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1  Introduction 

There is a pressing need for non-animal test methods, driven by 
the forthcoming ban on animal testing for cosmetic ingredients 
in Europe, the large number of tests potentially required to fill 
in data gaps for the REACH legislation, and animal welfare 
concerns. Skin sensitization was identified as the hazard end-
point for which most animal tests would need to be conducted 
and which required a large number of animals (van der Jagt et 
al., 2004). 

The individual steps involved in the skin sensitization proc-
ess are illustrated in File A (Supplementary Data at www.altex-
edition.org). In short, the chemical must penetrate the skin to 
react with endogenous proteins, either directly or after activa-
tion through enzymatic or oxidative processes. Next, epidermal 
Langerhans cells (LC) and immature dendritic cells (DC) take 
up and process haptenated proteins. LC cells mature into anti-
gen presenting cells, which after migration to the lymph nodes 
present haptenized protein fragments to T-cells. 

Many research groups are working on the development of 
alternative tests for skin sensitization (Vandebriel and van Lov-
eren, 2010; Aeby et al., 2010). As a chemical’s reactivity to-
wards proteins is deemed a key determining factor in its ability 
to act as a skin sensitizer, a lot of research has focused on in 
chemico measurements of reactivity with model nucleophiles. 

Various nucleophiles are used and experiments are either done 
by direct peptide reactivity measurements (Gerberick et al., 
2008), semi-kinetic (Aptula et al., 2006) or more complex ki-
netics (Aleksic et al., 2009). In addition, the induction of an 
antioxidant response element (ARE) dependent gene activity 
in a recombinant cell line (Natsch et al., 2008) can be used to 
indirectly characterize reactivity. To further elucidate the skin 
sensitization induction process, various measures of dendritic 
cell activation are considered. Recent advances in the in vitro 
generation of immature dendritic cells and the availability of 
cell line surrogates with various DC-like characteristics has led 
to the development of in vitro tests based on the measurement 
of various cell surface markers or secretion of cytokines modu-
lated upon exposure to chemicals (Aeby et al., 2010; Ryan et al., 
2005; Lambrechts et al., 2010). Numerous attempts were also 
made to predict in silico the skin sensitization potential in vivo 
(Roberts et al., 2007; Patlewicz et al., 2007, 2008; Patlewicz and 
Worth, 2008; Karlberg et al., 2008).

 Many authors share the opinion that a single test method can-
not replace the in vivo skin sensitization animal testing; however, 
it remains open which tests are actually needed. To address this 
point of view, several data integration frameworks have been 
developed. Jowsey et al. (2006) proposed a conceptual scoring 
system based on Structure Activity Relationships (SAR), pen-
etration, peptide reactivity, and dendritic and T-cell activation 
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mechanistic understanding of the underlying steps involved in 
skin sensitization induction, the availability of several non-an-
imal tests characterizing these steps, as well as the overall im-
portance of skin sensitization in the context of safety evaluation 
(Basketter and Kimber, 2009). To this end, we developed an ITS 
for skin sensitization potential with the specific goal of estimat-
ing potency in the mouse LLNA (Local Lymph Node Assay). 

2  Materials and methods

2.1  Dataset
Representative assays for each of the steps in the induction of 
skin sensitization (File A in supplementary data; www.altex-edi-
tion.org) except the T-cell recognition step, for which no assay 
data are available, were chosen as inputs to the integrated testing 
strategy. The data set consisted of responses of 142 chemicals in 
the following tests: epidermal bioavailability data, peptide reac-
tivity assays, dendritic cell activation, and TIMES predictions. 
The complete data set, together with LLNA data, is available in 
File B (supplementary data; www.altex-edition.org). 

Information target: Murine Local Lymph Node Assay
LLNA data (OECD testing guideline 429, http://www.oecd-
ilibrary.org/content/book/9789264071100-en) were compiled 
from multiple sources, which included the published literature 
(Gerberick et al., 2005; Kern et al., 2010) and previously un-
published data from several laboratories. The chemicals were 
chosen based on quality of LLNA studies and availability of 
data. The data comprise a variety of chemical classes, including 
fragrances, preservatives, dyes, dye-precursors, halogenated al-
kanes, and solvents, and cover a wide range of physico-chemical 
properties. Out of the 142 chemicals, 37 were non-sensitizers 
and 105 were sensitizers. The four-way classification scheme – 
non-sensitizing (NS), weak (W), moderate (M), and strong (S) 
(which also included extreme sensitizers) (Kimber et al., 2003) 
– was used to characterize potency in the LLNA.

Epidermal bioavailability
Finite and infinite dose variables were considered. Finite dose-
related variables were calculated using a transdermal transport 
model (Kasting et al., 2008). During simulation of a single 
exposure, free and total maximum mid-epidermal concentra-
tions, Cfree and Cmax (µmol/cm3), as well as % systemically 
absorbed, were calculated. The infinite dose related variables, 
Kow and Kp (permeability coefficient), were estimated using 
KOWWIN and EPIWIN (v.1.6.7) software. Bioavailability data 
were generated for two exposures (V1=1 mg/cm2), V2=10 mg/
cm2) that cover a range of chemical exposures relevant to typi-
cal consumer products.

Direct Peptide Reactivity Assay (DPRA)
Peptide reactivity data were generated using a method to meas-
ure reactivity of a test chemical with model hepta-peptides con-
taining lysine (Lys) or cysteine (Cys) (Gerberick et al., 2004). 
Peptide reactivity is reported as a percent depletion based on the 
decrease in free peptide concentration in the sample.

to obtain a prediction of skin sensitization potential. Following 
Jowsey et al., Maxwell and Mackay (2008) developed a mecha-
nistic model of skin allergy using a systems biology approach. 
While the model provided a valuable mechanistic hypothesis, 
its use in risk assessment is limited due to its need for a large 
amount of experimental data. Natsch et al. (2009) combined two 
in vitro measurements with in silico predictions into a yes/no 
classification model. Recently, Nukada et al. (2010) combined 
data from a dendritic cell activation assay with peptide reactiv-
ity data using a rule-based scoring system. 

Basketter and Kimber (2009) reviewed the current state of 
the art of in vitro alternatives for skin sensitization and updated 
the Jowsey et al. (2006) proposal. In parallel, several groups are 
pursuing a different route to explain skin sensitization effects in 
vivo (e.g., Roberts and Patlewicz, 2009). Roberts et al. (2008) 
explore the concept of a molecular initiating event that is repre-
sented by covalent chemical binding with “protein” and focus 
on interpretation of this step to explain sensitization, consider-
ing cell-based assays only for stages downstream of the reactiv-
ity step. There is no consensus on the relative merits of different 
proposed frameworks. 

A data integration framework is already a goal on its own 
and useful in risk assessment (Maxwell and Mackay, 2008). 
In this paper we are pursuing the closely related, but broader 
in scope, goal of constructing an Integrated Testing Strategy 
(ITS). ITS requires developing a data integration framework al-
lowing for the synthesis of information in a cumulative manner 
and guiding testing in such a way that information gain in a 
testing sequence is maximized. In narrative terms, ITS can be 
described as combinations of tests in a battery covering relevant 
mechanistic steps and organized in a logical, hypothesis-driven 
decision scheme, which is required to make efficient use of 
generated data and to gain a comprehensive information basis 
for making decisions regarding hazard or risk (Jaworska and 
Hoffmann, 2010). The importance the information target for-
mulation is discussed in Jaworska and Hoffmann (2010). ITS 
for several human health and environmental safety endpoints 
were outlined in the REACH Technical Guidance Document 
(TGD). Grindon et al. (2007) further customized the REACH 
ITS for skin sensitization potential. Analysis of existing ITS ap-
proaches towards the objective to optimize chemical testing can 
be found in Jaworska et al. (2010). In short, these authors identi-
fied the following shortcomings: 1) The use of flow charts as the 
ITS’ underlying structure may lead to inconsistent decisions; 2) 
There is no underlying methodology to derive consistent and 
transparent inferences about the information target (e.g., a well-
defined toxicological endpoint serving to address hazard), tak-
ing into account all available evidence and its interdependence; 
3) Moreover, there is no objective guidance, or only purely 
expert-driven guidance, regarding the choice of the subsequent 
tests that would maximize information gain in predicting the 
information target. 

