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result in at least one of the in vitro tests but a negative result 
in the associated follow-up in vivo test and are caused by the 
low specificity of the in vitro genotoxicity tests (Kirkland et 
al., 2007; Ates et al., 2014; Corvi and Madia, 2017). As the 
misleading positive results trigger needless animal studies, 
which are costly, time-consuming, morally questionable, and 
not always biologically relevant to humans, the existing in vitro  
genotoxicity testing strategies need to be improved. Over the 
last years, efforts have been undertaken to develop new in  
vitro assays that can be used in a weight of evidence (WoE) 
approach to de-risk a misleading positive result for genotoxic-
ity. NAMs for genotoxicity testing proposed by the Scientific 
Committee on Consumer Safety (SCCS) include, amongst oth-
ers, the 3D reconstructed human skin comet and micronucleus 

1  Introduction

Genetic toxicity testing is routinely performed to ensure the 
safety of newly developed chemical entities for human health. 
Traditionally, a step-wise standardized approach is applied, 
starting with a battery of in vitro tests covering both gene mu-
tations as well as structural and numerical chromosome aberra-
tions. In case of a positive outcome in one of the in vitro tests, 
an adequate in vivo follow-up test is performed. 

Despite its wide applicability and high sensitivity, the cur-
rent genotoxicity battery is facing several limitations includ-
ing the lack of information on the underlying mode of action 
(MoA) and the high number of misleading positive results. 
These “misleading positives” are chemicals with a positive 
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be used in other cell lines such as human metabolically compe-
tent HepaRG™ cells (Buick et al., 2020, 2021). 

The third biomarker, developed by our research teams and 
further referred to as GENOMARK, consists of 84 genes for 
which the selection was based on transcriptomic data collect-
ed in HepaRG™ cells. The 84 genes of the GENOMARK bio-
marker were selected based on the microarray results collected 
after 72-h exposure of HepaRG™ cells to low cytotoxic con-
centrations, i.e., IC10 concentrations, of 12 genotoxic and 12 
non-genotoxic chemicals (Ates et al., 2018). The 24 reference 
chemicals were specifically chosen to address a broad range of 
mechanisms of genotoxicity including bulky adduct formation, 
DNA alkylation, cross-linking, radical generation causing DNA 
strand breaks, inhibition of tubulin polymerization and base 
analogues (Ates et al., 2018). Afterwards, a prediction model 
based on a machine learning algorithm, i.e., support vector ma-
chine (SVM), was developed to classify test chemicals as geno-
toxic, non-genotoxic or equivocal based on the gene expression 
values for the 84 genes. In order to facilitate the implementation 
and use of the GENOMARK biomarker, the selected 84 genes 
were translated into an easy-to-handle qPCR array, and the ap-
plicability of the SVM prediction model to the collected qPCR 
data was assessed (Ates et al., 2018). When considering equivo-
cal results as positive, GENOMARK showed a predictive accu-
racy of 100% when applied to the qPCR data of 5 known in vivo 
genotoxicants, 5 in vivo non-genotoxicants, and 2 chemicals 
with debatable genotoxicity data. Despite the promising results, 
the existing SVM prediction model could be further improved. 
For example, when running the SVM algorithm on a particular 
dataset, a new prediction model is created instead of using a 
fixed model, resulting in uncontrolled models that can highly 
affect the prediction outcomes. 

In the present study, we therefore describe the development 
and comparison of new improved prediction models to classi-
fy chemicals based on GENOMARK gene expression levels. 
Additionally, the predictive accuracy of the new prediction 
models to de-risk misleading positives was evaluated for the 
first time. For this purpose, the existing reference dataset of  
24 compounds was enlarged to 38 by including 9 out of the 10 
validation chemicals described in the study of Ates et al. (2018) 
and by including 5 additional known in vivo (non-)genotoxic 
compounds for which new gene expression data were gener-
ated. Next, both unsupervised and supervised methods were 
applied on the gene expression data of the extended reference 
list. As the two supervised machine learning algorithms yield-
ed the best results, the predictive capacity of these models was 
further compared by applying them to newly generated gene 
expression data for 10 misleading positive chemicals. The ap-
plicability of both models on a publicly available transcriptom-
ic dataset collected with RNA-sequencing was investigated as 
well. Finally, an online application was developed to facilitate 
application of the GENOMARK prediction models by other 
scientists1.

test, toxicogenomics, recombinant cell models, hen’s egg test 
for micronucleus induction (HET-MN), and assays based on 
the evaluation of the phosphorylated form of H2A histone fam-
ily member γH2AX (EC, 2022).

Not only in genetic toxicology, but in toxicology in general, 
there is currently a transition ongoing to reduce or even com-
pletely step away from animal testing and to move towards the 
use of innovative and new approaches that do not (directly) 
rely on animals (EC, 2022; Parish et al., 2020). Several of the 
recently developed NAMs for understanding and predicting 
compound toxicity are based on the evaluation of changes at 
the molecular level upon exposure to the chemical of interest 
(Alexander-Dann et al., 2018). Gene expression technologies 
such as microarray analysis or next-generation sequencing al-
low to evaluate the impact of chemicals on a large part of or 
even of the complete transcriptome. As chemicals that exhibit 
similar mechanisms of toxicity are assumed to induce similar 
profiles of gene expression, such transcriptomic data can thus 
be used to understand and predict toxicity (Merrick, 2019;  
David, 2020). 

In genetic toxicology, the value of transcriptomics data for 
collecting insights into the early molecular events involved 
in a chemicals’ genotoxic MoA is becoming increasingly rec-
ognized. However, analysis of the whole transcriptome may 
overcomplicate the analysis as many of the genes may not be 
affected by genotoxic compounds. For this reason, several bio-
markers consisting of a defined set of genes (also referred to as 
“gene signature”) have been developed based on transcriptom-
ics data (David, 2020). These transcriptomic-based biomarkers 
facilitate the interpretation of complex genomic data sets and 
thus increase their relevance for risk assessment (Buick et al., 
2021). When combining gene signatures with machine learn-
ing algorithms, predictive models can be developed that clas-
sify chemicals for a specific type of hazard and thus strengthen 
the hazard identification process (Vo et al., 2020). 

To our knowledge, there are three in vitro biomarkers for 
genotoxicity based on transcriptomics data collected in HepG2, 
TK6, and HepaRG™ cells. Magkoufopoulou et al. (2012) used 
Affymetrix DNA microarrays to develop a biomarker in human 
liver HepG2 cells. The 33 genes of their biomarker were select-
ed based on the transcriptomic changes in the HepG2 cells after 
12-, 24-, and 48-h exposure to 34 reference chemicals. Predic-
tion analysis of microarrays (PAM), a nearest shrunken cen-
troid method, was used to classify chemicals for their genotox-
icity. Later, Li et al. (2015) developed the TGx-DDI biomarker 
of 64 genes by using transcriptomics data obtained from hu-
man TK6 lymphoblastoid cells exposed to 28 (non-)DNA dam-
age-inducing agents for 4 h. In order to classify chemicals as 
direct or non-direct DNA damaging, a three-pronged analytical 
approach including two-dimensional clustering (2DC), princi-
ple component analysis (PCA), and a probability analysis (PA) 
were applied to the TGx-DDI gene panel. Later, studies of the 
research group showed that the TGx-DDI biomarker can also 

1 https://livr.shinyapps.io/Genomark_Prediction/
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annotation of the reference and test chemicals and correspond-
ing historical genotoxicity data and concentrations of exposure 
are compiled in Table 1. 

