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Summary
The REACH (Registration, Evaluation, Authorization and restriction of Chemicals) and BPR (Biocidal 
Product Regulation) regulations strongly promote the use of non-animal testing techniques to evaluate 
chemical risk. This has renewed the interest towards alternative methods such as QSAR in the regulatory 
context. The assessment of bioconcentration factor (BCF) required by these regulations is expensive, in 
terms of costs, time, and laboratory animal sacrifices. Herein, we present QSAR models based on the 
ANTARES dataset, which is a large collection of known and verified experimental BCF data. Among the 
models developed, the best results were obtained from a nine-descriptor highly predictive model. This 
model was derived from a training set of 608 chemicals and challenged against a validation and blind 
set containing 152 and 76 chemicals, respectively. The model’s robustness was further controlled through 
several validation strategies and the implementation of a multi-step approach for the applicability domain. 
Suitable safety margins were used to increase sensitivity. The easy interpretability of the model is ensured 
by the use of meaningful biokinetics descriptors. The satisfactory predictive power for external compounds 
suggests that the new models could represent a reliable alternative to the in vivo assay, helping the regis-
trants to fulfill regulatory requirements in compliance with the ethical and economic necessity to reduce 
animal testing.
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chemicals included in a so-called external set, i.e., excluded 
from the model derivation. This procedure represents the proof 
of the capability of a given model to predict the properties of un-
known compounds (Golbraikh and Tropsha, 2002). Despite that 
QSAR has acquired a more and more relevant role in numerous 
front-line approaches of several fields, from experimental de-
sign to ADME modeling, to drug discovery, etc. (Nicolotti et al., 
2008, 2009), the actual impact on real-life applications often has 
been considered elusive and ineffective (Doweyko, 2004). The 
new European legislations, i.e., REACH (Registration, Evalua-
tion, Authorization and restriction of Chemicals) (EC, 2006) and 
BPR (Biocidal Product Regulation) (EU, 2012), have refreshed 
and renewed the crucial role of QSAR. Indeed, REACH Article 
1 encourages the use of alternative methods (in silico among oth-
ers) for assessing the presence or absence of hazardous proper-
ties of chemical substances, which, at the same time, minimize 
the costs of experiments and the controversial use of vertebrate 
animals (EC, 2006). 

1  Introduction

Quantitative Structure-Activity Relationships (QSARs) are in 
silico approaches developed to quantitatively predict a certain 
property/activity (e.g., pharmacological effect or toxicity, de-
fined as endpoint) for a substance of interest. To obtain reliable 
models the quality of the data should be high. To this end, sev-
eral preprocessing and pretreatment procedures need to be taken 
into account to curate preliminary data for model generation. The 
model is derived from the fundamental principle that the vari-
ance contained in the molecular descriptors relates to the vari-
ance in the values of the target endpoint (Nicolotti et al., 2002). 
Then, the model performance needs to be carefully validated to 
assess the quality of the predictions (Tropsha et al., 2003). There 
are several techniques to challenge models. In this respect, the 
external validation was the most appropriate approach for model 
control. Such an approach allows simulation of real life uses 
of the model. This allows prediction of the response for those 
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To be accepted in a regulatory context, the application of 
QSAR has to fulfil some basic principles that ensure the reli-
ability of the predictions. In this respect, the Organization for 
Economic Co-operation and Development (OECD) has stated 
that QSAR models have to be characterized by: 1) a well-defined 
endpoint; 2) an unambiguous algorithm for model derivation; 3) 
a clearly defined domain of applicability; 4) appropriate meas-
ures of goodness-of-fit, robustness, and predictivity; and 5) a 
mechanistic interpretation, if possible. Explanatory comments 
are provided for each point in the OECD document (OECD, 
2007). In a similar manner, the European Commission (EC) has 
established, in Annex XI of REACH and Annex IV of BPR, four 
conditions for use of QSARs instead of in vivo testing: 1) re-
sults have to be derived from a QSAR model whose scientific 
validity has been well established; 2) the substances are expect-
ed to fall within the applicability domain of the QSAR model;  
3) results need to be adequate for the purpose of classification 
and labeling and/or risk assessment; and 4) adequate and reliable 
documentation of the applied method has to be provided (EC, 
2006). To date, a wide series of models exists that addresses al-
most every endpoint within REACH. In this respect, a list of soft-
ware and models has been made available on the website of the 
European project ANTARES1. This open access list includes tens 
of models, of which some are commercial and others are freely 
available. Nevertheless, only some of these models have been 
developed for regulatory purposes and are fully compliant with 
the REACH requirements listed above.

Among others, the bioconcentration factor (BCF) is an end-
point of utmost relevance owing to its (eco)toxicological impact. 
It represents the ratio of the concentration of a substance in an 
aquatic organism with respect to that in water (Arnot and Gobas, 
2006). There is an ongoing discussion about what is the most 
suitable surrogate parameter for bioaccumulation. In the future, 
BCF may be substituted with bioaccumulation factor (BAF), 
which takes also into account the exposure via the diet. To date, 
BCF is still the reference endpoint under REACH for Persistent, 
Bioacculumative and Toxic (PBT) classification (EC, 2006).

The experimental test guideline TG 305, recommended by 
OECD, requires the use of hundreds of fish, months of test ex-
ecution (OECD, 2012), and a total cost of thousands of euros. 
REACH states that animal testing should be a last resort (EC, 
2006). It goes without saying that the use of in silico approaches, 
like QSARs, can lead to significant savings in terms of money, 
time, and above all else, laboratory animals. The use of toxicolog-
ical evidence from QSARs can reduce and replace the execution 
of further useless in vivo assays according to the 3Rs principle: 
Replace, Reduce, Refine (Russell and Burch, 1959). Continuous 
efforts to derive new and better predictive models have led to the 
development of several software programs (i.e., EPISuite BCF-
BAF module, T.E.S.T., and VEGA) that are, at present, widely 
used for the prediction of many endpoints, including BCF. How-
ever, the availability of newer and higher quality experimental 

BCF measures, along with the chance of using a more attrac-
tive descriptor space, prompted us to derive new QSAR models 
for BCF. In fact, within the ANTARES project, a dataset of 851 
compounds, whose structures and experimental BCF values have 
been carefully checked, has been compiled to evaluate the per-
formances of existing models. We used this newer data collection 
as well as biokinetics descriptors to derive and test the new mod-
els presented in this work.