The aim of the study was to put the previously developed con-
cepts on data integration and ITS (Jaworska et al., 2010; Jawor-
ska and Hoffmann, 2010), into practice and evaluate their utility 
in a proof-of-concept case. For this test case we chose skin sen-
sitization potential as the ITS target because of a relatively good 
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edition.org). Next, the structure of the BN and the probabilistic 
relationships between the variables were extracted directly from 
the data. The network development consisted of the following 
steps: 1) Transforming the training set into discrete variables; 
2) Latent variables structure learning; 3) Missing data imputa-
tion; 4) Final model structure learning; 5) Elucidation of the 
conditional probabilities, i.e. parameter learning. The network 
was constructed using the BayesiaLab software (www.bayesia.
com). 

BN Structure learning’s objective is to build a graph repre-
senting dependence between data, achieving the best fit of data 
with minimal structural complexity of the net. In the BN lan-
guage, the variable for which we develop a hypothesis (LLNA 
potency, in this study) is a target variable, while the variables 
providing evidence (all three of the above listed types of tests 
with 12 readouts) are referred to as manifest variables. In addi-
tion to manifest variables, the latent variables Bioavailability, 
Dendritic cells and Reactivity were introduced to the network 
structure. The latent variables are not observable and are con-
ceptual. They allow the communication of summary results 
obtained from the network, simplifying the structure of the 
network by reducing the number of arcs between conditionally 
dependent variables as well as simplifying numerical computa-
tions for the joint probabilities. 

Removing chemicals with incomplete records would leave 
only 45 chemicals for which the full record is available. Hence, 
97 chemicals would be ignored and not analyzed further and 
valuable information would be lost. Skipping such a big por-
tion of data may result in biased estimates, especially in cases 
when missing data contain information considerably different 
from the rest of the dataset. Hence, to maximize use of available 
information, the data gaps in the training set were filled in by 
imputation. Details of each BN construction step are described 
in File C (supplementary data; www.altex-edition.org). 

The performance of the network in terms of classification 
performance was evaluated on the test set of 12 chemicals 
provided in the Supplementary Data. However, we would like 

Cell-based ARE assay
ARE data were taken from Natsch et al. (2009). AREc32 is a sta-
ble cell line derived from the human MCF7 breast carcinoma cell 
line (Wang et al., 2006). The average Imax (maximal induction of 
gene activity reported as fold-induction vs. untreated cells) and 
the average concentration inducing 1.5-fold enhanced gene activ-
ity (EC 1.5) are determined. For the analyses in this paper EC 1.5 
values were used and reported as ARE luciferase (Luc). (Data 
reported as >1000 are listed with 2000 µM in our dataset.)

Dendritic cell activation
The data were generated using the U937 Activation Test, an 
in vitro cell-based skin sensitization screening test which uses 
the human myeloid cell line U937 (Python et al., 2007). Cell 
surface CD86 expression and IL-8 secretion are measured as 
activation markers. 

TIMES
The TIMES software (V.2.25.7) (Dimitrov et al., 2005) was run 
to predict the skin sensitization potential. Predictions based on 
the parent molecule (TIMES-P), as well as considering potential 
skin metabolism (TIMES-M), were investigated in the study.

Out of the 142 x12 records, 14.2% were missing. Specifically, 
only 70 chemicals had dendritic cell activation data (i.e. CD86 
and IL-8 data), thus 72*2/284=51% records were missing. For 
Reactivity data 93; for Luc 75, for Cys 8 and for Lys 10 records 
were missing. There were no missing records for Bioavailability 
as all data were generated in silico. Only 45 out of 142 chemi-
cals had complete data records for all tests. The abbreviated in-
put variables’ names and their units are presented in Table 1.

2.2  Bayesian Network construction 
Prior to the network construction, the tests considered as inputs 
were mapped onto a mechanistic scheme of the skin sensitiza-
tion induction process as described in Basketter and Kimber 
(2009) and described in File A (supplementary data; www.altex-

Tab. 1: Tests used in BN ITS as input variables and the abbreviations used in the text and figures

Manifest variables	 Unit	 Abbreviation 

IL-8 activation 	 µM	 IL-8
CD86 expression	 µM	 CD86
Free epidermal concentration	 µmol/cm3	 Cfree
Molecular weight	 g/mol	 MW
Octanol/water coefficient (log)	 – 	 Kow
Mid epidermal concentration	 µmol/cm3	 Epi conc
Permeation coefficient Kp	 cm/hr	 Kp 
Systemically absorbed dose	 %	 Dose abs
TIMES prediction considering parent only/metabolites	 –	 TIMES-P / TIMES-M
Lysine reactivity	 %	 Lysine (Lys)
Cysteine reactivity	 %	 Cysteine (Cys)
ARE Luciferase activity	 µM	 Luciferase (Luc)
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3  Results

3.1  Bayesian Network construction
Input data transformation to discrete values
The histograms representing the discretized training data set ac-
cording to the process described in the Supplementary Data are 
shown in Figure 1. 

Elucidation of the latent variables
The unsupervised clustering algorithm identified 2 clusters that 
were biologically meaningful. The first cluster contained variables 
associated with the Bioavailability variables (1st latent variable): 
MW, Epi conc., Cfree, Kp and Kow. The second cluster contained 
variables associated with the Reactivity variables (2nd latent vari-
able): Lys, Cys, Luc and TIMES-M or TIMES-P. For CD86 and 
IL-8 variables no meaningful clustering was found. Failing of the 
automatic clustering of these variables is a result of large data 
gaps in the original data set. Aiming for the mechanistic interpre-
tation of the latent variables, we manually added Dose abs to the 
bioavailability cluster, while the 3rd cluster was manually created 
with Dendritic cells data (3rd latent variable): CD86 and IL-8. 

The structure learning algorithm identified local networks for 
each latent variable in the form of Naïve Bayes (Fig. 2). A joint 
probability distribution was calculated for each cluster to repre-
sent a latent variable. 

Missing data imputation
Chemicals with no missing data were selected for the Bioavail-
ability and Dendritic cells clusters. For the Reactivity cluster the 
filtering was done considering only Cys and Lys, and not Luc, 

to emphasise that the value of using the network is far more 
than a prediction framework. The network represents key 
steps of the skin sensitization process and it can be queried 
to find a variety of options to develop a mechanistically inter-
pretable testing strategy. Finding equivalent tests, assessing 
the value of adding an additional test when a related one is 
known, and demonstrating the evolution of the testing strat-
egy based on the amounting evidence are useful features of 
the network approach.

2.3  Methodology to guide testing
Value of Information (VoI) measures and one-step look-ahead 
hypothesis were used as the methodology to guide testing. The 
one-step look-ahead hypothesis calculates the VoI from all pos-
sible individual information sources and chooses the one for 
which the information gain about the target variable is maxi-
mized. The foundation of this reasoning is the analysis of the 
changes in the probability distribution of the information target 
given a set of existing data versus generation of new data. In this 
study, we use relative mutual information MI (X, Y) between 
variable X and Y to measure VoI. MI measures the amount of 
uncertainty in Y,  which is removed by knowing X . This cor-
roborates the intuitive meaning of mutual information as the 
amount of information (that is, reduction in uncertainty) that 
knowing X variable provides about the Y. The relativity refers 
to % of entropy of the parent node Y, H(Y), reduced by knowl-
edge of X. Thus, relative MI amounts to MI(X,Y)/H(Y) and is 
expressed in %. In the remainder of the paper relative MI is ab-
breviated as MI. For more technical information, see File C in 
supplementary data; www.altex-edition.org.

Fig. 1: Histograms representing the 
discretized training data set. 
This is the initial state, from which 
all further network analyses are 
conducted.
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because there were no chemicals containing full records. Based 
on the resulting local data sets, all missing values were filled us-
ing the EM algorithm (Meng and Rubin, 1993) that allowed for 
an amended but complete new training set. Now the data were 
prepared for final model structure and parameters learning.