2.2  HepaRG™ cell culture, chemical exposure,  
and cDNA synthesis
Human HepaRG™ cell culturing, treatment, RNA isolation, 
cDNA synthesis, and qPCR array for the 15 test chemicals were 
performed as described in Ates et al. (2018). Every experiment 
was performed in triplicate using different batches of HepaRG™ 
cells. In brief, cryopreserved differentiated HepaRG™ cells were 
purchased from Biopredic International and cultivated accord-
ing to the manufacturer’s protocol2. Differentiated HepaRG™ 
cells were seeded into collagen-coated wells at approximately  
0.072 × 106 or 0.48 × 106 viable cells per well in 96- or 24-well 

2  Materials and methods

2.1  Chemicals
In order to extend the dataset for building the new prediction 
models, gene expression values for the GENOMARK bio-
marker genes were collected for 5 additional reference com-
pounds, i.e., 2 known in vivo genotoxicants (glycidol (GLY) 
and 4-aminophenol (4AP)) and 3 known in vivo non-genotox-
icants (4-methyl-2-pentanol (4M2P), 2-methyl-1-propanol 
(2M1P) and phthalimide (PHTH)). Furthermore, 10 misleading 
positives were tested, i.e., hydroxybenzomorpholine (HBM), 
2-methyl-2H-isothiazol-3-one (2M4I), 1-napthol (1-NAP), 
4-amino-3-nitrophenol (4A3N), sodium benzoate (SoB), dihy-
droxyacetone (DHA), t-butylhydroquinone (tBHQ), glutaralde-
hyde (GLU), sodium saccharin (SoS), and eugenol (EUG). The 

2 https://www.heparg.com/rubrique-differentiated-heparg-cells-hpr116

Tab. 1: List of 10 “misleading positive” chemicals for which gene expression data were collected with qPCR 
Selection was based on the recommended genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved 
genotoxicity tests by Kirkland et al. (2008, 2016), EURL ECVAM Genotoxicity and Carcinogenicity Consolidated Database of Ames Positive 
Chemicals (http://data.europa.eu/89h/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames), and SCCS opinions. The table includes the 
corresponding known in vitro and in vivo genotoxicity data and the concentrations used to collect the gene expression data. 

Chemical name	 In vitro		  In vivo	 Concentration	 Applicability	 CAS	 Source 
	 genotoxicity	 geno-	 of exposure (µM)	 domain	 number	  
	 Ames	 MNvit/	 toxicity 
		  CAvit					   

Hydroxybenzomorpholine (HBM)	 +	 -	 -	 1,100	 Hair dye	 26021-57-8	 SCCP, 2006;  
							       Ates et al., 2016a

2-Methyl-2H-isothiazol-3-one	 -	 +	 -	 87*	 Plant protection	 2682-20-4	 SCCNFP, 2004;  
(2M4I)					     product; fragrance; 		  Ates et al., 2016a 
					     preservative

1-Naphtol (1-NAP)	 -	 +	 -	 567	 Oxidative hair dye	 90-15-3	 SCCP, 2008;  
							       Ates et al., 2016a

4-Amino-3-nitrophenol (4A3N)	 + /-	 +	 -	 270	 Oxidative hair dye	 610-81-1	 SCCP, 2007;  
							       Ates et al., 2016a

Sodium benzoate (SoB)	 -	 +	 -	 10,000**	 Food additive; 	 532-32-1	 SCCP, 2005 
					     preservative

Dihydroxyacetone (DHA)	 +	 -	 -	 10,000**	 Hair dye; 	 96-26-4	 SCCS, 2020 
					     tanning agent	

t-Butylhydroquinone (tBHQ)	 -	 +	 -	 280	 Food additive; 	 1948-33-0	 ECHA, 2007;  
					     antioxidant in 		  EFSA, 2004 
					     cosmetics			 

Glutaraldehyde (GLU)	 +	 +	 -	 410	 Disinfectant; 	 111-30-8	  
					     biocides		   
							        
							         

Sodium saccharin (SoS)	 -	 +	 -	 10,000**	 Artificial sweetener	 128-44-9	 Kirkland et al., 2016

Eugenol (EUG)	 -	 +	 -	 530	 Fragrance; 	 97-53-0	 Kirkland et al., 2016 
					     flavoring substance	

*Due to trypsinization at the IC10 concentration, a lower concentration was tested. **No cytotoxicity observed within the tested concentration 
range (0.1-10 mM), and therefore, 10 mM was selected for the qPCR experiments.

http://data.europa.
eu/89h/jrc-eurl-
ecvam-genotoxicity-
carcinogenicity-ames  

http://data.europa.eu/89h/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames
http://data.europa.eu/89h/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames
http://data.europa.eu/89h/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames
http://data.europa.eu/89h/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames
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set, which was solely based on microarray data, the new dataset 
contained gene expression values generated both with microarray 
and qPCR techniques. The 14 new reference chemicals included 
9 of the 10 validation compounds, except climbazole, described 
in the publication of Ates et al. (2018), as well as 5 additional 
chemicals (Section 2.1) for which GENOMARK data were gen-
erated with qPCR as part of the current study. The 5 additional 
reference chemicals were selected based on the publicly available 
expert opinions of the European Food Safety Authority (EFSA) 
and the SCCS. The 38 reference chemicals of the extended dataset 
consist of 19 known “in vivo genotoxic chemicals” and 19 known 
“in vivo non-genotoxic chemicals” and cover different application 
domains (pharmaceuticals, pesticides, food contact materials, and 
cosmetics) and MoAs of genotoxicity. More detailed information 
on the 19 known genotoxic and 19 known non-genotoxic refer-
ence chemicals is listed in Tables S1 and S23, respectively.

Ten “misleading positive” chemicals (Section 2.1) were se-
lected as test chemicals to determine the classification accuracy 
of the prediction models. A “misleading positive” chemical was 
defined as a chemical with a positive result in at least one of the 
in vitro tests (e.g., Ames test, in vitro mammalian gene mutation 
test, in vitro chromosome aberration test (CAvit), and/or in vitro 
micronucleus test (MNvit)) and a negative result in the adequate 
in vivo follow-up test. All 10 chemicals were selected based on 
the list of recommended genotoxic and non-genotoxic chemicals 
by Kirkland et al. (2016), the EURL ECVAM Genotoxicity and 
Carcinogenicity Consolidated Database4, and/or expert opinions 
such as the publicly available opinions of the SCCS5. It should be 
noted that two of these “misleading positives” (HBM and 1-NAP) 
were also included in the previous reference dataset as two clearly 
known in vivo non-genotoxic chemicals. However, they showed 
some positive historical in vitro findings that could not be con-
firmed in vivo and therefore are considered as misleading posi-
tives. Furthermore, the gene expression data of the reference data-
set for both chemicals had been collected with microarray experi-
ments. To evaluate the performance of the new prediction models 
on data collected with qPCR, both chemicals were also included 
in the present study.

