation in CLint, Papp and Fup on the PBK model-predicted Cmax and 
AUC0-24h 
For the seven compounds within the dataset for which CLint, Papp and Fup data from different studies were available, the 

combined effects of the experimental variation in the three input parameters on the PBK model predictions were determined. 

The results of these predictions are depicted in Figure 4. For every chemical, each available CLint value was combined with 

each available Papp value, and each CLint-Papp combination was in turn combined with each available Fup value for a specific 

compound. Figure 4 reveals that the impact of the variation in experimental conditions on the PBK model predictions is 

different for each compound. The lowest variation in Cmax and AUC0-24h predictions occurs for the low-clearance compound 

diazepam (6), revealing both a 1.4-fold range in Cmax and AUC0-24h
 predictions. The highest variation in both Cmax and 

AUC0-24h predictions occurs for the high-clearance compound verapamil (35), revealing a 28-fold range in predicted Cmax 

and a 23-fold range in predicted AUC0-24h. A high variation in AUC0-24h of 23-fold is also observed for the low-clearance 

compound caffeine (7).  

 
Fig. 4: Variation in PBK model-predicted 
Cmax (A) and AUC0-24h (B) as a result of 
the variation in reported in vitro CLint, 
Papp and Fup values 
The depicted compounds are numbered as 
described in Table 1.  
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Fig. 5: Relative sensitivity of the Cmax (A) and AUC0-24h (B) prediction to the variation in CLint, Papp and Fup, as obtained 
with the RVis global sensitivity analysis 
The relative sensitivity represents the relative contribution of each of the three parameters to the variation in Cmax or AUC0-24h 
as observed in Figure 4. For example, in case of caffeine (7), the variation in CLint accounted for 87% of the total variation in 
Cmax predictions, whereas variation in Fup and Papp contributed with 6% and 1.8%, respectively. The remaining 5.2% variation 
is caused by the interaction between these different parameters as depicted in the supplementary file 24.  

 
3.5 Relative contribution of the different input parameters to the variation in predicted Cmax and AUC0-24h 
values 
Figure 5 depicts the results of the global sensitivity analysis that was performed to determine which of the three input 

parameters (i.e., CLint, Papp, or Fup) contribute most to the variation in Cmax and AUC0-24h predictions as observed in Figure 

4. Experimental variation in CLint had the highest impact on AUC0-24h predictions for all compounds and for four out the 

seven compounds also on the Cmax predictions (caffeine (7), diltiazem (17), S-warfarin (9) and verapamil (35)). The observed 

variation in Cmax predictions for these compounds can thus largely be attributed to the variation in CLint. The experimental 

variation in uptake parameter Papp has no influence on the AUC0-24h predictions but does have an impact on the Cmax 

predictions of two out of the seven compounds (diazepam (6) and quinidine (18)). The relative sensitivity towards experimental 

variation in Fup values was found to be lower than for CLint (Figure 5).  

 
 
4 Discussion 
 
With the present study we explored the experimental variation in vitro CLint, Caco-2 Papp and Fup measurements and the 

impact that this experimental variation has on PBK model predictions of Cmax and AUC0-24h. As a result of the observed 

experimental variation in CLint, Papp, and Fup, the PBK model-predicted Cmax for the seven compounds for which these 

three parameters were available, was found to range between 1.4- to 28-fold and the AUC0-24h to range between 1.4- to 23-

fold. The large variation in Cmax and AUC0-24h predictions, as observed for some of the compounds, indicates that the in vitro 

kinetic data are currently difficult to use in a regulatory context, since there are currently no means to evaluate the adequacy 

of a given in vitro kinetic experimental design used to obtain PBK model input parameters.  

At present, insufficient data are available to obtain insights in the underlying causes for the experimental variation, 

as often critical experimental details, like solubility experiments and linearity checks (rate constants linear with time or 

concentration), are often not reported in the scientific literature. A more systematic analysis would be required to identify 

critical aspects of experimental designs, for example by performing the in vitro kinetic studies with a full factorial design 

approach, in which the impact of a number of variables in the experimental design is systematically studied (Maas et al., 2000). 