The final Bayesian Network structure
The network is able to follow the skin sensitization process by 
choosing a test sequence representing individual steps in the 
process. The BN ITS structure represents a Hierarchical Naïve 
Bayes classifier (Langseth and Nielsen, 2006) except that the 
TIMES node is connected to both Reactivity cluster and di-
rectly to the hypothesis variable LLNA (Fig. 3). It represents 
advancement over a popular Naïve Bayes (NB) classifier that 
assumes independence among manifest variables and ignores 
dependence between tests that translates to information dupli-
cation. HBN models have been shown to improve classifica-
tion accuracy over NB by introducing latent variables to ac-
count for conditional dependence between manifest variables 
(Langseth and Nielsen, 2006), as well as for data heterogeneity 
between the clusters representing latent variables (Demichelis 
et al., 2006).

3.2  Value of Information analysis
Test Ranking based on Mutual Information (MI) with LLNA
The global ranking ordered all tests regardless of the LLNA po-
tency group or state. The local ranking information ranked the 
tests differentiating possible LLNA states and can be used to ad-
vise on the next test to further refine a particular hypothesis, for 
example, that a chemical is a weak sensitizer. We can evaluate 
which test is the most informative globally as a starting point and 
afterwards refine the hypothesis suggested by local ranking. 

From the global view the Reactivity latent variable was the 
most informative and contained more information explaining 
LLNA activity than the Bioavailability and the Dendritic cells 
variables together. On the level of latent variables, we observed 
that inclusion of the TIMES-M model in the network improved 
the mutual information of the Reactivity latent variable by 35%. 
Presence of the TIMES-M model corrected the joint probabil-

ity distribution of the Reactivity latent variable so it can better 
predict LLNA potency in the global and per LLNA state anal-
ysis (except for weak sensitizers). From the local ranking we 
observed different patterns of importance for different potency 
classes (Tab. 2). Interestingly, the Bioavailability profoundly 
dominated the ability to explain weak sensitizers. Dendritic 
cells were always the least informative latent variable except in 
the case of strong sensitizers, for which they came in as second 
most informative (latent) variable. We emphasize that results for 

Fig. 2: Latent variables:  
a) Bioavailability; b) Reactivity;  
c) Dendritic cells local networks 
Each arc is tagged with an MI value 
between the nodes it connects.

Fig. 3: Final BN ITS for LLNA potency 
To calculate LLNA potency probability distribution one needs to 
compute Bioavailability, Reactivity, Dendritic cells and TIMES 
probability distributions. Every latent variable explains cumulative 
influence of the manifest variables attached to it with respect to 
the LLNA node. Each arc is tagged with an MI value between the 
nodes it connects.
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Tab. 2: Mutual Information (MI) between latent variables and LLNA both global and categorized using a 4-way classification 
scheme: non-sensitizing (NS), weak (W), moderate (M), and strong (which also included extreme sensitizers) (S) 

With TIMES-M
Global		  NS		  W		  M		  S
	 MI		  MI		  MI		  MI		  MI
Reactivity	 0.42	 Reactivity	 0.36	 Bioavailability	 0.13	 Reactivity	 0.08	 Reactivity	 0.11
Bioavailability	 0.21	 Bioavailability	 0.10	 Reactivity	 0.00	 Bioavailability	 0.05	 Dendritic cells	 0.03
Dendritic cells	 0.06	 Dendritic cells	 0.05	 Dendritic cells	 0.00	 Dendritic cells	 0.01	 Bioavailability	 0.01

Without TIMES-M
Global	 NS		  W		  M		  S		   
	 MI		  MI		  MI		  MI		  MI
Reactivity	 0.31	 Reactivity	 0.26	 Reactivity	 0.15	 Reactivity	 0.06	 Reactivity	 0.07
Bioavailability	 0.23	 Bioavailability	 0.10	 Bioavailability	 0.00	 Bioavailability	 0.04	 Dendritic cells	 0.03
Dendritic cells	 0.06	 Dendritic cells	 0.05	 Dendritic cells	 0.00	 Dendritic cells	 0.01	 Bioavailability	 0.01

Tab. 3: Mutual Information (MI) between manifest variables and LLNA both global and categorized using a 4-way classification 
scheme: non-sensitizing (NS), weak (W), moderate (M), and strong (which also included extreme sensitizers) (S) 

With TIMES-M
Global		  NS		  W		  M		  S	
TIMES-M	 0.61	 TIMES-M	 0.39	 TIMES-M	 0.20	 TIMES-M	 0.14	 TIMES-M	 0.13
Cysteine	 0.31	 Cysteine	 0.27	 Cfree	 0.10	 Cysteine	 0.06	 Cysteine	 0.08
Luciferase	 0.29	 Luciferase	 0.25	 Dose abs	 0.06	 Luciferase	 0.06	 Luciferase	 0.07
Cfree	 0.16	 Lysine	 0.12	 Kow	 0.06	 Cfree	 0.03	 Lysine	 0.03
Lysine	 0.13	 Cfree	 0.08	 MW	 0.04	 Lysine	 0.02	 CD86	 0.02
Dose abs	 0.08	 Dose abs	 0.04	 Kp	 0.02	 Kow	 0.02	 IL-8	 0.01
Kow	 0.06	 CD86	 0.03	 Epi conc	 0.01	 Epi conc	 0.01	 Cfree	 0.01
CD86	 0.04	 Epi conc	 0.03	 Cysteine	 0.00	 CD86	 0.01	 Dose abs	 0.00
MW	 0.04	 IL-8	 0.02	 Luciferase	 0.00	 Dose abs	 0.01	 Kow	 0.00
Epi conc	 0.04	 Kow	 0.01	 Lysine	 0.00	 MW	 0.01	 Epi conc	 0.00
IL-8	 0.03	 MW	 0.01	 CD86	 0.00	 IL-8	 0.00	 MW	 0.00
Kp	 0.02	 Kp	 0.00	 IL-8	 0.00	 Kp	 0.00	 Kp	 0.00

Without TIMES-M
Global		  NS		  W		  M		  S	
Cysteine	 0.26	 Cysteine	 0.22	 Cfree	 0.12	 Cysteine	 0.06	 Cysteine	 0.06
Luciferase	 0.24	 Luciferase	 0.21	 Dose abs	 0.07	 Luciferase	 0.05	 Luciferase	 0.06
Cfree	 0.18	 Cfree	 0.08	 Kow	 0.06	 Cfree	 0.03	 CD86	 0.02
Dose abs	 0.09	 Lysine	 0.07	 MW	 0.04	 Kow	 0.02	 Lysine	 0.02
Lysine	 0.08	 Dose abs	 0.04	 Kp	 0.02	 Lysine	 0.01	 IL-8	 0.01
Kow	 0.06	 CD86	 0.03	 Epi conc	 0.01	 Epi conc	 0.01	 Cfree	 0.00
CD86	 0.04	 Epi conc	 0.03	 Cysteine	 0.00	 Dose abs	 0.01	 Dose abs	 0.00
MW	 0.04	 IL-8	 0.02	 Luciferase	 0.00	 CD86	 0.01	 Kow	 0.00
Epi conc	 0.04	 Kow	 0.01	 Lysine	 0.00	 MW	 0.01	 MW	 0.00
IL-8	 0.03	 MW	 0.01	 CD86	 0.00	 Kp	 0.00	 Epi conc	 0.00
Kp	 0.02	 Kp	 0.00	 IL-8	 0.00	 IL-8	 0.00	 Kp	 0.00
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LLNA both globally and per state. This means that based on 
the available evidence, both tests can be used interchange-
ably to learn about the LLNA potency. In addition, generating 
evidence on both tests did not advance our knowledge about 
LLNA potency, e.g., MI (LLNA, Cys or Luc) = MI (LLNA, 
Cys and Luc) (data not shown). Given that this conclusion was 
reached with many data gaps for Luc, confirmation with more 
data is needed.