2.5  Bioinformatics
The expression of the 84 selected genes as log2 fold changes 
was analyzed by machine learning using R Cran, Version 4.0.4. 
Three statistical methods of unsupervised machine learning were 
initially applied to explore the data: (1) hierarchical clustering 
analysis (HC), (2) Pearson’s correlation coefficient test, and 
(3) PCA (Benesty et al., 2008; Wang et al., 2011; Kassambara, 
2017). Moreover, the following supervised learning algorithms 
were used: (1) SVM and (2) RF.

Unsupervised machine learning
HC, a Pearson’s correlation coefficient test, and PCA were ap-
plied on the reference dataset with the objective to group the 

plates, respectively, using HepaRG™ Thawing/Plating/General 
Purpose Medium 670. After 24 h, the medium was changed to 
HepaRG™ Maintenance Medium 620 for cell maintenance or to 
HepaRG™ Induction Medium 640 for cell treatment. Cells were 
incubated for 7 days at 37°C, 5% CO2, and saturating humidity. 
The medium supplements contain serum (composition is propri-
etary). We have not yet tested serum-free alternatives. 

First, a low cytotoxic concentration (IC10 i.e., 90% cell via-
bility) for exposure was determined by the 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. When 
no cytotoxicity was observed, a concentration of 10 mM was 
used. After 7 days of cultivation, cells were exposed to the select-
ed concentration of the chemical using a 24-h repeated exposure 
for a total time of 72 h. After 72 h exposure, cells were lysed, and 
RNA was extracted and purified. The concentration and quality 
of each extracted RNA sample was determined using Nanodrop 
2000C (Thermo Scientific). All RNA samples had A260/280 ab-
sorbance ratios of ≥ 2.0. For each sample, 10 µg (total volume of 
200 µL) cDNA was synthesized using the iScript cDNA Synthe-
sis Kit (BioRad). 

2.3  Collection of gene expression data by qPCR 
qPCR was performed using pre-spotted 96-well plates (Integrat-
ed DNA technologies) containing the primers and probes for 
the 84 biomarker genes and 5 housekeeping genes (Ates et al., 
2018). The 7 remaining wells of the 96-well plate consisted of 
one no-template control with H2O as input sample and 3 con-
trols in duplicate: (i) a no-amplification control with RNA of the 
test chemical as input sample, (ii) a positive control, and (iii) a 
negative control. As a positive qPCR control, the cDNA of cells 
exposed to the well-known in vivo human genotoxicant methyl 
methanesulfonate (MMS) was used. As a negative control, i.e., 
vehicle control, the cDNA of cells exposed to 0.5% dimethyl 
sulfoxide (DMSO) in medium was used. On the qPCR plate,  
2 µL (0.05 µg/µL) purified cDNA (GenElute™ PCR Clean-Up 
Kit, Sigma) was used in a total reaction mix of 20 µL per well 
(master mix: TaqMan® Gene Expression Master Mix, Applied 
Biosystems™). The qPCR plates were run according to the fol-
lowing protocol: 0.20 min at 95°C; 0.01 min at 95°C; 0.20 min 
at 60°C (40 cycles). Normalization of the mRNA expression was 
done against the geometric means of the mRNA expression lev-
els of the 5 housekeeping genes to generate the ΔΔCq values. 
The log2 fold changes per treatment versus vehicle control were 
calculated for every sample using the 2-ΔΔC(T) method (Livak 
and Schmittgen, 2001). 

2.4  Selection and annotation of reference  
and test chemicals
The previous dataset of 24 reference chemicals (n = 1) as de-
scribed in the publication of Ates et al. (2018) was expanded with 
data of 14 chemicals and their replicates (n = 3) resulting in a total 
amount of 38 reference chemicals. Compared to the previous data-

3 doi:10.14573/altex.2206201s1
4 https://data.jrc.ec.europa.eu/dataset/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames 
5 https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions_en

https://doi.org/10.14573/altex.2206201s1
https://data.jrc.ec.europa.eu/dataset/jrc-eurl-ecvam-genotoxicity-carcinogenicity-ames
https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions_en
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plainer8 and randomForest (Breiman, 2001) packages. The gplots 
package was applied to plot the correlation between the gene ex-
pression and the reference dataset using the heatmap.2 tool. Clas-
sification and regression based on a forest of trees was done with 
the randomForest package using the expression of 84 genes as 
input data. The most important variables in the RF were identified 
with RandomForestExplainer. Ntree was set to 100. The labeled 
dataset of the 38 reference chemicals was randomly split into 
training (56%), validation (24%), and test set (20%) (Fig. 1). Pre-
diction accuracy of the test set for the RF model was calculated 
using the caret package in R. The output of the RF algorithm is a 
probability value between 0 and 1 for genotoxicity. A test chem-
ical is classified in groups based on their probability value as de-
scribed above. 

2.6  Comparing the performance of the SVM model  
to the RF model
First, the SVM and RF model were both applied to the gene ex-
pression values for the 84 genes of the test set of the reference 
dataset as illustrated in Figure 1. The sensitivity, specificity, and 
predictive accuracy of both models were determined. Pearson’s 
correlation coefficient (R-value) was calculated for the predic-
tions generated by SVM versus RF using dplyr, ggplot2, and gg-
pubr packages in R. As described in (Akoglu, 2018), an R-value 
> 0.5 was considered a moderate correlation. 

The impact of outlier gene expression values on the prediction 
outcomes of both models was examined by manually creating 
outlier log2fold change values for a specific gene within the gene 
expression data of two known in vivo non-genotoxic chemicals 

gene expression data of 38 chemicals that had not been labeled, 
categorized, or classified (i.e., unlabeled dataset). In the R statis-
tical environment, the stats package was used for PCA and Pear-
son’s correlation, whereas the gplots6 package was used for HC. 
The expression of the 84 selected genes of the reference dataset 
was visualized in a heatmap using gplots package in R. 

Support vector machine
SVM classification analysis was performed on the expression of 
84 genes using R packages e1071 (Meyer et al., 2016)7 and caret 
(Kuhn, 2008). The dataset of the 38 reference chemicals labeled 
as genotoxic or non-genotoxic (i.e., labeled dataset) was ran-
domly split into a training (80% of dataset) and a test set (20% of 
dataset). To gain a better separation between the two classes, the 
model was tuned using the following parameters: kernel = linear 
and cost = 1. A confusion matrix was performed to determine the 
classification accuracy using the labeled test set. The accuracy 
was calculated as the total of two correct predictions (true posi-
tives (TP) + true negatives (TN)) divided by the total number of a 
dataset (P+N). The output of the SVM algorithm is a probability 
value between 0 and 1 for genotoxicity. A chemical is classified 
as genotoxic when the probability > 0.55 and as non-genotoxic 
when the probability < 0.45. Probabilities obtained between 0.45-
0.55 are marked as equivocal. Figure 1 illustrates the develop-
ment of a prediction model using machine learning.