An incorrect design of in vitro kinetic experiments is expected to be one of the causes of the large variation in in vitro kinetic 
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data present in the literature. For example, a critical aspect of in vitro clearance measurements with the substrate depletion 

protocol, is that the applied concentration should be below the Km (Black et al., 2021). However, measurements are still 

available in the literature in which this condition is not met or not considered (for example, Fortaner et al., 2021). In case of 

Caco-2 absorption experiments, a critical aspect of obtaining relevant Papp values is that the experiments are performed under 

a concentration gradient, otherwise diffusion cannot take place. This means that the time-range in which the absorption studies 

are performed needs to be optimized to make sure that less than 10% of the compound is diffused to the basolateral 

compartment (also called sink-conditions) (Usansky and Sinko, 2005). Such sink conditions provide the best representation of 

the physiological conditions, as a concentration gradient between the gut lumen and the plasma will exist in vivo due to 

distribution of the chemical in the body after absorption. Examples are available in the literature in which this criterium to 

measure under sink-conditions is not met or not considered (for example, Kulthong et al., 2018). In addition, factors that affect 

the concentration of a test item (solubility or plastic binding) will affect the results when not adequately taken into account 

(Fagerholm et al., 2021). Finally, data processing can also have a large effect on the derived kinetic constants. For example, 

mismatches between the observed data points and mathematical fit was observed in the present study for the compound 2,5-

di-tert-butylbenzene-1,4-diol (38) (Wambaugh et al., 2019). Additional background information on critical aspects that need 

to be considered with respect to the design of in vitro kinetic studies is provided in supplementary file 24.  

Within a regulatory context, no guidance documents are currently available to be able to judge the quality of in vitro 

kinetic measurements, hampering the adequate performance of in vitro kinetic studies as well as the evaluation of data by end-

users, including regulators. Recently, the OECD published a guidance document on a workflow for characterizing and 

validating PBK models (OECD, 2021). The quality of the in vitro input data is not explicitly taken into account in this guidance 

document yet. Nonetheless, effective protocols for performing in vitro kinetic studies to derive values for CLint, Papp, and 

Fup are available in the scientific literature (For example Watanabe et al., 2018; Cai and Shalan, 2021; Hubatsch et al., 2007; 

Black et al., 2021) . We highly recommend that these high-quality protocols would be formalized to describe the applicability 

domain/use in a regulatory context. However, it should be noted that most of the protocols have been developed within the 

pharmaceutical domain and also most experience with the predictive performance of the different in vitro kinetic studies comes 

from the pharmaceutical domain. Compounds like pesticides, biocides, industrial chemicals, cosmetic ingredients and food 

related compounds generally have a broader range of physicochemical properties than pharmaceuticals and can contain, for 

example, compounds that are highly lipophilic or volatile (Andersen et al., 2019; Ferguson et al., 2019).  

At present, in vivo experimental animal or human kinetic data are still being requested in various regulatory 

guidelines (for example SCCS, 2018; EMA, 2018; OECD, 2021) to evaluate the performance of PBK models and to obtain 

confidence in the model predictions. However, this approach of model evaluations against in vivo data is mainly successful 

within the pharmaceutical domain as only for pharmaceuticals sufficient clinical data are available (EMA, 2018; Punt et al., 

2017). For many other chemical domains, the availability of experimental animal or human in vivo kinetic data is limited, and 

evaluations against in vivo kinetic data is often not possible. Given that the combination of in vitro kinetic input data with PBK 

models provides a promising strategy to simulate the fate of chemicals in a body in the absence of in vivo kinetic data, it 

becomes crucial to find other means to gain confidence in the in vitro kinetic data and related PBK model predictions. The 

quality of the in vitro input parameters is an important aspect in this respect, as the model predictions will only be as good as 

the input. Application of uncertainty factors to the in vitro-based PBK model predictions might be one way to take the 

uncertainties related to the in vitro experimental variation into account. The results of the present study indicate, however, that 

large uncertainty factors may then be required to cover the impact of potential experimental variation. Increasing robustness 

of in vitro kinetic data and improving the possibilities within regulatory risk evaluations to evaluate the quality of in vitro 

kinetic data are therefore an important next step.  