2  Materials and methods

2.1  Data set
The ANTARES dataset (Gissi et al., 2013) comprises 851 chemi-
cals. Their BCF experimental values have been collected among 
five reliable and publicly available databases:
–	 Dimitrov et al. (2005): contains 511 compounds along with 

unique, reliable BCF experimental data for each chemical;
–	 Fu et al. (2009): contains 138 ionizable chemicals. Only 10 of 

these are characterized by multiple BCF experimental values; 
–	 Footprint PPDB2 (2013): contains unique experimental values 

for 159 pesticides; 
–	 Arnot and Gobas (2006): comprises only experimental data 

for fish species and aquatic organisms indicated by OECD 305 
guidelines (OECD, 2012) (Danio rerio, Pimephalespromelas, 
Cyprinus carpio, Oryziaslatipes, Poeciliareticulata, Lepomis-
macrochirus, Oncorhynchusmykiss, and Gasterosteusaculea-
tus) with an overall reliability score of 1 (the most reliable 
data); contains unique or multiple experimental BCF data for 
759 compounds;

–	E URAS3: contains 511 reliable data points for fish species sug-
gested by OECD 305.

As reported (Gissi et al., 2013), the structures were carefully 
checked and the values were selected if in agreement with the con-
ditions established by OECD TG 305 (OECD, 2012). Compounds 
characterized by ambiguous data, inorganic compounds, or iso-
meric mixtures were thus discarded. The presence of duplicates 
was verified. Multiple values for the same chemical were medi-
ated by geometric mean. The list of the compounds, with their 
SMILES, names, InChI notations and experimental values were 
compiled in Table S1 (supplementary data at http://www.altex-
edition.org). This dataset is larger than those used for other exist-
ing BCF predictive models tailored for specific regulatory pur-
poses, such as the CAESAR model4 (Zhao et al., 2008; Lombardo 
et al., 2010) implemented in VEGA platform5 (473 substances), 
the Meylan model (Meylan et al., 1999) implemented in EPIS-
uite BCFBAF module6 (527 substances), and the T.E.S.T. model7  
(598 substances). For the derivation of the model presented here, 
the ANTARES dataset was split into three subsets: about 10%  
(78 out of 851) of the compounds were randomly selected to 
form the blind set (BS) required for final validation. The remain-
ing chemicals were split to form a training set (TS) and a vali-

1 http://www.antares-life.eu (accessed 23.04.2013)
2 http://sitem.herts.ac.uk/aeru/footprint/en/ (accessed 23.04.2013)
3 http://www.cefic-lri.org (accessed 23.04.2013)
4 http://www.caesar-project.eu (accessed 23.04.2013)

5 http://www.vega-qsar.eu/ (accessed 23.04.2013)
6 http://www.epa.gov/opptintr/exposure/pubs/episuite.htm  
  (accessed 23.04.2013)
7 http://www.epa.gov/nrmrl/std/qsar/qsar.html (accessed 23.04.2013)
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ion of Dragon and QikProp descriptors. This led to the exclusion 
of those chemicals not properly computed by either Dragon or 
QikProp. As a result, in this case the whole dataset is made of 834 
chemicals, while the corresponding TS, VS, and BS contain 606, 
152, and 76 molecules, respectively.

2.3  Model derivation and validation
Several descriptor subsets have been used for the generation of 
models. These subsets contain an increasing number of optimal 
descriptors, from one to ten, which were selected using the Mon-
te Carlo algorithm (Simulated Annealing) implemented in Can-
vas version 1.5 included in Maestro 9.2 Suite (Schrödinger, LLC, 
New York). The selection method has been applied to: 1) Dragon 
descriptors pool; 2) QikProp descriptors pool; and 3) the union of 
both. Afterwards, Multiple Linear Regression (MLR) and Neural 
Network algorithm (NN) implemented in Canvas 1.5 were em-
ployed to derive models from each descriptor subset. The lists of 
descriptors selected by Monte Carlo are shown in Table S3 (sup-
plementary data at http://www.altex-edition.org).

All models have been derived via regression approaches, 
enabling the prediction of continuous BCF values, as indicated 
in BPR for active substances present in biocidal products and 
REACH for those chemicals exceeding 100 tons/year. In this re-
gard, the determination coefficient (r2) and the Root Mean Square 
of Errors (RMSE) were calculated to appreciate the goodness of 
regression.

The following equations were used for the calculation of r2 and 
RMSE, respectively: 

where yi is the observed dependent variable (the experimental 
response), ŷi is the calculated value, yavg is the mean value of the 
dependent variable, RSS is the Residual Sum of Squares, and 
TSS is the Total Sum of Squares for n elements of the modeled 
data set (Nicolotti and Carotti, 2006). 

In addition, the Concordance Correlation Coefficient (CCC) 
was measured and tabulated for fairly comparing the real ex-
ternal predictivity of the QSAR models discussed herein (Lin, 
1989). It has been demonstrated (Chirico and Gramatica, 2011) 
that the CCC is one of the most reliable criteria to assess the real 
external predictivity of QSAR models. The following equation 
accounts for external data only:

dation set (VS) containing 620 and 153 chemicals, respectively. 
We ensured a uniform distribution of their experimental BCF 
values by applying the Venetian blinds method (Consonni et al., 
2009). These selection criteria were used to obtain two different 
and independent sets for model validation (i.e., VS) and to ensure 
the most realistic situation for the external compounds (i.e., BS). 
Given this, statistics could demonstrate the real capability of the 
model to predict new compounds. 

2.2  Generation and selection of novel  
biokinetics descriptors
Many commercial and free software programs are available for 
the calculation of two- (2D) or three-dimensional (3D) descrip-
tors. For instance, the widely used software Dragon version 
6.0.28 (Talete srl: Milano, Italy) enables the calculation of an 
overwhelming number of descriptors (Todeschini, 2000) (i.e., 
4885 2D and 3D molecular descriptors, divided into 29 logical 
boxes, such as constitutional descriptors, topological or con-
nectivity indices, drug-like indices, matrix-based descriptors, 
Burden eigenvalues, autocorrelations, etc.). Conversely, the 
program QikProp version 3.4, included in the Maestro 9.2 suite 
(Schrödinger, LLC, New York), calculates a smaller number of 
descriptors, which are all relevant to explain ADMET (Absorp-
tion, Distribution, Metabolism, Excretion and Toxicity) proper-
ties of organic molecules. Some of these descriptors, for instance 
associated with the permeation of the membranes, may be more 
familiar to a toxicological or pharmacological audience and sug-
gest a mechanistic interpretation. 

QikProp provides 51 2D and 3D descriptors. The calculations 
are fast, up to 10,000 molecules per h in the software’s “normal 
mode” and 300,000 per h in the “fast mode.” The interested reader 
is referred to the QikProp software guide for a detailed descrip-
tion. In this work, we present models based either on QikProp or 
Dragon descriptors, as well as “hybrid descriptor models” result-
ing from the combination of QikProp and Dragon descriptors. 