Value of adding Lys test if Cys result is known
In BN one can study not only the value of adding additional evi-
dence, as discussed above, but also how an additional test result 
changes the hypothesis about the target distribution by directly 
observing changes in the posterior distribution. We illustrated 
this by studying LLNA posterior distribution changes after com-
bining evidence from Cys reactivity with Lys reactivity. First,  
the impact of providing the network Cys results was examined. 
According to the discretization (Fig. 2) 3 ranges, i.e., C1 ≤21%, 
C2 [21-70]%, C3 >71% depletion in the reactivity assay, covered 
all possible Cys results. If result C1 was obtained, the chance 
that the evaluated chemical is a non-sensitizer increased from 
26% to 56% (Fig. 4), while it decreased to 15% to be a moder-
ate, and to 7% to be a strong sensitizer. Note that the chance of 
obtaining a Lys ≤13% depletion increased to 94%, indicating a 
strong dependence between C1 and L1 results. 

Subsequently information on Lys was added. Three simu-
lations were carried out, one for each possible state to study 
differences in resulting distributions for LLNA (Fig. 5). If Lys 
was L1 (≤13%) then very little further refinement was obtained 
regarding the LLNA potency. The probability of the hypothesis 
that a chemical is a non-sensitizer changes from 56% to 59%. 
This was a consequence of a high conditional dependence be-
tween Cys=C1 and Lys=L1, Pr(L1|C1)=0.93. However if the re-
sult for Lys was L2 [13-29% depletion] or L3 >29% depletion), 
the LLNA distributions shifted from non-sensitizer centered to-
wards moderate (35% for both L2 and L3) or strong sensitizer 
(26% for L2 and 27% for L3). 

Dendritic cells may be biased as a result of so many data gaps 
and need confirmation with more data.

Next, we analyzed manifest variables MIs with LLNA both 
globally and per state (Tab. 3). Based on MI values, all types 
of variables carried more VoI for NS class than for other class-
es. We studied the rankings with and without TIMES-M in the 
network. Inclusion of TIMES-M increased the MIs between all 
manifest variables belonging to the Reactivity in the network, 
meaning that the TIMES-M model corrected the joint probabil-
ity distribution of Cys, Lys and Luc. The MI index and high 
rankings of TIMES-M compared to other Reactivity variables 
are inflated because of the 72% overlap between chemicals in 
the TIMES training set and the training set used in this study. 
In other words TIMES already had “seen” 72% of LLNA data 
and learned rules from these data. In contrast, the experimental 
methods are entirely unbiased. As a consequence, comparison 
of VoI carried by TIMES with VoI of experimental data is not 
fair based only on these values. To address this, we investigated 
performance of variants of the network with and without TIMES 
later in the paper. 

Among Bioavailability manifest variables, the most informa-
tive variable was the Cfree and the next was Dose abs. However, 
due to empirical formulation of partitioning in the trans-dermal 
transport model equations (Kasting et al., 2008), it is prema-
ture to ascribe Cfree as the key bioavailability-related driver for 
skin sensitization. Nevertheless, both Cfree and Dose abs car-
ried more information than Kow and MW and demonstrated the 
value of including finite dose exposure calculations in BN ITS 
for LLNA potency assessment.

Test may carry equivalent information towards explaining  
the target
MI can be used to determine whether two different tests car-
ry equivalent information towards explaining the target and 
whether there is added value to conducting a second test when 
one of the tests is available. We illustrated this with the pep-
tide reactivity tests. Cys and Luc had very similar MI with 

Fig. 4: LLNA probability 
distributions a) before evidence for 
Cys was provided; b) after evidence 
for Cys equal C1 (i.e. we are 100% 
sure that it was C1) was provided

Fig. 5: LLNA probability distribution 
after adding Lys L1 (a), L2 (b), L3 (c) 
given that Cys was C1 ≤21%



Jaworska et al.

Altex 28, 3/11218

tive and that different parts of the network can be interrogated 
on the fly as the whole network will update itself. By this, we 
mean that all the probability distributions for all the nodes of the 
network, not only the target node, are updated.

Toxicity signatures
We generated toxicity signatures for each LLNA state. A tox-
icity signature is a fingerprint consisting of manifest variables 
with values that maximize probability for a particular LLNA 
state (Tab. 4).

3.3  BN ITS classification performance
BN ITS classification performance was assessed via AUC of 
ROC (Area Under the Curve of Receiver Operating Charac-
teristic) curves (Tab. 5). Due to the fact that we have a four-
way classification model, the AUC indices larger than 25% 
are better than a random guess. Three variants of the BN ITS 
were examined: a) with TIMES-P; b) with TIMES-M; and c) 
without TIMES. These comparisons were completed for two 
exposures: V1 and V2. In all cases, while the overall struc-
ture of the network was the same, changes in the performance 
were noted. The networks with and without TIMES performed 
similarly well when predicting NS class. The network without 
TIMES, however, performed worse for W, M, and S classes. 
This suggests that TIMES and experimental reactivity data are 
about equivalent to predict NS class. This also suggests that 
TIMES is a very valuable component of ITS for predictions of 

If the result for Cys was larger than 21%, i.e., either the C2 
or C3 state was observed, the results were similar to those for 
C1. The C2 result alone yielded NS=3%, W=22%, M=42%, 
S=34%, while the C3 result alone yielded NS= 4%, W=22%, 
M=41%, S=33%, respectively. Further, changes of the LLNA 
distribution after evidence on Lys was added are smaller than 
2% for all the states. The above analyses suggest no value in 
conducting the Lys test if Cys reactivity is greater than 21%. 
However, there is a value in conducting the Lys test when Cys 
reactivity is smaller than 21%. Out of 142 chemicals in the 
training set, 57 have Cys reactivity values <21%, the majority 
being non-sensitizers.

Testing strategy depends on the initial information  
and changes based on incoming new information in an  
adaptive manner
Frequently a full record for the assessed chemical is not avail-
able. In a BN setting, an initial hypothesis can always be gener-
ated based on incomplete evidence. Testing should start with a 
test having the highest MI with the target among all available 
tests. After obtaining the result from one test (or several, if one 
chooses so) the hypothesis about the target can be revised and 
the calculation of MI repeated. Figures 6, 7, and 8 illustrate a se-
quential testing strategy for 2,5-Toluenediamine sulfate (PTD) 
guided by MI. Figures 6, 7, and 8 are integral to understanding 
how the network works and its potential to alleviate unneces-
sary animal testing. They aim to show that the process is itera-

Fig. 6: Adaptive test strategy for 2,5-Toluenediamine 
sulfate (PTD) guided by MI – step 1 
In the first step guided by Table 2 we provided information 
from in silico test TIMES-M. Posteriors for LLNA, manifest 
variables and MI values were updated and guide to get Cys 
data: (a) MIs in BN ITS after step 1; (b) LLNA and manifest 
posterior distributions after step 1. 

a b
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Fig. 8: Adaptive test strategy for 2,5-Toluenediamine 
sulfate (PTD) guided by MI – step 3
Cfree data was provided and subsequently LLNA and remain-
ing manifest variables posteriors, as well as MIs were updated 
again and guide to provide Epi conc: (a) MIs in BN ITS after 
step 3; b) LLNA and manifest posteriors after step 3. However, 
after consulting Table 3 we see that Epi conc will have no 
influence on LLNA posterior. Thus we stop and conclude that 
the chemical is either moderate (48%) or a strong sensitizer 
(50%). To further refine this hypothesis, other evidence then 
considered tests in this ITS, has to be provided. 

Fig. 7: Adaptive test strategy for 2,5-Toluenediamine 
sulfate (PTD) guided by MI – step 2 
Cysteine data was provided and subsequently LLNA and 
remaining manifest variables posteriors, and MIs were 
updated again and guide to provide Cfree: (a) MIs in BN ITS 
after step 2; (b) LLNA and manifest posterior distributions 
after step 2. 

a b

a

a

b

b
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tween non-sensitizers and sensitizers suffices. Our network can 
easily be adopted for this purpose by pooling weak, moderate, 
and strong into one class: sensitizers. The advantage of pool-
ing together at the decision-making stage and not the modeling 
stage allows for a more precise identification of non-sensitizers. 
Results suggested that TIMES-M performs slightly better in this 
setup (Tab. 6). 

