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BN construction details

Transforming training set into discrete variables
Strong and extreme sensitizers were pooled into one class that re-
sulted in a balanced distribution of chemicals in each class. There 
were 26% non-sensitizers (NS), 22% weak (W), 30% moderate 
(M) and 22% strong including extreme (S). The continuous in-
put variables were discretized by first applying a decision tree al-
gorithm (Yuan and Shaw, 1995) with LLNA results as the target. 
Next, after a visual inspection, one additional state was added at 
the inflection point of the variable distribution function if it was 
not done automatically. 

Learning structure of the latent variables
The data that were significantly dependent according to the t-test 
were clustered. The clustered manifest variables were used to con-
struct latent variables local networks with EQ algorithm (Munte-
anu and Bendou, 2001). This learning step generated structure and 
probabilistic relationships between the manifest variables and re-
spective latent variable. 

Missing data imputation
For BN there is no direct way to perform imputation and one must 
decide on the sampling process outside the BN. Given that the 
patterns of missing data were not evenly distributed in the training 
set used in this study, a local imputation was performed per latent 
variable. First, local datasets associated with a latent variable were 
constructed from records for which there were no missing data. 
Imputation was performed separately in each cluster by replac-
ing missing data with the values which were randomly sampled 
from the corresponding manifest variable marginal distributions 
of latent variable probability distribution (Gelman et al., 2003). 
Imputation transformed the data set with missing data into a com-
plete dataset. 

Learning the final structure of the network
Final structure of the network learning required connecting latent 
variables with the target and revealing potential direct connections 
between manifest variables and target that would provide informa-
tion to explain the target in addition to one already contained in 
the latent variable. The final network’s structure was learned from 
the complete dataset including the target variable as well as latent 
variables by EQ algorithm (Munteanu and Bendou, 2001). 

Elucidation of CPTs – parameter learning
In order to parameterize the Bayesian network it is necessary to 
specify for each arc its conditional probability tables (CPTs). CPT 
is a multinomial distribution of a variable representing a node for 
each combination of parents’ values. Knowing the structure of the 
graph and data attached to the nodes of the graph we learned CPTs 
by recursively applying Bayes’ rule. 

Methodology to guide testing

The framework can guide adaptive testing strategy based on infor-
mation gain calculations. It uses information – theoretic concept 
of Value of Information and One step look – ahead hypothesis 
mutual information driven approach to identify the test that has 
the highest potential to refine the hypothesis variable. Once the 
evidence in this test is calculated the mutual information indices 
are recalculated for all the possible tests for which we do not have 
results, and again a test with the highest value is chosen as optimal 
to conduct. 

Mutual Information (MI) is a measure of the dependence be-
tween two variables It quantifies the stored information in one 
variable about another variable. Mutual Information measures the 
general dependence while the correlation function measures the 
linear dependence, and Mutual Information is a more generalized 
quantity than the correlation function to measure the dependence. 
Entropy and Mutual Information are information – theoretic met-
rics measures used in VoI. Entropy is a measure of randomness 
and can be used as a measure of uncertainty in the distribution of 
a hypothesis variable Y, H(Y). Analyzing entropy changes as the 
new evidence is provided allows identifying the most informative 
information. Change in the entropy is measured as Mutual Infor-
mation MI equal to MI(X, Y) = H(Y)-H(Y|X) where H (Y|X) is 
a conditional entropy of Y given an observation X. The Mutual 
Information MI(X, Y) is a measure of the information shared by 
X and Y, equivalent in reduction of entropy of Y from observ-
ing X and if Y is the hypothesis variable a measure of the value 
of observing X. Formally, the Mutual Information of two discrete 
random variables X and Y is defined as: 

where p(x,y) is the joint probability distribution function of X and 
Y, and p1(x) and p2(y) are the marginal probability distribution 
functions of X  and Y, respectively.

One step look – ahead hypothesis driven VoI in BNs amounts 
to computing the mutual information MI(X, Y) for all possible 
observations X and choosing the one that has the highest MI with 
the target variable Y. In the paper we use relative to the hypothesis 
MI, specifically MI(X, Y)/H(Y) that is expressed in %.
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