
Comments

Altex 30, 3/13386

Bayesian Network Integrated Testing  
Strategy and beyond 

mines, to a large extent, which statistical techniques are suited 
to extract information from data, but such information becomes 
knowledge only after updating the personal system of scientific 
beliefs, a step in which interpretation is essential. This process is 
inherently affected by uncertainty, called epistemic uncertainty, 
which has to be considered together with aleatory uncertainty 
due to randomness, and with uncertainty induced by the meas-
urement process before distilling knowledge from data.

From this standpoint, Bayesian statistics has much to offer to 
ITS because it is the methodological field devoted to the study 
of uncertainty (Lindley, 2000, 2006, for an informal introduc-
tion), as suggested in Jaworska et al. (2010a, p. 160) both for 
data analysis and reasoning with evidence. This is a need rec-
ognized by Jaworska and Hoffmann  (2010b) who stated: “...
probabilistic methods provide a formal approach for quantify-
ing uncertainty from heterogeneous input sources, relationships 
between them, and overall target uncertainty”, and also “... an 
operational framework (for ITS) that needs to be probabilistic, 
even better Bayesian and adaptive.” Major pitfalls in statisti-
cal modeling, such as incomplete data and conflicting evidence, 
may be properly faced in the Bayesian paradigm, with the guar-
antee of full agreement with the principles of logic and rational-
ity (Lindley, 2000). An explicit mention is made by the authors 
about the possibility of discovering weak signals of high impor-
tance, like those arising as a consequence of complex feedback 
mechanisms in biological signaling, using “... prior knowledge 
about the target of interest” (Jaworska and Hoffmann, 2010b): 
this attitude towards the elicitation of the degree of belief in 

1  Introduction1

In their seminal book, published in 1959, Russell and Burch 
lamented the delay in the use of some statistical methods (tests) 
that “... have probably not been exploited to the full, even in 
research immediately after their provision.” While explaining 
the importance of the design of experiments, they emphasized 
that “Every time any particle of statistical method is properly 
used, fewer animals are employed than would otherwise have 
been necessary.” Equipped with their words, we make statistical 
remarks on three recent papers dealing with the integration of 
testing strategies.

In a recent paper, Jaworska and Hoffmann (2010b) stated that 
Integrated Testing Strategies (ITS) may be considered combi-
nations of test batteries covering relevant mechanistic steps, 
organized in a logical and hypothesis driven decision scheme, 
with the aim of providing a comprehensive information basis for 
making decisions on chemical hazard and risk management. In 
the same paper, the authors reviewed conceptual requirements 
for ITS and defined properties that ITS should have to meet the 
identified requirements.

Among the issues addressed by the authors, the need for con-
text and interpretation to transform data into information, and 
therefore knowledge, seems to us preeminent for several rea-
sons. The systematic analysis and use of the existing wealth of 
multifaceted biological data is a requisite for advances in the 
understanding of life processes and risks, and it appears to be 
impossible without setting proper contexts. The context deter-

 Comment

Summary
In a recent series of papers written by Jaworska with different coauthors, compelling reasons for  
adopting a probabilistic approach to Integrated Testing Strategies were detailed. In a case study on skin 
sensitization, a Bayesian Network proved to be effective in adapting testing strategies to the available 
evidence. There is no doubt that probabilistic Integrated Testing Strategies are one way to pursue the goals 
of 3Rs effectively; nevertheless, some issues deserve further comment to pinpoint statistical criticalities  
and to widen the methodological perspective towards Bayesian graphical models.

1 Abbreviations
BN, Bayesian Network; BNITS, Bayesian Network Integrated Testing Strategy; CI, Conditional Independence;  
DAG, Directed Acyclic Graph; FEPEs, fast and exact propagation of evidences; ID, Influence Diagram; ITS, Integrated Testing 
Strategies; MCMC, Markov Chain Monte Carlo; SCM, Structural Causal Model
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a quantitative way is at the core of Bayesian model building 
(Garthwaite et al., 2005).