Random forest
The generation of a prediction model based on RF was performed 
on the expression of 84 genes using gplots6, randomForestEx-

Fig. 1: The development of a prediction 
model using supervised machine 
learning on a labeled dataset 
The dataset that has been labelled as 
genotoxic or non-genotoxic is divided 
into 80% training data and 20% test data. 
For random forest, an additional step is 
included to divide the 80% training data  
into 70% training data and 30% validation  
data to train and evaluate the prediction 
model, respectively. 

6 https://cran.r-project.org/package=gplots
7 https://cran.r-project.org/package=e1071
8 https://cran.r-project.org/package=randomForestExplainer

https://cran.r-project.org/package=gplots
https://cran.r-project.org/package=e1071
https://cran.r-project.org/package=randomForestExplainer
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used in the qPCR experiments for each of the reference chemi-
cals were selected based on the results of the MTT experiments 
and can be found in Tables S1 and S23. For 3 out of the 5 refer-
ence chemicals (PHTH, GLY, and 4AP), an IC10 value could be 
derived. No cytotoxicity was observed in the MTT test for the 
remaining 2 chemicals (4M2P, 2M1P) within the tested concen-
tration range (0.1-10 mM), and therefore, 10 mM was selected as 
concentration of exposure of the HepaRG™ cells. For all 5 ref-
erence chemicals, gene expression values could be successfully 
collected in 3 different badges of HepaRG™ cells (n = 3). 

To verify how GENOMARK positions “misleading positives”, 
qPCR was also performed for 10 test chemicals inducing a pos-
itive result in at least one of the in vitro tests but not in the in 
vivo follow-up test (i.e., HBM, 2M4I, 1-NAP, 4A3N, SoB, DHA, 
tBHQ, SoS, EUG, and GLU). For 7 out of the 10 chemicals, an 
IC10 value could be determined based on the MTT experiments. 
However, due to trypsinization at the IC10 concentration, a lower 
concentration of 2M4I had to be used for the qPCR experiments. 
For the remaining 3 chemicals, SoB, SoS, and DHA, no cytotox-
icity was observed in the MTT assay within the tested concentra-
tion range (0.1-10 mM), and therefore, 10 mM was selected for 
the qPCR experiments. An overview of the concentrations used 
in the tests with the misleading positives is provided in Table 1. 
As for the reference chemicals, gene expression data could be 
collected with qPCR for all the misleading positives in at least 
3 different batches of HepaRG™ cells (n = 3). The log2 fold 
changes can be found in Table S410.

3.2  Unsupervised clustering is inefficient to distinguish 
between genotoxic and non-genotoxic chemicals
The dataset of reference chemicals was extended with the gene 
expression data of 9 out of the 10 chemicals from Ates et al. 
(2018) (chloramphenicol (CAM), 2,4 diaminotoluene (DAT), 
ethyl methanesulfonate (EMS), 1-ethyl-1-nitrosourea (ENU), 
etoposide (ETO), anthranilic acid (ANT), basic orange 31 
(BOR), 4-chlororesorcinol (4CR), melamine (MELA)) in trip-
licate (n = 3). 

Climbazole was not selected as a new reference chemical. This 
known in vivo non-genotoxicant showed a negative result for 
genotoxicity using qPCR and an equivocal result using microar-
ray in Ates et al. (2018). However, when included in the new ref-
erence dataset followed by PCA analysis, climbazole was clearly 
grouped in the genotoxicity class. Therefore, climbazole was con-
sidered as an outlier whose inclusion might result in a prediction 
model of lower accuracy and was not included in the new refer-
ence dataset of 38 chemicals. 

Furthermore, the newly generated expression data of 2 
known in vivo genotoxic (GLY, 4AP) and 3 known in vivo 
non-genotoxic reference chemicals (4M2P, 2M1P and PHTH) 
(n = 3) were also included to extend the reference dataset. To 
distinguish the 19 genotoxic from the 19 non-genotoxic chem-
icals of the enlarged dataset, 3 different unsupervised cluster-
ing analyses were applied to the gene expression data of the 84 

(2M4I and SoB) and two in vivo genotoxic chemicals (ethyl 
methanesulfonate (EMS) and aflatoxin B (AFB1)). To evaluate 
the impact of outlier gene expression values, four genes (FOLH1, 
SLC39A11, SLC22A7 and CCDC178) of the 84 biomarker genes 
were selected for which recurrently no cycle threshold (Ct) val-
ue was obtained with the qPCR assay after exposure to the test 
chemicals. For each of these four genes, the gene expression Ct 
value of these genes was changed into a low (Ct 0), mid (Ct 20) 
or high (Ct 40) expression value, individually. The gene expres-
sion data containing the outlier values were then analyzed by both 
prediction models (SVM and RF). The sensitivity, specificity, and 
predictive accuracy of both models were calculated.

2.7  Application of the SVM and RF prediction model  
on test data sets
Both prediction models were used to evaluate the genotoxicity of 
the 10 misleading positives (n = 3) based on their newly gener-
ated gene expression values. Next, both prediction models were 
applied on one publicly available dataset of gene expression data. 
In a study by Buick et al. (2020), HepaRG™ cells were exposed 
for 55 h to increasing concentrations (low-mid-high) of 10 chem-
icals to study genotoxicity. The chemicals consisted of 6 known 
genotoxic chemicals (i.e., AFB1, cisplatin (CISP), ETP, MMS, 
2-nitrofluorene (2-NF), and the aneugen colchicine (COL)) and 
four known non-genotoxic chemicals (i.e., AMP, 2-deoxy-D- 
glucose (2DG), sodium ascorbate (ASC), and sodium chloride 
(NaCl)). The normalized reads per million files, generated with Ion 
AmpliSeq™ whole transcriptome sequencing, were download-
ed to test the GENOMARK biomarker (GEO accession number: 
GSE136009). Log2 fold changes were calculated for treatment 
versus vehicle control in R for the 84 GENOMARK genes. For the 
missing genes, infinite or missing values in the dataset, the median 
log2 fold change value of the reference dataset of GENOMARK 
corresponding to the missing gene value was added. The SVM 
and RF classifiers were applied to predict the genotoxicity of the  
10 test chemicals following 55 h exposure in human HepaRG™ 
cells. The predictive accuracy for both models was calculated.

2.8  Development of the GENOMARK biomarker  
online application
To facilitate the analysis of gene expression data with the newly 
developed GENOMARK prediction models, an online application 
was developed using Shiny package9 in R Cran, Version 4.0.4. 

3  Results

3.1  Collection of additional GENOMARK gene  
expression data using qPCR
To expand the reference dataset, gene expression data were col-
lected with qPCR for 5 additional chemicals, i.e., 2 known in vivo 
genotoxic (GLY, 4AP) and 3 known in vivo non-genotoxic ref-
erence chemicals (4M2P, 2M1P, and PHTH). The concentrations 

9 https://cran.r-project.org/package=shiny
 10 doi:10.14573/altex.2206201s2 

https://cran.r-project.org/package=shiny
https://doi.org/10.14573/altex.2206201s2
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Fig. 2: Overview of the gene 
expression values of the  
84 GENOMARK genes for  
the 38 reference chemicals using 
unsupervised clustering
The green bars or dots represent 
the known non-genotoxic (NGTX) 
chemicals, whereas the red bars or 
dots represent the known genotoxic 
(GTX) chemicals. (A) Outcome of 
the hierarchical clustering analysis 
(HC); the purple bar represents the 
genes upregulated after exposure to 
a genotoxicant, and the yellow bar 
represents the genes downregulated 
after exposure to a genotoxicant.  
(B) Outcome of Pearson’s correlation 
analysis. (C) Grouping of the reference 
chemicals using principal component 
analysis (PCA). 
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of the dataset depicts three clusters: a cluster of genotoxicants 
(red dots), a cluster of non-genotoxicants (green dots), and a 
grey zone with equivocal results. There is no clear separation 
between the two classes.