The software Dragon failed to determine the correct Kekule 
structure of two heterocycle-based compounds contained within 
the TS (i.e., 19 and 735) that have been consequently excluded 
for model generation. As a consequence, Dragon models have 
been developed using a final TS made of 618 chemicals, while 
VS and BS maintained the original size of 153 and 78 chemicals, 
respectively. 

For models based on QikProp descriptors, chemical structures 
were previously built using CORINA version 3.4 (Molecular Net-
works GmbH, Erlangen, Germany) software and then minimized 
by means of MacroModel 9.9 package (Schrödinger, LLC, New 
York) within the software Maestro 9.2. The molecular descrip-
tors were then computed for each of those chemicals. Macro-
Model failed to minimize structures containing tin atoms (nine 
compounds). In addition, QikProp was not able to treat peroxides 
(two compounds) and quaternary ammoniums (four compounds). 
Thus, these chemicals were excluded from the relative models 
for further analyses, reducing the total dataset used for QikProp 
models to 836 molecules: 608 forming the TS, 152 the VS, and 
76 the BS (the excluded compounds are listed in Table S2 in the 
supplementary data at http://www.altex-edition.org). 

The “hybrid descriptor models” were then derived from the un-
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descriptors were randomly reshuffled among the TS chemicals, 
keeping the others descriptors unvaried. This allows the derivation 
of a number of so-called pseudo-models, one for each descrip-
tor reshuffling. The performance (as r2) of pseudo-models was 
compared with that of the original model to appreciate the actual 
relevance of each single descriptor. A substantial drop of the r2 of 
a pseudo-model, as a consequence of the reshuffling of a given 
descriptor, flags the primary role of the descriptor for the model. 

2.4  Software
The molecular geometry for chemicals in the ANTARES data-
set was determined using OPLS_2005 force field and the PRGC 
minimization method as implemented in MacroModel version 
9.9 (Schrödinger, LLC, New York). The number of iterations and 
the convergence threshold were equal to 50,000 and to 0.005, 
respectively. All the calculations were executed using water as a 
solvent (Banks et al., 2005). 

The Monte Carlo (Simulated Annealing) implemented in Can-
vas 1.5 made use of the following parameters: number of Monte 
Carlo steps equal to 1000; initial temperature equal to 0.5 times 
the standard deviation in the Y variable; final temperature equal 
to 0.05 times the standard deviation in the Y variable. 

The NN implemented in Canvas 1.5 has a standard architec-
ture: one input layer, one hidden layer, and one output layer. The 
number of neurons in the input layer is equal to the number of 
descriptors used for the derivation of each model (from one to 
ten), while in the output layer there is one neuron. The number of 
neurons in the hidden layer is (input+output)/2. There is no fixed 
rule about how many hidden neurons a network should contain. 
A “triangular” shape (such as 9x5x1 in case of the nine-descriptor 
model) is a standard approach because it places a sensible limit 
on the number of adjustable parameters. In our case, each Canvas 
NN was trained using a Broyden, Fletcher, Goldfarb, and Shanno 
(BFGS) algorithm in the presence of a cross-validation set and 
training is halted when the cross-validation error starts to in-
crease. This is an extremely effective way to prevent over-fitting. 
The NN made use of the following parameters: train a total of 20 
networks with a number of training cycles equal to 200, keeping 
only the best network generated.

3  Results

3.1  Model evaluation
The results for the models based on QikProp descriptors built 
with NN are summarized in Table 1. More detailed statistics 
about regression and classification performance for these models 
and those based on other pools of descriptors are available in Ta-
ble S3 (supplementary data at http://www.altex-edition.org).

In general we observed that NN returned better statistics than 
MLR. In addition, the comparison between models based on Qik-
Prop and Dragon descriptors disclosed that the former are charac-
terized by a far better performance on TS and even higher on VS 
and BS. In particular, the sensitivity is approximately equal to 70% 
and 50% for VS and BS when using QikProp descriptors, while 
it drops by about 10%-20% on average when considering Dragon 
based models. Statistics also shows that results do not benefit from 

Furthermore, the obtained regression models can be flexibly used 
as classifiers establishing different thresholds according to a given 
purpose. In this regard, the models have been first evaluated on the 
basis of the REACH risk thresholds established in Annex XIII to 
classify chemicals (EC, 2006). All substances that exceed the first 
threshold of log BCF = 3.3 are classified as bioaccumulative (B) 
while those having log BCF <3.3 are classified as non-bioaccumu-
lative (nB) according to the PBT definition. On the other hand, all 
substances that exceed the second threshold of log BCF = 3.7 are 
classified as very bioaccumulative (vB).

Moreover, models could be easily adapted for working on dif-
ferent threshold values, such as that related to Classification, La-
beling and Packaging (CLP) (i.e., log BCF = 2.7) (EC, 2008) and 
that concerned with Dangerous Substances Directive (64/548/
EEC) according to risk phrase R53 (i.e., log BCF = 2.0) (EEC, 
1967).

As far as classification is concerned, the Cooper statistics 
(Cooper et al., 1979) related to accuracy, specificity, and sensitiv-
ity have been calculated, as follows: 

 Accuracy, also termed concordance, measures the correctness of 
the prediction. Its value is obtained by dividing the number of 
correct predictions by the total number of compounds. Specificity 
is concerned with the number of negative compounds correctly 
predicted (true negatives, TNs) and its value decreases with the 
occurrence of false positives (FPs). Sensitivity is of the utmost 
importance to track false negatives (FNs) whose number should 
be kept low to avoid the occurrence of toxic compounds wrongly 
predicted as not hazardous. In this respect, the regulatory context 
recommends a precautionary approach to minimize health and 
environmental risks. The sensitivity at 3.3 is used in the present 
work for preliminarily evaluating the results (together with the r2) 
coming from different derived models.

It is worth noting that the ANTARES dataset shows an uneven 
distribution of nB (about 85%) and B or vB (about 15%) com-
pounds. This reflects the common value distribution of BCF, but 
makes the prediction of B and vB compounds extremely chal-
lenging. This explains why lower sensitivity values occur for the 
threshold of log BCF equal to 3.3 and 3.7.  

In this regard, the Matthews Correlation Coefficient (MCC) is 
useful for the evaluation of classification between two very un-
balanced categories, such as in this case (Baldi et al., 2000).