3.5  BN ITS performance on the test set
We assessed network performance on a small set of 12 chemi-
cals. They represent different chemical classes, e.g., haloal-
kanes, amines, and acids, overlapping with the training set. 
However, it is a challenging test set to predict, as some of them 
are prohaptens (e.g., para-toluene diamine (PTD), aniline) or 
have unclear reaction mechanisms. For the test chemicals only 
TIMES, Lys, Cys and Bioavailability-related inputs were avail-
able, except for PTD, for which Dendritic cell results were also 
available. Performance of the networks with TIMES-M, TIMES-
P and without TIMES was compared recognizing that the vari-
ability in EC3 is in the range 0.5 to 2 times (0.5EC3 to 2EC3) 
and therefore potency class assignment can be off by one class  
(Tab. 7) due to test variability. Therefore, we considered as 
correct exact correct predictions, defined as a match between 

individual W, M, and S classes for which experimental reactiv-
ity data seems less informative. This observation is in line with 
excellent 88% correct predictions for W and M+S in TIMES 
in this study. The analyses of experimental reactivity data by 
Gerberick et al. (2007) were restricted to binary classifications 
(Se=88%, Sp=90% on the training set), so their performance 
to predict individual W, M, and S classes separately was not 
available. 

3.4  Different TIMES reference predictions:  
TIMES-M and TIMES-P
Both TIMES-M and -P showed strong connection with the Re-
activity cluster in addition to the LLNA node. In the V1 version, 
the MI between TIMES-M and the Reactivity latent variable 
was 0.42 and TIMES-P model was 0.29. A stronger link for 
TIMES-M likely reflects the fact that TIMES-M assesses skin 
sensitization potency based on the most potent molecule from 
parent chemical and metabolites, and that reactivity is positively 
correlated with potency.

The network with TIMES-M gave a better fit for weak and 
moderate sensitizers than the network with TIMES-P. Both net-
works performed similarly for moderate and strong sensitizers. 
Clearly, consideration of metabolism for the non-sensitizers and 
weak classes seemed to be important. Further, the network per-
formance with both TIMES predictions was worse for strong 
and moderate classes compared to non-sensitizers and weak 
sensitizers. This result can be partially explained by the fact that 
TIMES predicts only three states (none, weak, and moderate/
strong/extreme together), while our network has four states for 
LLNA potency, thus moderate and strong sensitizers are less 
precisely predicted.

For some chemical management decisions, for example Regu-
lation EC No 1272/2008 as required for REACH, distinction be-

Tab. 5: BN ITS performance expressed as AUC of the  
ROC curve considering 2 different exposures V1 and V2  
and 3 versions of ITS: 1) With TIMES-M; 2) with TIMES-P;  
and 3) without TIMES

V1

	 NS	 W	 M	 S

TIMES-M	 96%	 81%	 58%	 65%
TIMES-P	 89%	 80%	 63%	 67%
w/o TIMES	 84%	 59%	 43%	 49%

V2

	 NS	 W	 M	 S

TIMES-M	 95%	 85%	 69%	 70%
TIMES-P	 88%	 82%	 65%	 72%
w/o TIMES	 79%	 59%	 35%	 60%

Tab. 6: BN ITS performance to differentiate between  
non-sensitizers and sensitizers using TIMES-P and TIMES-M 
as in silico priors on the training set 
Chemicals predicted Weak, Moderate, Strong were pooled  
into 1 class-sensitizers.

	 TIMES-P	 TIMES-M

sensitivity	 89%	 92%
specificity	 90%	 95%
PPV	 77%	 87%
NPV	 96%	 97%
accuracy	 90%	 94%

Tab. 4: Toxicity signatures based on the manifest variables 
for each of the LLNA states 
Units for the variables are provided in Table 1. These numbers 
should be treated in a qualitative manner as they reflect data in the 
training set only.

	                           LLNA state

Test	 NS	 W	 M	 S

TIMES-M	 Non-sensitizer	 Weak	 Strong	 Strong
Cysteine	 <21	 <71	 <71	 <71
Luciferase	 >314	 <23	 <23	 <23
Cfree	 >3	 <1	 <3	 >3
Lysine	 <13	 >29	 >29	 >29
Dose abs.	 >23	 <23	 >23	 >23
Kow	 <1	 >4	 <1	 <1
CD86	 <971	 <971	 <971	 <69
MW	 <185	 >185	 <119	 >185
Epi conc	 >12	 >12	 <5	 >12
IL-8	 <1371	 <1371	 <1371	 <26
Kp	 <1	 >3	 <3	 <1
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4  Discussion 

This study presented an attempt to construct and test an inte-
grated testing strategy following up on the concepts laid out 
in earlier works. The goals of the study were achieved and the 
BN ITS for LLNA potency was constructed despite a chal-
lenging data set with many data gaps. The developed BN ITS 
combined prior biological knowledge with heterogeneous ex-
perimental in silico, in chemico and in vitro evidence and gen-
erated a probabilistic hypothesis about potency of a chemical 
in the LLNA assay. It can be used purely for data integration 
and combined inference, as well as an adaptive testing strategy 
guiding tool. Bessems (2009) and many other authors acknowl-
edge limitations of alternative assays to provide replacement 
for an in vivo study and recommend shifting focus towards re-
duction and refinement. The BN ITS framework can be viewed 
as a reduction strategy, as chemicals with clear potency can 
be separated from chemicals for which more evidence needs 
to be generated. The approach carries resemblance to current 
trends in clinical trial design that strive towards optimizing 
efficiency and increasingly rely on adaptive Bayesian design 
(Berry et al., 2010).

The BN ITS for LLNA potency provided better predic-
tions compared to earlier approaches assessing LLNA and at 
the same time offered new insights to testing strategies. The 
framework formulated a flexible, adaptive testing strategy. 
It offers objective guidance on how to identify situations in 
which generating additional data would not reduce uncertainty 
about the target. The results clearly showed that there is no 
one best test sequence, but rather that testing strategy depends 
on chemical structure, exposure, and initial information. Value 
of Information analysis demonstrated that differences in VoI 
rankings depend on potency of a chemical. The section Test-
ing strategy depends on the initial information and changes 
based on incoming new information in an adaptive manner 
under 3.2 and Table 7 further demonstrate that the BN ITS not 

experimental and the class prediction with the highest prob-
ability, as well as a number of predictions off by one class. 
The network with TIMES-P performed similarly to the net-
work with TIMES-M. It predicted 6 exact matches and 5 one 
class off matches (92% total correct), while the network with 
TIMES-M had five exact predictions and five one-class off 
predictions (83% total correct). The network without Times 
had three exact matches, six one-class off predictions and two 
two-classes off predictions (75% total correct). The more de-
tailed analysis revealed differences in LLNA posterior prob-
ability distributions for the TIMES-P and TIMES-M networks 
for the chemicals for which TIMES-P and TIMES-M class 
predictions were the same (Tab. 7). All test set molecules were 
part of the TIMES training set. The prediction of potencies of 
pro-haptens, i.e., aniline, PTD, and pyridine, improved with 
TIMES-M. It is most clear for the potent prohapten sensitizer 
PTD, for which prediction without TIMES did not result in a 
clear identification as a potent sensitizer. For weak sensitiz-
ers (aniline, pyridine), consideration of metabolism was less 
impactful as expected. 

Most LLNA predictions (e.g., dimethyl sulfate) have a uni-
modal pattern, whereas some (e.g., benzoic acid) reveal a bi-
modal pattern. Bimodality is a sign that the chemical input 
data reveals a pattern unseen in the training dataset, thus likely 
to be outside the model domain. The other possibility is that 
the input data are in conflict with each other due to some error. 
The potential errors can be experimental errors or prediction 
errors for in silico tests. For the benzoic acid both TIMES and 
reactivity data suggested that the chemical is a non-sensitizer, 
but bioavailability data were in conflict with strong evidence 
for a strong class. In this case, bioavailability data were un-
reliable because the epidermal bioavailability model (Kasting 
et al., 2008) is not suitable for acids. In general, data conflict 
can be used for the purpose of quality assurance of the overall 
prediction.