We concluded that unsupervised learning algorithms are inef-
ficient to distinguish between GTX and NGTX chemicals and 
therefore cannot be used to develop an accurate prediction model.

3.3  Supervised learning distinguishes genotoxic  
and non-genotoxic chemicals
Since unsupervised machine learning algorithms were not suffi-
cient to build the prediction model, we next applied two super-
vised machine learning algorithms on the gene expression data of 
the reference dataset, i.e., SVM and RF. 

First, the sensitivity, specificity, and predictive accuracy of 
SVM versus RF were determined to compare the predictive ac-
curacy of both models on the test set of the enlarged reference 
dataset (Tab. 2). As illustrated in Figure 1, the dataset was sepa-
rated into training and test data. Additionally, for RF, the training 
data was divided into training and validation data. The results in 

GENOMARK genes of the 38 reference chemicals: HC, Pear-
son’s correlation, and PCA. 

In Figure 2, the results of the different unsupervised clus-
tering analyses are depicted. Figure 2A represents the results 
of the HC, demonstrating that one panel of the 84 genes is 
upregulated after exposure to a genotoxicant (purple region) 
and that the other panel of genes is clearly downregulated af-
ter exposure to a genotoxicant (yellow region). The detailed 
list of genes can be found in Table S33. However, HC showed 
to be not sufficient to distinguish the genotoxic (GTX) and 
non-genotoxic (NGTX) chemicals since the main branch of the 
dendrogram does not perfectly separate both classes. In Fig-
ure 2B, the chemicals were clustered by Pearson’s correlation 
analysis. The dendrogram demonstrates that Pearson’s correla-
tion analysis is not sufficient to group the chemicals in the cor-
rect class. The green bars correspond to the NGTX chemicals, 
and the red bars correspond to the GTX chemicals. The blue 
bars represent the Pearson correlation coefficient between the 
genes. In Figure 2C, the reference chemicals were clustered by 
a PCA. The scatter plot of the two first principal components 

Tab. 2: Overview of the sensitivity (%), specificity(%), and predictive accuracy (%) of support vector machine (SVM) and random 
forest (RF) on the test set of the reference dataset

	 Sensitivity (%)	 Specificity (%)	 Predictive accuracy (%)

SVM model on test set	 83.3	 100	 92.3

RF model on validation set	 85.7	 88.9	 87.5

RF model on test set	 100	 85.7	 92.3

Tab. 3: Overview of the prediction scores (mean ± standard deviation (SD)) for genotoxicity by applying both the random forest 
(RF) and support vector machine model (SVM) on the gene expression data of the GENOMARK biomarker genes for 10 misleading 
positive chemicals 
Hydroxybenzomorpholine (HBM), 2-methyl-2H-isothiazol-3-one (2M4I), 4-amino-3-nitrophenol (4A3N), sodium benzoate (SoB), dihydroxy-
acetone (DHA), t-butylhydroquinone (tBHQ), glutaraldehyde (GLU), sodium saccharin (SoS) and eugenol (EUG) (n = 3) and 1-napthol (1-NAP) 
(n = 4). A probability result < 0.45 is considered as NGTX (green), ≥ 0.45 and ≤ 0.55 as equivocal (yellow), and > 0.55 as GTX (red). 

 	 Prediction score (Mean ± SD)

	 RF model	 SVM model

HBM	 0.47 (± 0.14)	 0.35 (± 0.14)

2M4I	 0.18 (± 0.11)	 0.14 (± 0.08)

1-NAP	 0.70 (± 0.12)	 0.41 (± 0.30)

4A3N	 0.27 (± 0.11)	 0.30 (± 0.17)

SoB	 0.32 (± 0.05)	 0.08 (± 0.13)

DHA	 0.30 (± 0.12)	 0.19 (± 0.06)

tBHQ	 0.41 (± 0.20)	 0.50 (± 0.27)

GLU	 0.59 (± 0.24)	 0.66 (± 0.17)

SoS	 0.39 (± 0.23)	 0.15 (± 0.15)

EUG	 0.18 (± 0.08)	 0.10 (± 0.07)
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accuracy to outlier gene expression values as in three out of the 
four outlier scenarios (i.e., CCDC178, SLC22A7, SLC39A11) 
the two non-genotoxicants were classified as GTX when con-
sidering the equivocal results as positive. The accuracies of 
the SVM model for the prediction on the FOLH1, CCDC178, 
SLC22A7, SLC39A11 genes are 100%, 77%, 93%, and 95%, 
respectively. An outlier value for the CCDC178 gene has the 
most impact on the prediction by SVM, while RF is less affect-
ed by outlier values. 

3.5  Prediction scores of both models correlate to predict 
the genotoxicity of misleading positive chemicals 
Both the RF and the SVM model were applied to the gene ex-
pression data generated with qPCR for the 10 misleading positive 
chemicals to predict their genotoxicity. The resulting prediction 
scores can be found in Table 3. Both prediction models classi-
fied six (2M4I, 4A3N, SoB, DHA, Sos, and EUG) out of the ten 
chemicals as NGTX. GLU was clearly classified as GTX by both 
prediction models. Three chemicals (1-NAP, HBM, and tBHQ) 
were classified differently by the RF versus the SVM model. 

Pearson’s correlation analysis was applied on the predictions 
made by SVM and RF on the individual gene expression data 
of the ten misleading positive chemicals to test the correlation 
between the two machine learning models. The individual pre-

Table 2 show that both SVM and RF have a high and identical 
predictive accuracy on the test set of 92.3%, although the RF 
model was characterized by a slightly higher sensitivity whereas 
the SVM model clearly had a higher specificity. 