The individual contribution of each descriptor was also evaluated 
by X-scrambling which, unlike Y-scrambling used for validation, 
was carried out to assess the relative weight of each descriptor 
within the model. Iteratively, the values of each of the model 
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deriving a well-defined and reproducible procedure based on sim-
ple rules for deciding whether a chemical is inside or outside the 
AD. In this respect, the effectiveness in the application of AD (i.e., 
chemicals inside/outside the AD) was further assessed by control-
ling statistics of new models. Our efforts have been focused on 
the nine-descriptor QikProp based model to which we applied a 
multi-step filter system to confidently designate chemicals within 
the AD having the matching criteria requested at any step. In par-
ticular, our approach is based on the application of four independ-
ent filtering methods, whose outputs are condensed to identify 
chemicals outside AD with higher confidence and transparency 
(Schultz et al., 2007). Thus, compounds violating even only one 
filter are considered outside the AD; Figure 1 shows their corre-
sponding chemical structures.

As a first independent approach, we have explicitly considered 
the dataset’s structural diversity. Chemicals were classified by us-
ing the organic functional group (nested) profiler available in the 
OECD QSAR Toolbox 3.0 software8. TS, VS, and BS chemicals 
were assigned to 102 representative chemical classes. Chemicals 
containing functional groups belonging to different categories 
were consequently assigned to multiple classes. It was observed 
that a good overlap exists between the structural types represented 
within the TS and those occurring in the VS and BS. A complete 
overview of the distribution of the three datasets among the de-
fined chemical classes is reported in Table S4 (supplementary data 
at http://www.altex-edition.org).

To minimize the risks derivable from poor structural coverage, 
we assumed that the VS or BS compounds belonging to chemi-
cal classes represented by less than two TS chemicals could not 
be confidently predicted (Toropov and Benfenati, 2008), thus 
we placed them outside the AD. Such a procedure allowed us to 
identify 17 chemicals (14 from the VS and 3 from the BS, re-
spectively, i.e., 146, 178, 191, 337, 443, 459, 496, 536, 543, 665, 

the combination of Dragon and QikProp descriptors. 
Herein we discuss two QikProp based models derived via NN. 

The first is a straightforward three-descriptor model showing ap-
preciable performance; the second is a nine-descriptor model re-
turning more solid statistics. 

Among others, the three-descriptor model returns the best 
values of r2 (0.70) and RMSE (0.71) for the VS despite its low 
number of descriptors. However, the poor sensitivity results, es-
pecially those measured at the threshold equal to 3.7 (40% on 
TS, 41% on VS, and 33% on BS), represent a serious limit for 
the real use of this model, at least for the vB threshold. On the 
other hand, the nine-descriptor model returns very encouraging 
statistics except for a lower value of r2 for VS (0.635). This event 
is basically due to few compounds acting as outliers and thus 
dropping all the statistics values relative to the dataset to which 
they belong. However, the exclusion of these compounds, later 
found to fall outside the model applicability domain (AD), allows 
compensation for such a drawback and results in considerable 
improvements (see Section 3.2).

3.2  Model applicability domain
The AD represents the space of reliability of a given QSAR model 
and thus predictions provided by models without a clearly defined 
AD should be considered useless and meaningless (Jaworska et 
al., 2005; Aptula and Roberts, 2006; Roberts et al., 2006). As pre-
viously described, its importance has also been cited in REACH 
Annex XI, BPR Annex IV, and OECD principles for the deriva-
tion of acceptable QSARs. In this respect, it goes without saying 
that even robust, intuitive, and validated QSAR models are un-
suitable to confidently predict chemicals falling outside their AD 
(Weaver and Gleeson, 2008). In geometric terms this means that 
predictions are acceptable only if they are the result of interpola-
tions, but not of extrapolations in the chemical space.

The AD represents a multi-faceted concept, which can be stud-
ied at different levels (Eriksson et al., 2003). We paid attention to 

Tab. 1: Performance in regression and classification for QikProp based models derived via Neural Networks 
Each model is made up using one to ten descriptors. TS, VS, and BS consist of 608, 152, and 76 chemicals, respectively.

Number of descriptors	                      TS		    VS		  BS

	     r2	 3.3 sensitivity	    r2	 3.3 sensitivity	    r2	 3.3 sensitivity

	 1	 0.523	 0.000	 0.565	 0.000	 0.531	 0.000

	 2	 0.588	 0.213	 0.640	 0.208	 0.560	 0.000

	 3	 0.665	 0.528	 0.696	 0.667	 0.628	 0.400

	 4	 0.642	 0.517	 0.629	 0.583	 0.593	 0.400

	 5	 0.667	 0.506	 0.673	 0.583	 0.624	 0.500

	 6	 0.689	 0.461	 0.670	 0.583	 0.626	 0.400

	 7	 0.691	 0.517	 0.641	 0.708	 0.543	 0.500

	 8	 0.714	 0.573	 0.671	 0.708	 0.638	 0.500

	 9	 0.731	 0.584	 0.635	 0.750	 0.623	 0.500

	 10	 0.755	 0.596	 0.668	 0.708	 0.633	 0.500

8 http://www.qsartoolbox.org/ (accessed 23.04.2013)
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from 0.623 to 0.634 for the BS). These results demonstrate the 
effectiveness of this step in the definition of the AD.

The second independent filter was based on the calculation of 
the chemical descriptors’ ranges. The minimum and maximum 
values of the nine descriptors in the model for TS chemicals were 
used to define their interval of validity. Each chemical in VS or 
BS having one or more descriptors whose values fall outside 
these ranges were considered outside the AD. In this regard, four 

680, 824, 1042, 1109, 227, 726, 987) which were in 14 chemical 
classes (i.e., dianilines, sulfonate esters, thiazolidinones, substi-
tuted acrylates, phosphonic acids, phosphoramides, ketoximes, 
carbodiimides, aldehydes, thiophosphonate esters, sulfates, thio-
cynates, thiols, and thiocarboxylic acids) rarely or never repre-
sented within the TS. The exclusion of these compounds had the 
effect of increasing the confidence in prediction and, indirectly, 
improving the statistics (r2 from 0.635 to 0.691 for the VS and 

Fig. 1: Chemical 
structures of 
compounds 
outside the AD 
Chemical classes 
have been explicitly 
reported for 
chemicals poorly 
covered in TS.
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TS observations). Thus, it is suitable for explicitly evaluating the 
degree of influence that a particular TS chemical structure has 
on the model, or the degree of extrapolation for the prediction 
of VS and BS compounds. In particular, a given prediction is 
considered unreliable for VS and BS compounds when leverage 
values exceed the critical threshold of h* = 3p’/n (where p’ is 
the number of model variables plus one and n is the number of 
TS compounds) (Gramatica, 2010). As a result, VS and BS com-
pounds having leverages lower than h* are closely structurally-
related to TS chemicals and thus comparable to them in terms 
of the probability of BCF concordance. Conversely, VS and BS 
chemicals with high-leverage values (>h*) are assumed to be 
structurally distant from TS chemicals and thus outside the model 
AD. The William plot shown in Figure 3 gives an immediate idea 
of the relationships existing between the standardized residu-
als and the leverage values. As clearly itemized, six compounds 
(five from VS and one from BS, i.e., 94, 306, 496, 536, 722, and 
604) violated the h* warning threshold. The effectiveness of this 
procedure characterizing the AD is proved by the fact that the 
removal of these chemicals had the effect of improving r2 from 
0.635 to 0.735 (VS) and from 0.623 to 0.652 (BS).