Tab. 7: BN ITS predictions on the test set on the test set using TIMES-M and TIMES-P and without TIMES

	 Observed	 TIMES-M			   TIMES-P			   w/o TIMES

Chemical	 class	 EC 3%	 NS	 W	 M	 S	 NS	 W	 M	 S	 NS	 W	 M	 S

2,5-Toluenediamine	 S 	 0.4	 0.01	 0.01	 0.49	 0.49	 0.07	 0	 0.21	 0.72	 0.18	 0.04	 0.40	 0.38	
sulfate (PTD)	
Aniline	 W	 89	 0.31	 0.08	 0.35	 0.26	 0.72	 0	 0.19	 0.09	 0.86	 0.02	 0.08	 0.04
Benzoic acid	 NS		  0.17	 0.16	 0.06	 0.61	 0.3	 0.05	 0.12	 0.53	 0.05	 0.04	 0.46	 0.46
Diethyl sulfate	 M	 3.3	 0	 0.12	 0.51	 0.38	 0	 0.05	 0.67	 0.28	 0.03	 0.35	 0.35	 0.26
Dimethyl sulfate	 S	 0.19	 0	 0.14	 0.49	 0.36	 0	 0.05	 0.67	 0.28	 0.07	 0.36	 0.33	 0.24
Dimethylsulfoxide	 W	 72	 0.4	 0.09	 0.44	 0.06	 0.59	 0.1	 0.24	 0.07	 0.24	 0.29	 0.38	 0.09
N-Ethyl-N-nitrosourea	 M	 1.1	 0	 0.12	 0.51	 0.37	 0	 0.11	 0.73	 0.15	 0.02	 0.36	 0.36	 0.27
1-Iodododecane	 W	 13	 0.07	 0.92	 0	 0.01	 0.06	 0.94	 0	 0	 0.29	 0.61	 0.06	 0.04
1-Iodononane	 W	 24	 0.09	 0.89	 0	 0.01	 0.06	 0.94	 0	 0	 0.35	 0.54	 0.07	 0.04
N-Methyl-N-nitrosourea	 S	 0.05	 0	 0.04	 0.64	 0.32	 0.01	 0.02	 0.59	 0.39	 0.00	 0.14	 0.57	 0.29
Pyridine	 W	 72	 0.9	 0.01	 0.06	 0.03	 0.6	 0	 0.19	 0.21	 0.86	 0.02	 0.08	 0.04
Undec-10-enal	 M	 6.8	 0.18	 0.81	 0.01	 0.01	 0.06	 0.94	 0	 0	 0.50	 0.37	 0.10	 0.04
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ITS framework cannot suggest tests that are not a part of the 
network. Such problems can only be solved with approaches 
such as that of Maxwell and Mackay (2008). In addition, BN 
ITS in its current form, by the virtue of the underlying input 
information, only considers metabolism through TIMES-M. 

In the VoI we analysed the MI rankings for latent and mani-
fest variables to compare their relative importance in explain-
ing LLNA potency. As postulated in previous studies (Roberts 
et al., 2007) reactivity characterization is very important in 
predicting sensitization. The MI rankings not only confirmed 
this postulate but in addition quantified the importance. How-
ever, the bioavailability, and not reactivity, appeared as the 
major driver determining that a chemical is a weak sensitizer. 
This exception for chemicals with Kow >3.9 and MW >185 
Da suggested poor dermal penetration irrespective of reactiv-
ity profile. Our results regarding lack of dendritic cell impor-
tance came as a surprise. In other studies, dendritic cell data 
correlated well with LLNA data (Nukada et al., 2010; Lambre-
chts et al., 2010). These results should, therefore, be interpret-
ed with caution, especially since 50% of records were missing 
dendritic cell data. Among manifest variables TIMES-M was 
the most informative. This result is biased due to TIMES being 
already trained on a part of the ITS training set. TIMES was 
followed by Cys and Luc tests that carried similar VoI, with 
respect to LLNA. As said earlier, all variables carried more 
VoI for NS class than for the sensitizing classes. This is not 
surprising, as it shows that the net is best suited to discriminate 
NS from sensitizers, which is a biological distinction. The split 
between W, M, and S is based on an arbitrary cutoff based on 
the LLNA data. It is more difficult for a model to separate dif-
ferent potency classes, as compared to discriminating non-sen-
sitizers from sensitizers. However, while separating NS from 
sensitizers is often sufficient for hazard identification within 
regulatory requirements, the discrimination of potency classes 
remains a very important aspect in model development, as it 
is critical for conducting skin sensitization risk assessments. 
These conclusions are limited to the analyzed data set and re-
quire further analysis with more data. 

Further, we showed how MI can be used in sequential test-
ing to determine when a follow-up test may add value. Thus, 
Lys data generated under defined conditions adds value to ex-
isting Cys data. Our results suggested no value in conducting 
the Lys test if Cys reactivity was greater than 21% and the 
important contribution of Lys data in explaining LLNA po-
tency when Cys reactivity was smaller than 21%. These find-
ings confirm Alvarez-Sanchez et al. (2003) and Eilstein et al. 
(2006) observations regarding importance of considering vari-
ous amino acid nucleophiles to understand skin sensitization. 
The importance of studying reactivity towards Lys was already 
discussed by Gerberick et al. (2004) and further investigated 
by Troutman et al. (2011) who concluded that Lys was impor-
tant for molecules with specific reactivity towards NH2 groups 
(e.g., anhydrides, isocyanates). Since this study evaluated data 
in the context of potency, further work is needed to link these 
two different views – potency oriented and chemistry oriented 
results.

only calculates different VoI based on the potency class but it 
eventually is chemical-specific as the individual chemical is 
associated with its unique biological fingerprint, resulting in 
a particular unique LLNA probability distribution. Therefore, 
mandating a single, generic set of tests as a replacement strat-
egy is unlikely to be efficient. 

Suitability of BNs as underpinning methodology to ITS 
development has been discussed previously (Jaworska et al., 
2010). Use of a Bayesian network, as a formal framework, 
provides a basis for consistent and transparent reasoning when 
integrating different, incomplete, and conflicting data. The 
network is able to follow the skin sensitization process by 
choosing a test sequence representing individual steps in the 
process. Because it is a probabilistic approach it allows 1) ad-
dressing uncertainty in the biological knowledge, 2) combining 
heterogeneous evidence, and 3) quantifying uncertainty about 
target and relationships. Uncertainty in relationships is charac-
terized in probabilistic terms as Conditional Probability Tables 
(CPTs). Differentiating between strong and weak evidence can 
be accomplished by different shapes of evidence distributions. 
In this study we used the simplest form of evidence, allocating 
it always to one class, but in general, it is possible to allocate 
evidence to more than one class. Only by quantifying uncer-
tainty about target and relationships can we develop strategies 
to objectively and effectively reduce it. 

In addition to prediction functionality, BNs allow differ-
ent analyses (e.g., evidence sensitivity, Value of Information 
analysis) that can be used to guide testing. Further, this frame-
work yields a refined model, as new data become available 
without discarding old data. As such, it provides functionality 
for reassessment of predictions in light of additional evidence 
or to reason with incomplete data. We inferred the potency in 
the LLNA given full and partial input data and showed testing 
strategy guided by Value of Information (VoI) calculations. 
Our specific case study results showed that the integration of 
biological knowledge with data in the form of a BN ITS is a 
step forward in making efficient use of alternative data and 
has potential to become a practical part of a toxicologist’s 
toolbox. 