The probabilistic approach to ITS seems first to be discussed 
in Jaworska et al.  (2010a), where ITS was criticized for the 
lack of a principled information processing framework able to 
incorporate all relevant information while updating uncertainty 
in a coherent way. The authors built an information-theoretic 
approach strongly rooted in probabilistic modeling, called the 
“ITS inference framework,” where Bayesian networks were 
proposed as the software tool to make the ITS inference frame-
work operational. The framework proposed in (Jaworska et 
al., 2010a) complies with the OECD (2008) recommendations 
that ITS development should be structured, consistent, trans-
parent, and hypothesis-driven. Many of the above desiderata, if 
not all, are achieved by using probabilistic analysis and reason-
ing techniques that find their methodological foundations in the 
Bayesian paradigm. From the standpoint of applications, be-
sides pursuing hypothesis-driven inferences, the approach sup-
ports the assessment of the value of collected information, with 
the possibility of calculating the expected value of information 
gain provided by alternative testing procedures.

Jaworska et al.  (2011) put the above concepts into prac-
tice by developing the “Bayesian Network Integrated Testing 
Strategy” (BNITS) to estimate skin sensitization hazard. The 
proof of concept case proved BNITS to be effective in adapt-
ing testing strategies to available evidence while combining in 
silico, in chemico, and in vitro data related to skin penetration, 
peptide reactivity, and dendritic cell activation. A key issue 
highlighted by the authors is that the search for an unlikely 
gold-substituting in vitro test or best testing strategy should 
be substituted by the optimal decision in face of the available 
experimental evidence: this approach was even successful in a 
case study where missing values (data gaps) amounted to 50% 
of database records.

The above mentioned papers (Jaworska et al.,  2010a, 
2011; Jaworska and Hoffmann, 2010b) provided a wide-rang-
ing account of the role played by probabilistic inference in ITS, 
masterly framed within the perspective of validation strategies. 
Overall, we endorse the grand vision depicted as “ITS infer-
ence framework,” because several of its nice features follow 
from methodological results proper of the Bayesian field (Rob-
ert, 1994; O’Hagan, 1994; Bernardo and Smith, 1994, for com-
prehensive accounts). Nevertheless, some issues deserve further 
refinement to unleash the full power of the Bayesian paradigm 
in ITS and to put the “Bayesian Network Integrated Testing 
Strategy” in perspective.

2  Bayesian Network Integrated Testing Strategy

The term “Bayesian Networks” (BNs) typically is used to 
indicate a class of statistical models in which the joint prob-
ability distribution of a vector made by discrete random vari-
ables is represented as a product of conditional distributions 
like p(xv⏐xpa(v)), where v is a node in the Directed Acyclic 
Graph (DAG) G defining the network of random variables and 

pa(v) is the collection of its parent nodes. Figure 2 in Jawor-
ska et al. (2010a) shows a DAG of three nodes, Carcinogenic, 
T1Ames and T2MLA, where directed edges are: Carcinogenic 
→ T1Ames, Carcinogenic → T2MLA and T1Ames → T2MLA. 
It follows that the joint distribution of those three variables is 
decomposed into the product: 

p(Carcinogenic) • p(T1Ames⏐Carcinogenic) • 
p(T2MLA⏐Carcinogenic,T1Ames)

because the required conditional distributions are straightfor-
wardly read from the DAG (Cowell et al., 1999).

A secondary meaning of BN refers to the software implemen-
tation of one model (a specific instance in the class of BNs). 
Commercial, free, and open source software exist to support 
the creation and use of BNs through a graphical user interface. 
Calculations like conditioning and marginalization are exact 
(without approximations besides those due to floating point 
computations) and fast (performed by highly optimized algo-
rithms), the so called fast and exact propagation of evidences 
(FEPEs). Current software programs to implement BNs, be-
sides FEPEs, also offer tools to infer the DAG structure and 
to estimate parameters of conditional distributions using actual 
observations, two tasks respectively called structural learning 
and parameter learning.

Probabilistic reasoning with BNs and BN learning are dis-
tinct tasks, and they require a quite different degree of statis-
tical expertise because the first one is attainable after limited 
training without leaving the toxicological context, while BN 
learning involves far more statistical skills. Latent variables, 
the imputation of missing values, and model averaging over 
several DAG structures (structural uncertainty) are issues of-
ten present in actual applications, as they are in Jaworska et 
al. (2011). Last but not least, records of a database must be ex-
changeable for being properly processed by common software 
learning procedures.