The application of this harmonized approach, based on the 
use of the four independent filtering steps, results in an effective 
strategy for AD. Each step contributes to this process. The simul-
taneous application of the multi-filter system has the net effect of 
identifying outside the AD: a) 20 (13% of the initial) VS com-
pounds, which have been shown to be mainly outliers because r2 

chemicals (three from VS, one from BS, i.e., 536, 604, 680, 722) 
were placed outside the AD. Indirectly, the exclusion of these 
chemicals shifted the r2 values from 0.635 to 0.696 for VS and 
from 0.623 to 0.652 for BS.

Distance-based strategies were thus applied for the definition 
of the AD (Minovski et al., 2013). A geometrical approach was 
then taken into account to identify an interpolation region space 
representing the smallest convex area. The borders of this area 
describe the perimeter of a polygon containing TS compounds, as 
shown in Figure 2. Being in a multivariate descriptor space, the 
interpolation polygon was drawn using spatial coordinates of the 
first two principal components, derived from the nine descriptors 
of the model. To avoid the inclusion of underrepresented areas 
likely increasing the prediction uncertainty, the polygon area was 
conservatively restricted to contain the top 98% TS compounds 
on the sole basis of their closeness to the TS centroid. Such a 
percentage of inclusion was well suited to ensure a uniform cov-
erage of the TS. 

In so doing, 13 VS and BS compounds falling outside the poly-
gon (i.e., 37, 41, 94, 496, 506, 536, 665, 680, 722, 45, 268, 479, 
604) were placed outside the AD. This produces an indirect effect 
of improving model performance by increasing the r2 from 0.635 
to 0.730 after the exclusion of nine chemicals from VS, and from 
0.623 to 0.643 leaving out four chemicals from BS.

As a further filtering approach the leverage method was ap-
plied. By definition, the leverage represents the compound dis-
tance from the model’s experimental space (that is the center of 

Fig. 2: Geometrical-based applicability domain based on the PCA of the nine-descriptor BCF model 
The outer polygon (dashed line) takes into account all the chemicals in the TS, while the inner polygon (solid line) retains about the 98% of 
them on the basis of a user-dependent inclusive threshold. VS and BS chemicals outside the inner 98% polygon are flagged as outside AD.
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relations. In doing so, we observed that the highest randomized 
q2 dropped to 0.102 (being its average of 0.027 after 500 rand-
omizations) from the unscrambled value of 0.722. Similarly, the 
averages of the scrambled r2 and RMSE values were equal to 
0.057 and 1.263, respectively (Table S6 in supplementary data at 
http://www.altex-edition.org).

Finally, we carried out a series of analyses to assess the real 
agreement existing between the experimental and predicted val-
ues. The perfect match would be showing that the regression line 
was passing through the origin with a slope equal to 1. As pro-
posed (Golbraikh and Tropsha, 2002; Zhao et al., 2008; Chirico 
and Gramatica, 2011), we measured the determination coeffi-
cient calculated by forcing the regression line to pass through 
the origin. In doing this, the measure was carried out considering 
two possible regressions. The first was obtained by comparing 
experimental versus predicted data (i.e., r20) and the second was 
obtained by comparing predicted versus experimental data (i.e., 
r'20). Among the two, the one returning the highest value is re-
tained. It would be desirable to obtain quite similar coefficients 
and a good match with the r2 value. In particular, the following 
requisites have been proposed: 

changed from 0.635 to 0.765 and RMSE from 0.794 to 0.616; b) 
seven (9% of the initial) BS compounds with an indirect gain of 
r2 from 0.623 to 0.659 and of RMSE from 0.841 to 0.817. 

3.3  Model validation
The nine-descriptor model proposed was further challenged by 
applying a number of additional validation tests. In this respect, 
the internal predictivity was controlled by measuring the Predic-
tive Residual Sum of Squares (PRESS) and, thus, q2:

The predicted response (yi/i,pred) for each chemical was calculated 
on the basis of its experimental values (yi), its model calculated 
activity (ŷi), and the corresponding leverage values (hii) as fol-
lows (Nicolotti and Carotti, 2006): 

A Y-scrambling procedure, based on ten random reshufflings of 
the response variable, was thus implemented to ascertain that the 
obtained nine-descriptor model is not the result of chance cor-

Fig. 3: William’s plot reporting the leverage values for TS (diamonds), VS (squares), and BS (up-side triangles) chemicals 
towards the corresponding standardized residuals computed using the nine-descriptor BCF model 
VS and BS chemicals exceeding the h* threshold value (see Section 3.2) are flagged as out of the model AD.

http://www.altex-edition.org
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for a model is necessary to consider it adequate for the regulatory 
context. 

For this purpose, it is reasonable to omit the classification of the 
compounds whose predicted log BCF value falls within a safety 
margin just under each regulatory threshold. In light of this, it is 
recommended to conduct further studies to determine whether 
such chemicals could be definitely classified as hazardous (Gissi 
et al., 2013). Other QSAR models, read across predictions, con-
siderations about stability in water, and metabolism rate shall be 
taken into account to reduce the uncertainty of the prediction and 
provide a weight of evidence conclusion. Integrated testing strate-
gies also can be considered. 

In this precautionary view, the number of compounds predicted 
as negative (below the threshold, non-bioaccumulative), but ex-
perimentally positive (i.e., FNs), is significantly reduced. Figure 
5 displays the statistics adopting the presented precautionary clas-
sification for all the thresholds for the QikProp based three- and 
nine-descriptor models. In particular, the chemicals considered 
suspicious are counted as unclassified. The safety margin for the 
predicted values is gradually lowered by 0.1 log units to check the 
performance improvement and the number of compounds that re-
main unclassified. The graphs show the increase of the sensitivity 
for each threshold (y axis) at the increment of the precautionary 
margin in log units (x axis) for the nine-descriptor and three-de-
scriptor models, respectively. 