3.4  The random forest model is more robust compared  
to the support vector machine model
To compare the robustness of the prediction models, the impact 
of outlier values (low, mid, or high expression) for four individ-
ual genes (FOLH1, CCDC178, SLC22A7, SLC39A11), also 
expressed as outlier gene expression values, on the prediction 
outcomes of both RF and SVM models for two known in vivo 
NGTX chemicals (2M4I and SoB indicated in green symbols) 
and two known in vivo genotoxic chemicals (EMS and AFB1 
indicated in red symbols) was investigated. Figure 3 represents 
four scenarios illustrated as four squares; each square corre-
sponds to the prediction results of the four chemicals by the RF 
(x-axis) and SVM (y-axis) model when modifying the expres-
sion values for one gene to 0, 20 or 40. In all four scenarios, RF 
classified the two known in vivo NGTX chemicals and the two 
in vivo GTX chemicals correctly as negative and positive, re-
spectively. Thus, the RF model resulted in a predictive accura-
cy of 100% in all four scenarios when having outlier values for 
a certain gene. The SVM model showed a lower sensitivity and 

Fig. 3: Overview of the prediction 
scores for two in vivo non-
genotoxicants (2-methyl-2H-
isothiazol-3-one(2M4I) and sodium 
benzoate (SoB), green symbols) 
and two in vivo genotoxicants 
(aflatoxin B1 (AFB1) and ethyl 
methanesulfonate (EMS), red 
symbols) using random forest 
(RF) (on x-axis) and support vector 
machine (SVM) (on y-axis) based 
on their gene expression data for 
the 84 biomarker genes including 
outlier values for four individual 
genes (FOLH1, CCDC178, SLC22A7, 
SLC39A11)
Each of the squares represents the 
outcome of the prediction models for 
the four test chemicals when the values 
of one of the four genes were modified 
(Ct value 0, 20 or 40). The figures show 
that SVM is affected by outliers for 
CCDC178, SLC22A7, and SLC39A11. 
RF is not affected by outliers in each of 
the four genes.
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microarrays and qPCR, a publicly available sequencing dataset 
in HepaRG™ cells was used. In a study by Buick et al. (2020), 
HepaRG™ cells were exposed to 3 increasing concentrations 
of 10 chemicals belonging to two different classes: 6 in vivo 
genotoxicants and 4 in vivo non-genotoxicants. The external se-
quencing dataset contained 76/84 genes of the GENOMARK 
biomarker, missing the following 8 GENOMARK biomark-
er genes for each of the 10 chemicals: CDIP1, ANGPTL8, 
LRMDA, LINC01503, ENSG0259347, ENSG0260912,  
ENSG0261051, ENSG0261578. Both the SVM and the RF 

dictions by SVM and RF based on the gene expression data for 
each chemical (n = 3) resulted in a moderate correlation of 0.66 
and p = 5.3 * 10-5 (Fig. S13).

3.6  Both the RF and the SVM model accurately predict 
genotoxicity of chemicals based on publicly available 
sequencing data collected in human HepaRG™ cells
To further compare the prediction performance of the SVM 
and the RF model and to evaluate the use of GENOMARK on 
gene expression values collected with technologies other than 

Tab. 4: Predicted classification as genotoxic (+) or non-genotoxic (-) by the random forest (RF) and support vector machine (SVM) 
prediction models and the corresponding historical in vivo genotoxicity data for the 10 chemicals 
The overall prediction classification result is depicted in the grey bars. Data for the 10 chemicals in three concentrations (low-mid-high)  
were obtained from the published sequencing dataset in HepaRG™ cells by Buick et al. (2020).

Compound	 Concentration of	 GENOMARK predicted	 Overall GENOMARK	 Historical in vivo 
	 exposure (µM)	 classification using	 classification result	 genotoxicity data
		  RF	 SVM	 RF	 SVM	

	 2.5 	 +	 +	
Aflatoxin B1	 1 	 +	 +	 +	 +	 +		
	 0.25	 -	 -			 
	 10	 -	 +	
Cisplatin	 5 	 -	 +	 - (!)	 +	 +		
	 2 	 -	 -			 
	 10 	 +	 +	
Etoposide	 2.5 	 +/-	 +	 +	 +	 +		
	 0.5 	 -	 -			 
	 200 	 +	 +	
Methyl methanesulfonate	 100 	 +	 +	 +	 +	 +		
	 50 	 -	 +			 
	 250 	 +	 +	
2-Nitrofluorene	 50 	 +	 +	 +	 +	 +	 	
	 10 	 -	 +/-			 
	 0.3 	 +	 -	
Colchicine	 0.1 	 -	 -	 +	 - (!)	 +		
	 0.05 	 +/-	 +/-			 
	 10 	 -	 -	
Ampicillin trihydrate	 3 	 -	 -	 -	 -	 -		
	 1 	 -	 -			 
	 10 	 -	 -	
2-Deoxy-D-glucose	 5 	 -	 -	 -	 -	 -		
	 1.25 	 -	 -			 
	 10 	 -	 -	
Sodium ascorbate	 2 	 -	 -	 -	 -	 -		
	 1 	 -	 -			 
	 10 	 -	 -	
Sodium chloride	 2.5 	 -	 -	 -	 -	 -		
	 1 	 -	 -			 
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have several limitations (Mišík et al., 2019; Seo et al., 2019). 
HepaRG™ cells closely reflect the metabolism of xenobiotics in 
the human liver and do not require the use of exogenous S9-mix, 
which is of particular interest when developing a next genera-
tion in vitro genotoxicity test (Gerets et al., 2012). However, our 
previous SVM prediction model was modified by every run, re-
sulting in uncontrolled and unvalidated models that can greatly 
affect the prediction outcomes. 

Within the present study, we therefore developed new, fixed 
prediction models based on a more extended reference dataset 
consisting of gene expression data collected with both microar-
ray and qPCR technologies for 38 chemicals, equally balanced 
in the number of 19 known in vivo genotoxicants and 19 in vivo 
non-genotoxicants. The results of this study showed that unsu-
pervised machine learning (clustering and PCA) algorithms were 
insufficient to develop a more accurate prediction model for 
genotoxicity based on the extended dataset. In contrast, promis-
ing results were obtained with two supervised machine learning 
algorithms (SVM and RF). 

It should be noted that the gene expression data of the refer-
ence dataset was obtained from two different technologies, mi-
croarrays and qPCR. Both technologies require and utilize dif-
ferent normalization procedures and the correlation of gene ex-
pression results between both technologies is influenced by data 
quality parameters (fold-change and q-value) and the amount 
of change in expression reported (Morey et al., 2006). Howev-
er, data on the correlation between microarray and qPCR data 
are scarce. Some studies demonstrated that data obtained with 
the two different technologies yield comparable results when 
properly filtered (Dallas et al., 2005; Ach et al., 2008). Since the 
gene expression levels from both qPCR and microarray data are 
log-transformed and the SVM and RF algorithms use a thresh-
old value for the genotoxicity predictions, the outcome of the  
GENOMARK biomarker is expected not to be affected by the 
technology used to collect the gene expression data. In addition, 
our group has previously compared GENOMARK predictions 
based on microarray data and qPCR data for eight chemicals us-
ing the same experimental conditions and demonstrated a high 
correlation (Ates et al., 2018). 

Various studies have already investigated the performance of 
classifiers or prediction models using multiple machine learn-
ing algorithms on different types of datasets. Both SVM and 
RF are popular machine learning algorithms that can handle 
learning tasks with a small amount of training data and have 
a relatively high similar performance in terms of classification 
accuracies (Wu and Wang, 2018). Different studies demon-
strated that a choice between SVM or RF is difficult to make. 
Statnikov et al. showed that RF is outperformed by SVM on 
different diagnostic and prognostic datasets for cancer classi-
fication (Statnikov and Aliferis, 2007; Statnikov et al., 2008). 
However, in other studies, from Fernández-Delgado et al. 
(2014) and Deist et al. (2018), better results for different data-
sets were obtained using RF compared to SVM. Overall, these 
diverging results indicate that the performance of a classifier 
depends strongly on the dataset used (Statnikov and Aliferis, 

prediction model resulted in a predictive accuracy of 90%. The 
predictions made by both prediction models for the 10 chemi-
cals in the different concentrations (low-mid-high) can be found 
in Table 4. In case there was a positive prediction for at least one 
of the three concentrations, the chemical was considered to be 
predicted as genotoxic. All four in vivo non-genotoxic chemi-
cals were correctly classified as NGTX by both prediction mod-
els. Four of the 6 known in vivo genotoxicants were classified 
as GTX by both prediction models. The two remaining in vivo 
GTX chemicals (CISP and COL) were classified differently by 
both prediction models. CISP, a known in vivo genotoxicant 
was classified as NGTX by the RF model. COL was wrong-
ly classified as NGTX by the SVM model. An overview of the 
sensitivity, specificity, and accuracy of the RF and SVM models 
is given in Table 5. 