Many of the above critical issues are present in (Jaworska et 
al., 2011), so they are all but immaterial, but the many ways BN 
learning can fail deserve proper consideration. For the sake of 
brevity, just a few critical issues are highlighted here. A model 
with latent variables may suffer from partial identification, thus 
the elicitation of prior information is highly recommended in 
such cases. Nevertheless, BN software often allows the speci-
fication of limited or no dependence among model parameters 
during the elicitation of the prior distribution and learning. The 
numerical optimization of the likelihood function, or other like-
lihood-related scores, may end to suboptimal points, especially 
in the huge search spaces of DAG structures. For example, six 
variables define a set of 3.781.503 different DAGs. From this 
standpoint the statement “... the structure of the BN and the 
probabilistic relationships between variables were extracted 
directly from the data” (Jaworska et al., 2011, p. 213, right col-
umn) may be perceived as the indication of an automatic and 
blind learning procedure, a dangerous attitude if wrongly pur-
sued. Missing values and latent variables typically increase the 
uncertainty about an estimated BN, and the analysis of a dataset 
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ed by sampling from the (unnormalized) posterior distribution 
of all the unknown quantities (parameters, missing values, and 
latent variables). The degree of approximation depends mainly 
on the quality of the sampler and on the sample size; thus, it is 
largely under the control of the scientist and it may be increased 
as needed. The availability of open source software to perform 
MCMC (Spiegelhalter et al., 2003; Plummer, 2003; Stan Devel-
opment Team, 2013) makes model specification very fast, with 
templates already available for a large class of standard statisti-
cal models. In particular Winbugs (Spiegelhalter et al.,  2003) 
may take a DAG as starting input during model specification. In 
this framework, FEPEs is substituted by calculations performed 
on the predictive distribution of the next (multivariate) observa-
tion, given cases already considered during learning.

At the very end, the nice properties of probabilistic reasoning 
with Bayesian networks neither depend on the discrete nature of 
variables nor on the existence of FEPEs. The potential confu-
sion of model properties and features of the available software 
should be avoided.

3  Graphs for probabilistic and causal reasoning

Probabilistic and causal models can be represented by graphical 
models. This point is acknowledged in Jaworska et al. (2010a, 
p. 161, left column), where the authors stated that “BNs ... are 
defined as graphical models of probabilistic relationships be-
tween variables of interest ...” and a few lines after “BNs can 
be regarded as decision-support frameworks because of their 
ability to explain causal relationships and to serve as prediction 
models.” A deeper appreciation of the above two aspects is pos-
sible by establishing an explicit connection between them.

Bayesian inference defines how the expert should rationally 
change his/her beliefs in face of new evidence, whether ran-
domized controlled experiments or observational studies are 
performed, with the extreme circumstance represented by the 
design of an experiment where only prior information is ex-
ploited. Conditional Independence (CI) (Dawid, 1979) and the 
Bayes rule are pillars of the probability calculus by which in-
ferential answers are produced. Qualitative reasoning about CI 
relationships may be performed using DAGs – that is without 
dwelling on algebraic manipulations of probability distributions 
but exploiting graph separation theorems (Cowell et al., 1999). 
Here two remarks are mandatory, the first to emphasize that not 
all the CI relationships in a distribution can always  be repre-
sented by a DAG, therefore the need for more general graphical 
representations follows. The second remark is to make precise 
that in a DAG of a Bayesian network, two variables Xa and Xb 
are represented as conditionally independent given Xc if such 
relationship holds for all possible values c1,c2,…,ck of the con-
ditioning variable Xc. Thus only strong CI relationships are ex-
plicitly represented by a DAG.