Apart from guidance documents on the design of in vitro kinetic studies, guidance documents will also be needed 

with respect to the applicability domain of different in vitro kinetic studies with respect to meeting specific regulatory needs. 

The in vitro kinetic data discussed in the present study can, for example, only be used to make first tier estimates of plasma 

concentrations of the parent compound after oral exposure (Jones and Rowland, 2013). Simulations of inhalation and dermal 

exposure will require additional kinetic input data on in vitro lung and dermal absorption to mimic these respective exposure 

routes. The first-tier estimates of plasma Cmax and AUC0-24h in the present study after oral exposures do also not yet take the 

contribution of metabolites, possible saturation of biotransformation enzymes, possible involvement of transporters, or 

possible extrahepatic metabolism into account. At present it remains particularly difficult to determine when additional kinetic 

processes, like transporter kinetics or extrahepatic metabolism, need to considered for a specific compound (Sager et al., 2015). 

Additional research is still needed to define the characteristics of chemicals that require the inclusion of these additional kinetic 

processes in PBK models (Punt et al., 2022).  

Whereas the present study focussed on the impact of variation in reported in vitro CLint, Fup and Papp values on 

PBK model predictions, other in vitro kinetic input parameters could be relevant as well. Metabolic clearance is, for example, 

not only measured with primary hepatocytes, but also with liver microsomes and S9. In addition, in situations where dose-

dependent kinetics are of importance, the Michaelis-Menten constants (Km and Vmax) need to be derived from the in vitro 

metabolism studies. Moreover, in vitro transporter kinetic data (for example intestine, kidney and liver transporters) are 

important for the kinetics of some compounds. A similar variability in experimental results may be expected for each of these 

in vitro methods if non-standardized approaches are used, and a description of experimental boundaries and the applicability 

domain will be needed. For example, the variability in literature reported metabolic clearance rates for bisphenol A with human 

liver microsomes ranges 30-fold (from 0.078 to 2.36 mL/min/mg microsomal protein) (Mazur et al., 2010; Elsby et al., 2001; 

Hanioka et al., 2020), which is similar to the overall variability in hepatocyte clearance data as observed in the present study. 

Apart from the in vitro kinetic data, in silico predictors of different kinetic parameters have been developed as well that may 

provide input data for PBK models. Particularly the prediction of partition coefficients (determining the distribution of 

compounds in different organs) depends on the use of these calculators, as these parameters are difficult to obtain with in vitro 

experiments. Recently, Punt et al. (2022) revealed that significant differences can occur as a result of the use of different 
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calculators. For example, the calculation method of Berezhkovskiy (Berezhkovskiy, 2004) led frequently to underpredictions 

of the Cmax of acidic compounds (pKa<6), whereas the calculation method of Schmitt (Schmitt, 2012) appeared to perform 

less well for highly lipophilic compounds (Punt et al., 2022). The calculation method of Rodgers and Rowland (Rodgers and 

Rowland, 2006) performed overall best, which was therefore applied in the present study to predict the partition coefficients 

of the different compounds.  

Overall, the results of the present study indicate a strong impact of experimental variation in CLint, Papp and Fup on 

PBK model-based Cmax and AUC0-24h predictions. This implies that steps need to be taken to reduce experimental variation 

to increase the confidence in these in vitro kinetic data and related PBK model simulations for regulatory use. To this end, it 

will be crucial that the in vitro experiments are performed in a standardized way, thereby meeting the regulatory needs. In 

addition, the chemical and regulatory applicability domains of the in vitro test systems and kinetic models need to be defined. 

Therefore, it is important that existing protocols are formalized in guidance documents to improve harmonisation of testing 

procedures and correct usage of test results. 
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