The plots clearly show that the overall best performance is ob-
tained for the nine-descriptor model. Considering all the relevant 
regulatory thresholds, the sensitivity values are higher than 60%, 
irrespective of the safety margin. With a precautionary margin of 
0.6 log units, they are greater than 80% for all the thresholds. Con-

Furthermore, it must be verified that the slopes of the regression 
lines (i.e., k and k’ related to r20 and r'20, respectively) are not too 
far from 1. It is suggested that k and k' must be in the range of 
0.85 to 1.15 (Zhao et al., 2008). It must also be verified that the 
intercepts of the regression lines related to r2 for the disposition 
of the axes (b, for experimental vs predicted data and b’ for pre-
dicted vs experimental data) are both not too far from 0.

Data shown in Table 2 demonstrates that our nine-descriptor 
model fulfills all the prerequisites for the three datasets. Indeed, a 
good match exists between experimental and predicted data (Fig. 
4), supporting the scientific validity of the proposed BCF model.

To confirm that the nine-descriptor QSAR model performance is 
not strictly dependent on the dataset composition, the ANTARES 
database was repartitioned five other times to obtain five diverse 
TS, VS, and BS (Table S7 in supplementary data at http://www. 
altex-edition.org). Likewise, for the initial splitting, BS was ex-
tracted at random while TS and VS were created applying the 
Venetian blinds method. As shown in Table S8 (supplementary data 
at http://www.altex-edition.org), the new derived nine-descriptor 
models, irrespective of the splitting, returned statistics comparable 
to the reference model in both regression and classification. These 
statistics reinforce the strength of the selected descriptors.

4  Discussion

4.1  Adequacy for REACH
The REACH and BPR legislations recommend a precautionary 
approach in the evaluation of QSAR predictions to reduce the 
number of FN compounds. In other words, a high sensitivity value 

Fig. 4: Comparison of the experimental and predicted log BCF values obtained using the nine-descriptor BCF model 
TS, VS, and BS chemicals are represented by white diamonds, gray squares, and up-side triangles, respectively. VS and BS chemicals 
outside the AD are represented by black squares and up-side triangles respectively. The continuous line represents the case of ideal 
correlation.

http://www
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biological membranes. In our model, chemicals (i.e., 15 com-
pounds) with MW values >600 Da have never been classified 
as B.

3.	 QPlogHERG. This estimates the IC50 values for the blockage 
of the hERG K+ channel. There is evidence that such an event 
could be related to a number of hydrophobic interactions estab-
lished by the chemicals at the hERG K+ channel level (Aptula 
and Cronin, 2004). A connection exists between lipophilicity 
and BCF (Lombardo et al., 2010).

4.	 #stars. A high value for #stars flags poor druglikeness. A low 
value for #stars flags molecules with physiochemical properties 
similar to those typical of drugs. Drug-like structures are often 
optimized to be highly bioavailable. In this respect, chemicals 
with low values for #stars (higher druglikeness) are expected 
to have high accumulation potential, and consequently greater 
BCF values. As a result, the #star values are inversely related to 
the bioconcentration. 

5.	 QPPCaco. The Caco2 cells permeability assay evaluates the 
permeability of chemicals through biological membranes. A 
high permeability increases the bioaccumulative potential.

6.	 WPSA. This describes the weakly polar component of SASA 
(solvent accessible surface area) and is related to the surface of 
a chemical. The WPSA value has a positive effect on the BCF. 

7.	 IP(eV). The ionization potential describes the energy needed 
for the ionization of a chemical: low values are related to a 
high ionization tendency. Compounds that ionize in aqueous 
medium do not bioaccumulate, as they cannot cross biologi-
cal membranes. Furthermore, IP(eV) may have a relationship 
with the polarization effect of chemicals, and consequently 
with their reactivity towards the numerous nucleophilic bind-
ing sites present in living organisms. 

8.	 #noncon. It is the number of ring atoms not able to form con-
jugated aromatic systems. The presence of rings generally in-
creases the lipophilicity of a chemical, positively affecting the 
BCF.

9.	 #rtFG. Such a descriptor flags the number of reactive functional 
groups and is related to the likelihood of metabolic transforma-
tion. The presence of reactive functional groups facilitates the 
conjugations between chemicals and hydrophilic endogenous 
substrates (i.e., phase II xenobiotic biotransformation). This 
favors the excretion of the molecules and the reduction of the 
bioconcentration rate. Reactive functional groups often have a 
polar nature and are thus likely to reduce the BCF.

sidering the three-descriptor model, the B and vB sensitivities are 
initially equal to 53% and 40%, respectively. The inclusion of an 
even larger safety margin does not increase the safety to 80%.

Bearing this in mind, the presented models could be employed 
for regulatory considerations, but for classification a safety mar-
gin must be explicitly taken into account (we would suggest a 0.6 
offset). Table 3 shows the confusion matrix (Kohavi and Provost, 
1998) using the nine-descriptor model as a classifier, with the 0.6 
offset as safety margin. As expected, the use of a safety margin 
leads to a reduction of the number of compounds (e.g., a margin 
of 0.6 log units implies a loss of 5-18% of the predictions de-
pending on the threshold), which remain unclassified. We want to 
highlight that the value of this margin of 0.6 is in the range of the 
experimental variability for the suggested OECD 305 BCF ex-
perimental test, which ranges from 0.4 to 0.7 log units (Dimitrov 
et al., 2005; Lombardo et al., 2010).

For the risk assessment of substances exceeding 100 tons/year 
under REACH and BPR, the prediction is not limited to an as-
signment of a class; instead an explicit quantification of the BCF 
value is mandatory. In this respect, it is worth noting that the 
RMSE of our best models is again in clear agreement with the 
above reported experimental variability. 

4.2  The impact of novel biokinetics descriptors
Our nine-descriptor model is based on several properties rel-
evant to model BCF. X-scrambling designated the CIQlogS  
as the descriptor likely playing the strongest influence on BCF 
(Table S9 in supplementary data at http://www.altex-edition.org). 
Such a finding is in full agreement with other published BCF sol-
ubility-based models (Piir et al., 2010).

For the sake of clarity, we report comments on each descriptor 
for a possible mechanistic interpretation of the model, as follows. 
We verified that there is no collinearity among independent vari-
ables of the nine-descriptor model.
1.	 CIQPlogS. The solubility is inversely related to BCF. Highly 

water-soluble compounds are less likely to accumulate in the 
lipid portion of fish tissues. However, a minimum value of 
solubility is necessary for the establishment of an exchange 
equilibrium between water media and organisms. In fact, only 
a few chemicals with CIQPlogS < -9 were classified as B in 
our model.