3.7  The online application allows easy and fast analysis  
of GENOMARK gene expression data
Both the RF and SVM prediction models were combined in an 
online application1 to rapidly evaluate the genotoxic potential 
of a chemical of interest. In the interface of the online applica-
tion, an example dataset is provided, and new data files can be 
uploaded. Data to be analyzed should be uploaded as tab-de-
limited csv files containing the log2 ratios from treated vs. con-
trol data. The output of the analysis consists of a heatmap and 
a table containing the individual outcomes of both prediction 
models as well as the overall prediction based on a WoE ap-
proach. According to this WoE approach, a positive or negative 
call for genotoxicity in both models results in a classification of 
the chemical as GTX or NGTX, respectively. However, when 
having a different outcome in both models, the result is consid-
ered inconclusive. The output table can be downloaded from the 
interface as a csv file.

4  Discussion

Previously, we described the development of a SVM prediction 
model to classify chemicals for their genotoxicity based on the 
expression of the 84 GENOMARK genes in human-derived met-
abolically competent HepaRG™ cells (Ates et al., 2018). The 
use of HepaRG™ cells is an added value of this biomarker, as 
the commonly used human-derived cell types HepG2 and TK6 

Tab. 5: The sensitivity, specificity, and accuracy in % for  
the random forest (RF) model and the support vector machine 
(SVM) model applied to the publicly available test data 
generated with RNA-sequencing in HepaRG™ cells (Buick et 
al., 2020)

Model	 Sensitivity (%)	 Specificity (%)	 Accuracy (%)

RF	 83.3	 100	 90

SVM	 83.3	 100	 90



Thienpont et al.

ALTEX 40(2), 2023       282

sults in vitro but was negative in vivo, and therefore, the SCCS 
assessed 1-NAP as NGTX. Nevertheless, some uncertainty re-
mains with respect to the genotoxicity of 1-NAP, and several 
mechanisms have been proposed to explain a possible geno-
toxic MoA including an increase in oxidative stress (Doherty 
et al., 1984; Miller et al., 1986; Wilson et al., 1996; Kapuci et 
al., 2014), the formation of reactive quinone metabolites such 
as 1,4-napthoquinone by CYP metabolism, and inhibition of 
topoisomerase (Cho et al., 2006; Fowler et al., 2018). Conse-
quently, it remains difficult to evaluate whether 1-NAP induces 
a genotoxic effect in the HepaRG™ cell system. 

The same is true for tBHQ, a phenolic antioxidant that is fre-
quently used as a preservative in food and as an antioxidant in 
cosmetic products. Again, conflicting data exist with respect to 
the possible genotoxiciy of tBHQ and its metabolites (Braeuning 
et al., 2012). In some in vivo studies as well as in vitro studies, 
tBHQ is a confirmed clastogen. The observed in vitro clastogen-
ic effect was linked to ROS generation, while chromosome loss 
was hypothesized to result from binding of quinone or semiqui-
none metabolites to proteins critical for microtubule assembly 
and spindle formation (Dobo and Eastmond, 1994; Gharavi 
et al., 2007). As most of the in vivo studies were negative, the 
Joint FAO/WHO Expert Committee on Food Additives (JECFA) 
and EFSA considered tBHQ as non-genotoxic (EFSA, 2004;  
Gharavi et al., 2007). Fowler et al. (2012) hypothesized that 
p53-deficiency in many of the rodent cell lines used for in vitro 
genotoxicity testing may have been responsible for the mislead-
ing positive results. As HepaRG™ cells are metabolically active 
and p53 competent, we would have expected tBHQ to be classi-
fied as NGTX. Nevertheless, as for 1-NAP, the formation of re-
active metabolites or degradation products might also play a role 
in the genotoxic effects observed in vitro. Consequently, it is not 
clear whether the induction of DNA damage would be expected 
in the test system used here. 

Also for HBM, an oxidative hair dye, contradictory results 
for genotoxicity have been reported in the scientific literature. 
HBM induced both positive and negative results in in vitro as-
says but was not genotoxic in vivo. As the positive result was 
only observed in the bacterial reverse gene mutation test and 
not in in vitro or in vivo genotoxicity studies with mammalian 
cells, the Cosmetic Ingredient Review Expert (CIRE) Panel and 
the Scientific Committee on Consumer Products (SCCP) con-
cluded that HBM is safe for use in cosmetic products (Elder, 
1991; SCCP, 2006). Previous results of our research group sup-
ported the absence of genotoxicity for HBM as the compound 
was predicted NGTX in three out of the five in silico models 
and clustered together with NGTXs based on microarray data 
(Ates et al., 2016b). Thus, based on the existing in vitro results 
and the additional in silico information, we would have expect-
ed HBM to be classified as NGTX by the RF model. 

Overall, in case of different classifications by both models, 
a more in-depth investigation into the gene expression values 
that drive the different classifications by the RF and the SVM 
model might be needed to obtain more insight into the genotox-
ic profiles of the compounds.

2007; Deist et al., 2018). In the present study, both the SVM 
and the RF model had a high predictive accuracy of 92.3% for 
the reference dataset. However, the RF model showed a high-
er sensitivity whereas the SVM model demonstrated a higher 
specificity. Although in genotoxicity testing a high specificity 
of the tests is desired to reduce the number of misleading posi-
tives and the need for unnecessary animal testing, this must not 
be at the expense of sensitivity. Indeed, from a regulatory point 
of view, it is essential to have a high sensitivity to avoid that 
hazardous genotoxic chemicals are not picked up (Kirkland et 
al., 2005). Within this context and based on the chemicals used 
to build it, the RF model would be preferred. 

Furthermore, the RF model was more robust to outliers. RF 
classifies chemicals based on the sum of the predictions of all 
decision trees, and therefore, outlier values for specific genes 
do not have a large impact on the prediction outcome. A cycle 
threshold value between 0 and 20 might result in a log2 fold 
change beneath the threshold value to classify the chemical in 
the decision tree in the same group. This is in contrast to SVM 
in which the classification is based on the input value. An out-
lier in log2 fold change will thus have a higher influence on the 
prediction outcome of a chemical by SVM. Log2 fold changes 
are used in both prediction models to detect genotoxic respons-
es since gene expression levels are heavily skewed on a linear 
scale. By log-transforming, the data becomes better for statisti-
cal testing since log-transformed data has a less skewed distri-
bution, less extreme values compared to the untransformed da-
ta, and is symmetrically centered around zero (Zwiener et al., 
2014). Since differences between relative fold changes (treated 
versus control) can be used as substitute values for changes in 
gene expression, expression data measured by different plat-
forms (microarrays, RNA-sequencing, and RT-qPCR) could be 
used to predict the genotoxicity.