Determining the causal structure is a key for mechanistic 
interpretation capability of ITS. The structure of the developed 
network reflected the current knowledge about skin sensitiza-
tion and included key processes, such as dermal penetration, 
reaction with proteins, and dendritic cell activation (Jowsey et 
al., 2006). BNs are interpreted as causal models where causal 
model is understood as a model that conveys causal assump-
tions, not necessarily a model that produces validated causal 
conclusions (Pearl, 1988). However, the BN ITS framework 
also requires quantification of the relationships between nodes. 
In this study, a data-driven approach was used to quantify the 
relationships. Thus we regard the used training set as the ap-
plicability domain of the constructed ITS. Since its outcomes 
strongly depend on the quality and the appropriateness of the 
input information, the choice of tests, and the underlying train-
ing set of chemicals, expert knowledge plays an important role 
in assessing the quality and relevance of input information. BN 
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To build upon results from this proof-of-concept work, a fol-
low up BN ITS will need to be constructed with a comprehen-
sive data set to establish more certain relationships among in-
dividual inputs and between inputs and target information. As 
the amount of data on originally used tests grows, other alter-
native tests and data relevant to skin sensitization assessment 
are becoming available (e.g., additional in chemico reactivity 
data as reviewed in Schwoebel et al. (2011) and HCLAT den-
dritic cell activation assays (Nukada et al., 2010)) which could 
be used in an ITS. As the consequence of adding new tests, the 
follow up BN ITS may result in a revised structure. To further 
generalize practicality of the BN ITS approach and develop 
more mechanistic insights, there is a need investigate how BN 
ITS results, geared currently to assess potency, translate back 
to chemical structural information. In general, it is to be ex-
pected that the ITS will continue to evolve, taking into account 
novel mechanistic insights and new tests, and will eventually 
transform to be able to assess skin sensitization potential in 
humans in a dose-response manner based on clinical biomark-
ers that remain to be established.

While at this point we focus on the scientific credibility of 
ITS, efforts are needed to make this type of systematic ap-
proach more accessible, viable, and feasible. Specifically, there 
are needs to build publicly accessible infrastructure of quality 
databases allowing for storing structural and experimental data 
and workflows to simultaneously mine these databases.

Supplementary data description
The supplementary data available online (www.altex-edition.
org) consists of 3 files: File A: figure illustrating the skin sensi-
tization induction process, File B: training and test data sets, and 
File C: an annex with details of the BN construction as well as 
mathematical formulations of VoI and relative mutual informa-
tion (MI).

References 
Aeby, P., Ashikaga, T., Bessou-Touya, S., et al. (2010). Iden-

tifying and characterizing chemical skin sensitizers without 
animal testing: Colipa’s research and method development 
program. Toxicol. In Vitro 24, 1465-1473.

Aleksic, M., Thain, E., Roger, D., et al. (2009). Reactivity profil-
ing: Covalent modification of single nucleophile peptides for 
skin sensitization risk assessment. Toxicol. Sci. 108, 401-411.

Alvarez-Sanchez, R., Basketter, D., Pease, C., and Lepoittevin, 
J.-P. (2003). Studies of chemical selectivity of hapten, reactiv-
ity, and skin sensitization potency. 3. Synthesis and studies on 
the reactivity toward model nucleophiles of the 13C-labeled 
skin sensitizers, 5-Chloro-2-methylisothiazol-3-one (MCI) 
and 2-Methylisothiazol-3-one (MI). Chem. Res. Toxicol. 16, 
627-636. 

Aptula, A. O., Patlewicz, G., Roberts, D. W., et al. (2006). Non-
enzymatic glutathione reactivity and in vitro toxicity: A non-
animal approach to skin sensitization. Toxicol. In Vitro 20, 
239-247.

Among bioavailability-related tests the higher rankings of 
Cfree and Dose abs versus Kow and Kp suggested that quan-
tifying finite dose exposure conditions is more suitable com-
pared to infinite dose in explaining LLNA potency. 

The mutual information analysis allowed us also to answer 
the question of how many tests are useful before we start gen-
erating information that does not further improve our knowl-
edge about the target variable. In contrast to the classic variable 
selection performed globally on a training set which generates 
one set of results, our framework allows variable adaptive se-
lection on various levels of detail: globally, per potency class, 
and for an individual chemical. The answer is related to both 
target and manifest test variability, and in this study four tests 
were about the maximum. 

While constructing the network all available data were ef-
ficiently harvested. The training set contained data for many 
chemicals with one or more missing records. Instead of delet-
ing chemicals with incomplete records (a typical procedure 
in data processing among toxicologists), missing data were 
filled in by imputation. Missing data are a common problem 
in analyzing toxicological data sets. Little and Rubin (1987), 
among others, have demonstrated the dangers of simply delet-
ing cases. Case deletion strategies can appreciably diminish 
the statistical power of the analysis and introduce substantial 
bias into the study. Without the imputation step we would not 
be able to construct the network with such a complex struc-
ture. Good results in the testing phase confirmed utility of 
imputation.

Several variants of the network were generated to evaluate 
its performance using AUC of ROC. ROC curves allow a com-
prehensive assessment and comparison of classification model 
accuracy among different studies as they do not depend on the 
prevalence of actives in the training set (Pepe, 2003). In con-
trast, sensitivity, specificity, and accuracy cannot be interpreted 
correctly without knowing the prevalence of active chemicals 
in the training set. Therefore, comparisons with other studies 
on the basis of these indexes, albeit frequent in toxicology lit-
erature, should be done with caution. Using smaller data sets 
to train their models (Natsch and Emter, 2008) reported 83% 
accuracy and Gerberick et al. (2007) reported 89% accuracy on 
the training sets. Since this BN ITS (V1+ TIMES-M) network 
achieved 94% accuracy on a larger training set and 92% on a 
test set, it likely classifies more robustly. BN ITS configured 
with TIMES-M predicted better than the one with TIMES-P. 
This result demonstrated the value of considering metabolism 
when assessing skin sensitization potency. Further, TIMES-
M had a large impact on improved BN ITS performance for 
M and S classes compared with BN ITS configured without 
TIMES.

The developed toxicity signatures can be used in multiple 
ways. First, they can guide screening criteria. Toxicity signa-
tures can be considered as biological fingerprints and bases 
for SAR development and read-across. These signatures can 
be also used as a simple look-up table to classify a chemical if 
running a network would not be possible or calculating poste-
rior distribution would not be useful. 



Jaworska et al.

Altex 28, 3/11224

K. A. Walters, and M. S. Roberts (eds.), Dermatologic, cos-
meceutic and cosmetic development (385-400). New York: 
Informa Healthcare USA.

Kern, P. S., Gerberick, G. F., Ryan, C. A., et al. (2010). Histori-
cal local lymph node data for the evaluation of skin sensitiza-
tion alternatives: a second compilation. Dermatitis 21, 8-32.

Kimber, I., Basketter, D., Butler, M., et al. (2003). Classification 
of contact allergens according to potency: Proposals. Food 
Chem. Toxicol. 41, 1799-1809.

Lambrechts, N., Vanheel, H., Nelissen, I., et al. (2010). Assess-
ment of chemical skin-sensitizing potency by an in vitro assay 
based on human dendritic cells. Toxicol. Sci. 116, 122-120. 

Langseth, H., and Nielsen, T. D. (2006). Classification using  
Hierarchical Naïve Bayes models. Machine Learning 63, 
135-159. 

Little, R. J. A., and Rubin, D. B. (1987). Statistical analysis with 
missing data. New York: John Wiley & Sons.

Maxwell, G., Aleksic, M., Aptula, A., et al. (2008). Assuring 
consumer safety without animal testing: A feasibility case 
study for skin sensitisation. ATLA 36, 557-568. 

Maxwell, G., and Mackay, C. (2008). Application of a systems 
biology approach to skin allergy risk assessment. ATLA 36, 
521-556.

Meng, X.-L., and Rubin, D. B. (1993). Maximum likelihood 
estimation via the ECM algorithm: A general framework.  
Biometrika 80, 267-278.

Munteanu, P., and Bendou, M. (2001). The EQ framework for 
learning equivalence classes of Bayesian networks, Proceed-
ings First IEEE International Conference on Data Mining 
(IEEE ICDM), San José, USA. 

Natsch, A., and Emter, R. (2008). Skin sensitizers induce anti-
oxidant response element dependent genes: Application to 
the in vitro testing of the sensitization potential of chemicals. 
Toxicol. Sci. 102, 110-119. 

Natsch, A., Emter, R., and Ellis, G. (2009). Filling the concept 
with data: Integrating data from different in vitro and in silico 
assays on skin sensitizers to explore the battery approach for 
animal-free skin sensitization testing. Toxicol. Sci. 107, 106-
121.