2.	 molMW. Another important aspect is the molecular weight 
(MW) of chemicals. Bulky chemicals are not absorbed through 

Tab. 2: Validation parameters of the nine-descriptor model: slopes (k, k'), intercepts (b, b'), and determination coefficients  
(r2, r20, r’20) calculated for the TS, VS, and BS for all 836 chemicals and for the 809 chemicals retained in AD

	 Dataset	 r2	 r20	 r'20	 k	 k'	 b	 b'	 (r2 - r20)	 (r2 - r'20)	 |r20- r'20| 									         r2	 r2

	 TS	 0.731	 0.662	 0.731	 0.913	 0.993	 0.498	 -0.020	  0.096	 0.001	 0.070

	 VS	 0.635	 0.590	 0.616	 0.915	 0.970	 0.468	 0.329	 0.071	 0.030	 0.026

	 BS	 0.623	 0.517	 0.621	 0.879	 0.963	 0.588	 0.075	  0.170	 0.003	  0.104

	 VS (inside AD)	 0.765	 0.694	 0.764	 0.939	 0.996	 0.552	 0.082	 0.093	 0.002	 0.070

	 BS (inside AD)	 0.659	 0.488	 0.655	 0.890	 0.966	 0.709	 -0.154	 0.259	 0.006	  0.167

http://www.altex-edition.org
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veals the presence of a prominent hydrophilic moiety, which can 
reduce its permeability (i.e., low value of QPPCaco). 

The remaining chemicals falling outside the AD were dis-
carded after applying distance-based approaches, such as the 
polygon approach based on Principal Component Analysis 
(PCA) and the leverage method. Interestingly, the loadings  
plot resulting from PCA carried out on the pool of independent 
variables included in our nine-descriptor model revealed that 
MW and CIQlogS were the most relevant for the first two com-
ponents. In this regard, 5 of 14 VS and BS chemicals designated 
outside AD after either leverage or PCA strategy application (i.e., 
479, 496, 536, 604, 772) had MW >600 Da. Such chemicals were 
also characterized by large errors in prediction (on average equal 
to 2.343 log units). 

It is noteworthy that even 10 TS chemicals violated the pe-
rimeter including 98% of the polygon area or the h* threshold 
value. In this way we observed that all 15 (i.e., 10 from TS and  
5 from VS or BS) chemicals within our dataset having  
MW >600 exceeded AD limits. 

The relevance of MW as a cutoff is even clearer considering 
that 7 (i.e., 94, 479, 496, 536, 604, 665, 772) of the 10 BS and VS 
chemicals with MW >500 were outside the AD. 

Focusing on the three compounds with MW >500 but inside 
AD, we noticed for instance that compound 64 (see Table S3 in 

4.3  Chemicals outside the applicability domain
The four independent approaches used for the AD derivation led 
to the exclusion of a total of 27 chemicals, considering both VS 
and BS (Fig. 1). As anticipated, 17 of the 27 chemicals were char-
acterized by structural motifs not covered by TS chemical types 
(see Section 3.2). 

Four chemicals were instead identified via the descrip-
tors range approach. Interestingly, three of those compounds  
(i.e., 536, 604, and 772) have a high MW (i.e., MW >800 Da, 
which affects the molecular lipophilicity and solubility). Com-
pound 722 is also outside the CIQlogS value range of TS chemi-
cals. This chemical disclosed the largest error in prediction (equal 
to 4.33 log units). It has been recognized that testing very poorly 
water soluble substances may not be technically feasible. This 
often leads to wrong experimental values (OECD, 2012). Moreo-
ver, high MW compounds do not easily cross biological mem-
branes. This is the case for compound 604, which is outside the 
AD for the extremely low value of QPPCaco, indicating a pre-
sumably poor permeability. Compound 536 shows an abnormally 
high value for the descriptor #stars, which would indicate bad 
druglikeness. That is somehow related to the capability of deliv-
ery and subsequent bioaccumulation into body tissues (see Sec-
tion 4.2). Unlike the chemicals outside the AD discussed above, 
compound 680 has a low MW. A close structural inspection re-

Fig. 5: Improvement in sensitivity for diverse classification thresholds reached by increasing the offset (i.e., the width of  
the safety margin)
The plot on the left refers to the nine-descriptor BCF model, the plot on the right to the three-descriptor BCF model.

Tab. 3: Confusion matrix of the B and vB thresholds with a safety margin set to 0.6 log units 
Statistics refer to the QikProp nine-descriptor model. TS, VS, and BS consist of 608, 152, and 76 chemicals, respectively.

                                  Predicted log BCF

	 TS	 nB	 B	 vB	 VS	 nB	 B	 vB	 BS	 nB	 B	 vB

	 nB	 454	 4	 7	 nB	 113	 0	 2	 nB	 56	 2	 0

Observed log BCF	 B	 12	 5	 10	 B	 1	 1	 1	 B	 2	 1	 0

	 vB	 1	 8	 29	 vB	 0	 1	 15	 vB	 2	 1	 3
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the use of different algorithms. In 2006 and 2008 Pavan et al. 
made an important contribution by reviewing models for BCF 
(Pavan et al. 2006, 2008). A milestone study (Piir et al., 2013) 
based on a consensus model resulted in r2 equal to 0.79 on TS. 
Note that machine-learning methods were applied to a set of 713 
chemicals using eight descriptors (Strempel et al., 2013) and a 
value of r2 of 0.83 on TS was found. In this case, the model was 
adapted to work also as a classifier, returning an accuracy of 0.99 
considering the threshold at 3.3 on the whole set. Fuzzy filter-
ing techniques were applied to a set comprising more than 500 
compounds and a value of r2 equal to 0.73 was obtained for TS 
(Kumar et al., 2009). 

Worthy of mention are the VEGA platform, CORAL, and 
T.E.S.T. from US EPA. These models provided a wealth of infor-
mation about the compounds used in the TS to derive the models. 
VEGA comprises two of the most popular BCF models (i.e., the 
CAESAR and the Meylan model from EPISuite BCFBAF) and 
returns a value, in the range 0-1, of the Applicability Domain 
Index (ADI) to support the reliability of a given prediction. By 
default, VEGA considers poorly reliable predictions as those 
having ADI <0.70. A value of r2 equal to 0.86 on TS was instead 
obtained using models based on CORAL software (Toropova et 
al., 2012). T.E.S.T. software returned predictions only for com-
pounds inside its AD. 

We have compared the performance of our proposed new mod-
el with those of VEGA, CORAL, and T.E.S.T. The TS of these 
models are publicly available. This allows straightforward com-
parisons for external predictions and for assessing their reliability 
in a regulatory context. 