A DAG has to be specified well before the numerical details 
pertaining to conditional distributions of a BN. Nevertheless, 
the representation of CI relationships do not cover all the needs 
in ITS, as clearly stated in Jaworska et al.  (2011, p. 222, left 

after single imputation (called data gaps filling in Jaworska et 
al. 2011) with estimated values may lead to overstated conclu-
sions due to the single imputation. The uncertainty about struc-
ture and parameter values of a BN plays the same role as the 
uncertainty present in the toxicological problem domain. Full 
probabilistic coherence is achieved only if all relevant sources 
of uncertainty are properly taken into account, for example, by 
avoiding the substitution of unknown quantities through the 
plug-in of their point estimates, an issue apparently neglected 
in Jaworska et al. (2011). Sensitivity analysis, as performed in 
Jaworska et al. (2011, p. 223, left column), is useful to evaluate 
performances of variants of the DAG (different networks), but 
in general it does not substitute model averaging over DAGs 
while performing probabilistic predictions.

The above discussion points towards the conclusion that 
Bayesian networks, as a probabilistic framework characterized 
by exact computation with discrete variables, is unnecessarily 
restrictive and of limited learning abilities, at least in most of 
the software currently available. Are online fast calculations re-
ally needed, as it happens in emergency departments? Is the 
discretization of continuous variables causing minor loss of 
information? Are all relevant variables natively discrete? Is 
the uncertainty about model parameters negligible? Is the net 
structure (DAG) based on strong prior information or estimated 
using very large databases? If all the answers to the above ques-
tions are “yes,” then BNs are likely to be the right tool; other-
wise, the adoption of a wider framework, often indicated as 
Bayesian graphical models (Buntine, 1994), is recommended. 
This is not a substitution but an extension of the probabilistic 
approach provided by BNs, which keeps all the key features 
highlighted in Jaworska et al. (2011, p. 222, left column), such 
as the ability to deal with uncertainty in biological knowledge, 
to combine heterogeneous pieces of evidence, and to quantify 
uncertainty about target and relationships.

Bayesian graphical models include Bayesian networks as spe-
cialized instances, those in which the factorization of the joint 
distribution is determined by a DAG and where variables are 
discrete. Parameters may be included within the DAG, if they 
are affected by uncertainty and missing values are considered at 
the same level as model parameters. There is virtually no limita-
tion on the kind of variables the scientist may use to properly 
represent his/her beliefs, collected observations, and specific 
features of a problem domain. FEPEs often is no longer pos-
sible in general, but conditioning and marginalization may still 
be performed through approximated computations. In Jaworska 
et al. (2010a, p. 164, left column), the authors made an ambigu-
ous statement because Gaussian Bayesian networks in which all 
variables are normal admit FEPEs. Similarly, mixed Bayesian 
networks made by discrete and Gaussian variables admit FEPEs 
if Gaussian variables are never parents of discrete variables 
(Cowell et al., 1999).

The generality of Bayesian graphical models comes at the 
price of a higher computational cost. The royal road to Bayesian 
computation is Monte Carlo simulation, possibly Markov Chain 
Monte Carlo (MCMC) (Brooks, 1998). The typically difficult 
integrals required by the application of the Bayes rule are avoid-
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modularity-stability, that is, the property that intervention pro-
duces local changes in manipulated variables, thus leaving all 
other variables and relationships unchanged. Using the words 
of Pearl (Pearl, 2009, p. 118) “The new ingredient that causal 
analysis brings to this tradition is the necessity of obtaining ex-
plicit judgments, not about properties of the distributions but 
about the invariants of a distribution...”

The causal interpretation of a DAG or ID has to be justified 
by substantive reasons, especially if actual intervention studies 
are not feasible and the graph structure is inferred using ob-
servational data. Here the context plays a major role because a 
causal model is meaningless without a proper defining context. 
The context includes things like the specification of the proto-
col-equipment involved in the intervention and the collection of 
considered variables, those appearing as nodes of a DAG. This 
is not a trivial choice, because, for example, the collection of 
considered variables determines the model granularity, that is 
the level of detail under consideration, and thus two DAGs at 
different levels of model granularity may show two different 
sets of direct causes for the same variable. A detailed discus-
sion including covariates in observational studies is provided 
by Pearl (2000).