Although its higher sensitivity and robustness to outliers 
would suggest RF to be the preferred model over SVM, the 
prediction outcomes obtained for the 10 misleading positives 
demonstrate that both models are rather complementary. Six out 
of the 10 misleading positives were classified as clearly NGTX 
by both the RF and the SVM model. In contrast, GLU was clas-
sified by both the SVM and RF model as genotoxic, although 
the available data demonstrate that the chemical is NGTX in 
vivo. GLU is a known DNA-protein crosslinking agent in vitro 
and is commonly used for biologic tissue fixation (Tsai et al., 
2000; Speit et al., 2008). The negative results observed in in vivo 
studies have been linked to rapid metabolism and protein bind-
ing characteristics of GLU (Vergnes and Ballantyne, 2002). The 
HepaRG™ cell system used to collect the GENOMARK gene 
expression values does not consider all toxicokinetic properties 
of GLU, which might explain why the compound is classified as 
positive by both the RF and SVM prediction model. 

The remaining three misleading positive chemicals (i.e., 
1-NAP, tBHQ and HBM) were classified differently by the 
two prediction models. 1-NAP is used as an oxidizing color-
ing agent in hair dyes in the cosmetic industry (SCCP, 2008). 
Previous studies reported that 1-NAP showed conflicting re-
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chemical of interest based on their gene expression data in a 
WoE approach. It should be noted that the GENOMARK gene 
signature and prediction models were developed based on gene 
expression data after exposure of metabolically active, human 
HepaRG™ cells to a single concentration (IC10) of the test 
chemical for 72 h. When applying the online application, it is 
therefore recommended that new experimental data are gener-
ated under similar experimental conditions.

Despite the rather small number of test chemicals used to 
assess the predictive performance of the biomarker, the re-
sults of this study and the high prediction accuracy obtained 
demonstrate that GENOMARK represents a promising tool for 
genotoxicity testing. However, until now, the throughput of the 
method was limited by the fact that gene expression levels were 
evaluated with qPCR. This technique was originally selected as 
it has the advantage that it is widely available in different labs 
and in addition, data interpretation is relatively straightforward. 
However, it requires a high amount of cell material and is rath-
er time-consuming as RNA and DNA purification are needed. 
For this reason, only a limited number of test chemicals could 
be analyzed. In the future, the predictive capacity of the GE-
NOMARK biomarker for gene expression data obtained with 
high-throughput technologies such as TempO-Seq will be in-
vestigated. Application of a higher-throughput technology will 
allow us to collect data for a larger amount of test chemicals at 
different concentrations that can then be used to further evalu-
ate the performance/robustness of the tool. 

In addition, the molecular information of GENOMARK 
should be investigated. Indeed, although the set of reference 
genotoxic compounds was selected based on a maximum 
amount of different genotoxic MoAs, including aneugenici-
ty, to increase the sensitivity to detect genotoxic compounds,  
GENOMARK cannot at this moment predict a particular 
MoA. On the other hand, it is a strength that GENOMARK 
can make accurate predictions on genotoxicity independent of 
a specific MoA of a chemical, indicating its potential as a first 
screening tool. 

GENOMARK might be of particular interest for evaluating 
the genotoxicity of cosmetic ingredients as in Europe animal 
testing is no longer allowed for these purposes (EC, 2009). 
GENOMARK could be a useful element in the toolbox that 
has been proposed by the SCCS for the follow-up of in vitro 
positive results (EC, 2022). In conclusion, GENOMARK uses 
a human-relevant and metabolically competent cell model for 
genotoxicity prediction based on a broad range of pathways, 
molecular functions, biological processes, and protein class-
es of the 84 genes. Via this approach, GENOMARK might 
contribute to the 21st century toxicology goals/approaches 
to move towards a next generation risk assessment. Using 
GENOMARK as a first screening assay or in combination 
with other NAMs in a WoE approach, GENOMARK could 
enhance genotoxicity assessment and reduce the need for un-
necessary animal follow-up studies when in vitro results are 
positive.

Interestingly, both prediction models were able to classify 
10 (non-)genotoxic chemicals with high accuracy based on 
gene expression data collected in the same human cell line 
(HepaRG™) but using a different gene expression technique, 
namely RNA-sequencing. Two genotoxic chemicals were 
classified differently by the two prediction models: CISP and 
COL. Whereas CISP, a known in vivo GTX, was classified 
as GTX by the SVM model, it was considered NGTX by the 
RF model. However, also in the RF model, there appeared to 
be a concentration-related increase in the probability value 
for genotoxicity of CISP. Consequently, testing a higher con-
centration of CISP might have resulted in a classification as 
GTX in the RF model as well. COL, an aneugen, was classi-
fied as GTX by the RF model but NGTX by the SVM model. 
In contrast to the TGx-DDI biomarker, which was developed 
solely on directly damaging genotoxicants, aneugens were in-
cluded in the reference dataset of the GENOMARK biomark-
er. Therefore, it was expected that this compound would also 
be classified as GTX by our prediction models. One possible 
explanation underlying the different prediction outcomes of 
both models might be the differences in the experimental 
set-up to collect the gene expression data. Regulation of ex-
pression levels of many important genes are tissue-, dose- or 
time-specific (Lambert et al., 2009; Wei et al., 2015). Indeed, 
HepaRG™ cells were exposed for 55 h in the experiments of 
Buick et al. (2020) whereas in our experiments, cells were ex-
posed for 72 h. Some genes may thus not yet have been sig-
nificantly altered after 55 h. Also, the concentrations tested 
and the technology used to collect the gene expression data 
might have had an impact, although the impact of the latter is 
expected to be limited. Moreover, it should be noted that the 
predictions were based on only 76 out of the 84 GENOMARK 
biomarker genes, as the remaining 8 genes were not includ-
ed in the publicly available dataset. Despite these differences, 
as demonstrated in Table 4, four out of the six known in vivo 
genotoxic chemicals were classified as genotoxic and all four 
known in vivo non-genotoxic chemicals were classified as 
non-genotoxic with the GENOMARK prediction models. To 
gain more clear insights into how GENOMARK is performing 
for CISP and COL, gene expression data should be collected 
for all 84 biomarker genes in HepaRG™ cells with an expo-
sure period of 72 h. Nevertheless, the high predictive accuracy 
(i.e., 90%) of both models suggests that GENOMARK can be 
applied on a different platform for gene expression such as 
RNA-sequencing under slightly different experimental condi-
tions. This is of importance in view of the rapidly evolving 
technologies used for gene expression profiling. 

The results obtained with the misleading positive chemicals 
and with the existing RNA-sequencing dataset suggest that the 
two models are complementary. Using the RF and SVM pre-
diction models in a WoE approach rather than using only one 
model to decide about the genotoxicity of a chemical of interest 
might strengthen the decision-making. Therefore, both predic-
tion models were combined in an online application that allows 
other scientists to easily evaluate the genotoxic potential of a 
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