As shown in Figure 6a, our proposed new nine-descriptor mod-
el discloses the best r2 on external chemicals among the com-
pared models. The statistics account only for those chemicals 
within the ANTARES dataset external to the specific model TS, 
but inside the AD. 

As for the classification performance, Figure 6b shows that the 

supplementary data at http://www.altex-edition.org) is very simi-
lar to 479. This would support the fact that MW is not the sole 
descriptor determining whether a compound is outside or inside 
the AD. Moreover, both 64 and 479 had small errors in prediction 
(0.335 and 0.169 log units, respectively). This suggests that these 
compounds are likely to be placed in a boundary zone inside and 
outside the AD. The exclusion of 479 is mostly due to the precau-
tionary purposes intentionally set when defining AD.

Another important descriptor is CIQlogS. In this respect, com-
pound 506 is among those poorly soluble belonging to VS. This 
is due to the presence of an extended hydrophobic moiety, similar 
to that of compound 772. Importantly, the 10 least soluble com-
pounds within our dataset (including TS chemicals) exceed the 
98% polygon area or the h* warning threshold. 

A number of VS and BS low MW chemicals are outside the 
AD. Some of them (i.e., 37 and 45) are characterized by a high 
ratio between the number of halogens and the number of carbons, 
which is related to poor druglikeness.

Compound 306 is outside AD for its excessive leverage values. 
This is likely due to the absence of other structural homologues 
within the ANTARES dataset.  

Compound 41 is a low molecular weight aliphatic carboxylic 
acid, which, despite a very small error in prediction (0.094 log 
unit), is outside the AD. This is mostly due to the absence of other 
similar low MW acids within the ANTARES dataset. The dataset 
instead comprised mostly bulkier aromatic acids. Equivalent con-
siderations can be extended to compound 268, whose exclusion 
from AD, despite the limited error in prediction (0.223 log unit), 
is due to the absence of structural homologs. Similarity analyses 
were carried out by using VEGA software released in 2013. Both 
41 and 268 violated the perimeter polygon.

4.4  Comparisons with other BCF QSAR models
At present, a number of trustworthy BCF models already ex-
ist which are based on variously sized datasets, as well as on  

Fig. 6: Comparison between the herein presented nine-descriptor BCF model and others previously developed
The comparison is relative to r2 and to sensitivity at different thresholds according to REACH (see Section 2.3). For the ease of 
comparison, statistics of each model refer only to chemicals not comprised in their TS and within their AD.

http://www.altex-edition.org
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tive 1999/45/EC and repealing Council Regulation (EEC) No 
793/93 and Commission Regulation (EC) No 1488/94 as well 
as Council Directive 76/769/EEC and Commission Directives 
91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J 
Eur Union L 396, 1-849.

EC (2008). Regulation (EC) No 1272/2008 of The European Par-
liament and of Council of 16 December 2008 on Classification, 
Labeling and Packaging of substances and mixtures, amend-
ing and repealing Directives 67/548/EEC and 1999/45/EC, and 
amending Regulation (EC) No 1907/2006. Off J Eur Union, 
L353, 1-1979.

EEC – European Economic Community (1967). Council Directive 
of 27 June 1967 on the approximation of laws, regulation and 
administrative provisions relating to the classification, pack-
aging and labelling of dangerous substances. Off J Eur Union 
L196, 1-98.

EU – European Union (2012). Regulation (EU) No 528/2012 of 
The European Parliament and of The Council of 22 May 2012 
concerning the making available on the market and use of bio-
cidal products. Off J Eur Union L 167, 1-123.

EPI Suite (2013). http://www.epa.gov/opptintr/exposure/pubs/
episuite.htm (accessed 23.04.2013).

Eriksson, L., Jaworska, J., Worth, A., et al. (2003). Methods for 
reliability, uncertainty assessment, and applicability evaluations 
of classification and regression based QSARs. Environ Health 
Perspect 111, 1361-1375.

Fu, W., Franco, A., and Trapp, S. (2009). Methods for estimating 
the bioconcentration factor of ionizable organic chemicals. En-
viron Toxicol Chem 28, 1372-1379.

Gissi, A., Nicolotti, O., Carotti, A., et al. (2013). Integration of 
QSAR models for bioconcentration suitable for REACH. Sci 
Total Environ 456-457, 325-332.

Golbraikh, A. and Tropsha, A. (2002). Beware of q(2)! J Mol 
Graph Model 20, 269-276.

Gramatica, P. (2010). Chemiometric methods and theoretical mo-
lecular descriptors in predictive QSAR modeling of the environ-
mental behavior of organic pollutants. In T. Puzyn et al. (eds.), 
Recent Advances in QSAR Studies (327-366). Dordrecht, Hei-
delberg, London: Springer.

Jaworska, J., Nikolova-Jeliazkova, N., and Aldenberg, T. (2005). 
QSAR applicability domain estimation by projection of the 
training set in descriptor space: A review. Altern Lab Anim 33, 
445-459.

Kohavi, R. and Provost, F. (1998). Glossary of terms. Machine 
Learning 30, 271-274.

Kumar, S., Kumar, M., Thurow, K., et al. (2009). Fuzzy filtering 
for robust bioconcentration factor modeling. Environ Modell 
Softw 24, 44-53.

Lin, L. (1989). A concordance correlation coefficient to evaluate 
reproducibility. Biometrics 45, 255-268.

Lombardo, A., Roncaglioni, A., Boriani, E., et al. (2010). Assess-
ment and validation of the CAESAR predictive model for bio-
concentration factor (BCF) in fish. Chem Cent J 4, Suppl 1, S1.

Meylan, W., Howard, P., Boethling, R., et al. (1999). Improved 
method for estimating bioconcentration/bioaccumulation factor 
from octanol/water partition coefficient. Environ Toxicol Chem 
18, 664-672.

sensitivity of our model at both the B and vB thresholds (i.e., log 
BCF equal to 3.3 and 3.7, respectively) was considerably higher 
compared to that of previous models.

5  Conclusions

The presented new nine-descriptor model mines a large volume 
of information, keeping in mind regulatory requirements. Its 
predicting power in both regression and classification assessed 
on external compounds makes it suitable for real-life uses. The 
employed biokinetics descriptors are more helpful than others, 
as they allow an easier mechanistic interpretation of the obtained 
results. The reliability of the predictions has been investigated by 
a well-described multi-step AD analysis. Full elucidation of the 
biochemical and overall processes is still a work in progress, but 
the practical validation provides a sound basis for the evaluation 
of the performance obtained by the proposed model.
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