4  Conclusions

For reasons considered in the above sections, the operational 
framework indicated as Bayesian Network Integrated Testing 
Strategy can and should be broadened to include more general 
Bayesian graphical models. Most important, DAGs, IDs, and 
other graphical representations enable toxicologists to reason on 
important causal and probabilistic model features without resort-
ing to specific model parameterizations or numerical details that 
typically require extensive statistical training. The intent was 
not to suggest that there is something wrong with BNs, as we 
applied BNs in fields as diverse as forensic science (Corradi et 
al., 2003) and breast cancer biomarkers (Stefanini et al., 2009). 
By recognizing DAGs and BNs as distinct tools, it becomes 
natural to consider other useful graphical representations and to 
emphasize that DAGs are important tools in and of themselves 
(Luciani and Stefanini, 2012, for an example in medical knowl-
edge engineering). Here, it was not possible to cover Bayesian 
graphical models in full depth, and Bayesian structural learning 
under sparse prior information on structure seems one among 
the most important exclusions (Stefanini, 2012).

The hope is to have provided an expanded perspective on 
BNITS to motivate many toxicologists to seriously consider 
Bayesian graphical models as a major methodological oppor-
tunity to strengthen ITS even further towards the fulfillment of 
Russell and Burch’s 3Rs: Replace, Reduce, and Refine.
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column), where the authors expounded that “Determining the 
causal structure is a key for mechanistic interpretation capabil-
ity of ITS”; in Jaworska et al. (2011, p. 214, top left column), 
the authors stated that “... the value of using the network is far 
more than a prediction framework. The network represents key 
steps of the skin sensitization process ...” The general theory of 
causation based on the Structural Causal Model (SCM) is due to 
Pearl (Pearl, 2009, for an introduction), who developed a math-
ematical foundation in the analysis of causes and counterfactu-
als. Narrative summaries of causal knowledge are substituted 
by DAGs and other diagrams that are useful to communicate 
causal assumptions, to decide if they are sufficient for obtain-
ing estimates of the desired target quantities, to derive closed-
form expression of such quantities and to suggest the observa-
tions that, if collected, would make target quantities estimable 
(Pearl, 2000, 2009).

Over and above processing uncertainty/information in a co-
herent way, causal relationships are modeled to predict a system 
under external intervention that is used to calculate the prob-
ability distribution of some random variables that would result 
if some other variables were forced to take certain values. This 
kind of information typically is obtained by randomized con-
trolled experiments, when manipulation of a system or process 
is feasible in controlled conditions. Nevertheless, using SCMs 
it is, in principle, possible to evaluate the effect of interventions 
on systems or processes that were passively observed, with-
out manipulation. Pearl’s SCM does not put constraints on the 
nature of random variables, and it does not force the scientist 
to think in terms of parameterized distributions, either on dis-
crete variables or not. SCM embeds deterministic relationships, 
which is an advantage if causal relationships among variables 
are natively characterized in this way.

Other approaches to causal modeling under active develop-
ment and use include Rubin’s Potential Outcomes (PO), which 
extends the framework of randomized experiments proposed by 
Fisher and Neyman (Mealli et al.,  2011, for an introduction). 
A toxicologist might prefer SCM because the PO framework 
does not natively exploit graphs to represent assumptions and 
because it forces the restructuring of a causal inference problem 
as a problem of missing data. Pearl stated that SCM is a general 
theory that has PO as a specialized instance and that the two 
approaches lead to the same calculations. It is worthy of special 
attention that the framework proposed by Dawid (2002), where 
DAGs are augmented by other types of nodes to represent pa-
rameters, decision strategies, and utilities, without introducing 
concepts outside those already standard in the probabilistic 
framework. In particular, Influence Diagrams (ID) are proposed 
as graphical models with “... just the right degree of expressive 
power” (Dawid, 2002) to handle the estimation of effects due to 
the considered causes.

Causal relationships are top quality information and are ab-
solutely relevant for a toxicologist because the main interest fo-
cuses on what happens to a system (a cell, tissue, or organism) 
subject to intervention (manipulation-perturbation), for exam-
ple after applying a given cosmetic to the skin. The point of 
contact between pure probabilistic and causal modeling is DAG 
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