Nukada, Y., Foertsch, L., Ashikaga, T., et al. (2010). Predict-
ing allergy potential by battery evaluation system using two 
in vitro skin sensitization tests; Direct Peptide Reactivity As-
say (DPRA) and human Cell Line Activation Test (h-CLAT). 
Contact Dermatitis 63, Suppl. 1, 79-80.

Patlewicz, G., Aptula, A. O., Uriarte, E., et al. (2007). An evalu-
ation of selected global (Q)SARs/expert systems for the pre-
diction of skin sensitisation potential. SAR QSAR Environ. 
Res. 18, 515-541.

Patlewicz, G., Aptula, A. O., and Roberts, D. W. (2008). A mini-
review of available skin sensitization (Q)SAR/expert systems. 
QSAR Comb. Sci. 27, 60-76.

Patlewicz, G., and Worth, A. (2008). Review of data sources, 
QSARs and Integrated Testing Strategies for skin sensiti-
zation. JRC Scientific and Technical Reports EUR 23225  
EN - 2008. 

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: 

Basketter, D., and Kimber, I. (2009). Updating the skin sensi-
tization in vitro data assessment paradigm in 2009. J. Appl. 
Toxicol. 29, 545-550.

Berry, S., Bradley, P., Carlin, P., et al. (2010). Bayesian adaptive 
methods for clinical trials. Chapman & Hall/CRC Biostatis-
tics Series. 

Bessems, J. G. M. (2009). Opinion on the usefulness of in vitro 
data for human risk assessment. Suggestions for better use of 
non-testing approaches. RIVM report # 320016002. 

Demichelis, F., Magni, P., Piergiorgi, P., et al. (2006). A Hierar-
chical Naïve Bayes model for handling sample heterogeneity 
in classification problems: An application to tissue micro ar-
rays. BMC Bioinformatics 7, 514-526.

Dimitrov, S. D., Low, L. K., Patlewicz, G. Y., et al. (2005). Skin 
sensitization: modeling based on skin metabolism simulation 
and formation of protein conjugates. Int. J. Toxicol. 24, 189-
204.

Eilstein, J., Gimenez-Arnau, E., Duche, D., et al. (2006).  
Synthesis and reactivity toward nucleophilic amino acids  
of 2,5-[13C]-Dimethyl-p-benzoquinonediimine. Chem. Res. 
Toxicol. 19, 1248-1256.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2003). 
Bayesian data analysis (2nd ed.). Chapman & Hall/CRC.

Gerberick, G. F., Vasallo, J. D., Bailey, R. E., et al. (2004). De-
velopment of peptide reactivity assay for screening contact 
allergens. Toxicol. Sci. 81, 332-343. 

Gerberick, G. F., Ryan, C. A., Kern, P. S., et al. (2005). Com-
pilation of historical lymph node data for evaluation of skin 
sensitization alternative methods. Dermatitis 16, 157-202.

Gerberick, G. F., Vasallo, J. D., Foertsch, L. M., et al. (2007). 
Quantification of chemical peptide reactivity for screening 
contact allergens: A classification tree model approach. Toxi-
col. Sci. 97, 417-427. 

Gerberick, G. F., Aleksic, M., Basketter, D., et al. (2008). Chem-
ical reactivity measurement and the predictive identification 
of skin sensitizers. ATLA 36, 215-242.

Grindon, C., Combes, R., Cronin, M. T. D., et al. (2007). An 
integrated decision-tree testing strategy for skin sensitization 
with respect to the requirements of the EU REACH legisla-
tion. ATLA 35, 683-697.

Jaworska, J., Gabbert, S., and Aldenberg, T. (2010). Towards 
optimization of chemical testing under REACH: a Bayesian 
network approach to Integrated Testing Strategies. Regul. 
Toxicol. Pharmacol. 57, 157-167.

Jaworska, J., and Hoffmann, S. (2010). Integrated Testing Strat-
egy (ITS) – opportunities to better use existing data and guide 
future testing in toxicology. ALTEX 27, 231-242. 

Jowsey, I. R., Basketter, D., Westmoreland, C., and Kimber, I. 
(2006). A future approach to measuring relative skin sensitiz-
ing potency: a proposal. J. Appl. Toxicol. 26, 341-350.

Karlberg, A.-T., Bergstroem, M. A., and Boerje, A. (2008).  
Allergic contact dermatitis – formation, structural require-
ments, and reactivity of skin sensitizers. Chem. Res. Toxicol. 
21, 53-69. 

Kasting, G. B., Miller, M. A., and Nitsche, J. M. (2008). Absorp-
tion and evaporation of volatile compounds applied to skin. In 



Jaworska et al.

Altex 28, 3/11 225

van der Jagt, K., Munn, S., Torslov, J., et al. (2004). Alternative 
approaches can reduce the use of test animals under REACH. 
Addendum to: Assessment of additional testing needs under 
REACH effects of (Q)SARS, risk based testing and voluntary 
industry initiatives. IHCP report EUR 21405 EN.

Wang, X. J., Hayes, J. D., and Wolf, C. R. (2006). Generation 
of a stable antioxidant response element-driven reporter gene 
cell line and its use to show redox-dependent activation of 
Nrf2 by cancer chemotherapeutic agents. Cancer Res. 66, 
10983-10994.

Yuan, Y., and Shaw, M. J. (1995). Induction of fuzzy decision 
trees. Fuzzy Sets and Systems 69, 125-139.

Acknowledgements
We thank J. Kasting and M. Miller for generating bioavailability 
data and K. Blackburn and C. Ryan and 2 reviewers for their 
thorough reviews. The work was supported in part (JJ, AH) by 
funding of the European Union 6th Framework OSIRIS Inte-
grated Project (GOCE-037017-OSIRIS).

Correspondence to
Joanna Jaworska, PhD
Procter & Gamble Eurocor,
Temselaan 100
1853 Strombeek-Bever
Belgium
Phone: +32 2 456 2076
Fax: +32 2 4563098
e-mail: Jaworska.J@pg.com, 

Networks of plausible inference. San Francisco, CA: Morgan 
Kaufmann.

Pepe, M. (2003). The statistical evaluation of medical tests for 
classification and prediction. Oxford Univ. Press, 302.

Python, F., Goebel, C., and Aeby, P. (2007). Assessment of the 
U937 cell line for the detection of contact allergens. Toxicol. 
Appl. Pharm. 220, 113-124.

Roberts, D. W., Aptula, A. O., Cronin, M. T. D., et al. (2007). 
Global (Q)SARs for skin sensitization-assessments against 
OECD principles. SAR QSAR Environ. Res. 18, 343-365. 

Roberts, D. W., Aptula, A. O., Patlewicz, G., et al. (2008). 
Chemical reactivity indices and mechanism-based read-
across for non animal based assessment of skin sensitization 
potential. J. Appl. Toxicol. 28, 443-454. 

Roberts, D. W., and Patlewicz, G. (2009). Updating the skin 
sensitization in vitro data assessment paradigm in 2009 – a 
chemistry and QSAR perspective. J. Appl. Toxicol. 30, 286-
288.

Ryan, C. A., Gerberick, G. F., Gildea, L. A., et al. (2005). Inter-
actions of contact allergens with dendritic cells: Opportuni-
ties and challenges for the development of novel approaches 
to hazard assessment. Toxicol. Sci. 88, 4011. 

Schwoebel, J. A. H., Koleva, Y. K., Enoch, S. J., et al. (2011). 
Measurement and estimation of electrophilic reactivity for 
predictive toxicology. Chem. Rev. 111, 2562-2596.

Troutman, J. A., Foertsch, L. M., Kern, P. S., et al. (2011). The 
incorporation of lysine into the peroxidase peptide reactiv-
ity assay for skin sensitization risk assessments. Toxicol. Sci. 
122, 422-436. 

Vandebriel, R. J., and van Loveren, H. (2010). Non-animal  
sensitization testing: State-of-the-art. Crit. Rev. Toxicol. 40, 
389-404.


