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1  Introduction

toxic agents, particularly those that exert their actions with a 
great deal of specificity, act frequently via receptors to which 
they bind with high affinity. This phenomenon is referred to as 
receptor-mediated toxicity. Examples of soluble intracellular re-
ceptors that are important in mediating toxic responses include 
the glucocorticoid receptor, which is involved in mediating tox-
icity associated effects such as apoptosis of lymphocytes as well 
as neuronal degeneration as a response to stress, the peroxisome 
proliferator-activated receptor, which is associated with hepa-

tocarcinogenesis in rodents, and the aryl hydrocarbon receptor, 
which is involved in a whole range of toxic effects (see, for ex-
ample, Gustaffson, 1995). Harmful effects of drugs and chem-
icals can often be associated with their binding to molecules 
other than their primary target — macromolecules involved in 
biosynthesis, signal transduction, transport, storage and metab-
olism (Rihova, 1998; Fischer 2000; Hestermann et al., 2000; 
lukasiuk and Pitkänen, 2000; Rymer and Good, 2001; Hamp-
son and Grimaldi, 2002; Oliver and Roberts, 2002).

toxicity testing – as mandated by international regulations 
for drug development and chemical safety – is still associated 
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Summary
The VirtualToxLab™ is an in silico tool for predicting the toxic (endocrine-disrupting) potential of drugs, 
chemicals and natural products. It is based on a fully automated protocol and calculates the binding affinity 
of any molecule of interest towards a series of 12 proteins, known or suspected to trigger adverse effects 
and estimates the resulting toxic potential. In contrast to other approaches in the field, the technology  
allows to rationalize a prediction at the molecular level by interactively analyzing the binding mode of the 
tested compound with any target protein in 3D. The technology is accessible over the Internet (via a secure 
SSH protocol) and available for any science-oriented organization.
The toxic potential — a complex value derived from the individual binding affinities, their standard devia-
tion and the quality of the underlying model (number and ratio of training and test compounds, activity 
range covered) — of existing and hypothetical compounds is estimated by simulating and quantifying their 
interactions towards a series of macromolecular targets at the molecular level using automated flexible 
docking combined with multi-dimensional QSAR (mQSAR). Currently, those targets comprise 12 proteins: 
the androgen, aryl hydrocarbon, estrogen α/β, glucocorticoid, mineralocorticoid, thyroid α/β liver X and 
the peroxisome proliferator-activated receptor γ as well as the enzymes cytochrome P450 3A4 (CYP 3A4) 
and 2A13 (CYP 2A13).
Up to date, the technology has been used to predict the toxic potential for more than 2,000 drugs, chemicals 
and natural compounds. All results are posted in the Internet — in this account, a few will be discussed in 
detail with reference to the molecular mechanisms triggering the adverse effect.

Keywords: VirtualToxLab™, in silico prediction of the toxic (endocrine-disrupting) potential, toxicity 
mechanisms, reduction of animal testing
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dimensional QSAR (mQSAR; software Quasar: Vedani et al., 
2000a,b; Vedani and Dobler 2002; Vedani et al., 2005b, 2006, 
2007a,b; Spreafico et al., 2009) for quantifying the binding af-
finities. Finally, the toxic potential is calculated from the indi-
vidual binding affinities, their standard deviation and the qual-
ity of the underlying model (number and ratio of training and 
test compounds, activity range covered). Mixed-model QSAR 
was applied to the estrogen receptor α/β (Vedani et al., 2005b; 
Vedani et al., 2008), androgen receptor (Lill et al., 2005), the 
peroxisome proliferator-activated receptor γ (Vedani et al., 
2007b), the glucocorticoid receptor (Spreafico et al., 2009), the 
thyroid receptor α/β (Vedani et al., 2007a), the aryl hydrocarbon 
receptor (Vedani et al., 1999, 2007, 2008), the mineralocorticoid 
receptor (Peristera et al., in press) and the enzyme cytochrome 
P450 3A4 (Lill et al., 2006).

Yeti/AutoDock: Flexible docking aims at identifying all po-
tential binding modes (orientations, conformations) of a small 
molecule within the binding pocket of a protein. The underlying 
protocol addresses two aspects of ligand-protein binding which 
would seem to be of utmost importance: 1. simulation of in-
duced fit, i.e. allowing the protein to adapt its shape to the differ-
ent orientations and conformations of the small molecule during 
the search procedure and 2. consideration of solvent effects (wa-
ter). In our approach, the sampling is based on a Monte-Carlo/
Metropolis protocol. In addition, the implemented minimizer 
features a directional force field, which is particularly efficient 

with stressful animal tests. While many in vitro approaches 
have been devised to target the various aspects of toxicologi-
cal phenomena, they require a chemical or drug molecule to be 
physically present (i.e. synthesized) before testing. In contrast 
hereto, computational approaches can be applied to hypotheti-
cal substances, as their 3D structure can be readily generated 
in silico. Nowadays computer power permits scanning larger 
batches of compounds in moderate time spans. Toxicity-mode-
ling algorithms are typically based on quantitative structure-ac-
tivity relationships, neuronal networks, artificial intelligence or 
rule-based expert systems. In previous accounts (Vedani at al., 
2007a, 2005a), we provided an in-depth description of the un-
derlying docking and QSAR technologies, their capabilities and 
limitations for modeling toxic phenomena. In this account, we 
discuss the first results: the toxic potential of more than 2,000 
drugs, chemicals and natural products as determined in silico.

2  Methods

the philosophy underlying the Virtualtoxlab™ is referred to 
as mixed-model QSAR. In a first step, the compound of interest 
is flexibly docked to the (human) target protein and all feasible 
poses (potential binding modes) are sampled into a 4D data set 
(software Yeti/AutoDock; Vedani et al., 2005b; Spreafico et al., 
2009). In a next step, these data are used as input for multi-

Fig. 1: Flow chart of the VirtualToxLab™
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Using the ligands of the training set, a linear regression of the 
experimental ∆Gbinding and calculated ebinding is then obtained 
(equation 2). The coefficients a and b are derived from the cor-
relation of the training set in cross-validation mode and, later on, 
applied to molecules of the test set or new compounds for which 
binding affinity should be predicted.

VirtualToxLab™: It combines automated, flexible docking with 
mQSAR to simulate and quantify the binding of any compound of 
interest to the 12 currently implemented protein models (androgen, 
aryl hydrocarbon, estrogen α/β, glucocorticoid, mineralocorticoid, 
thyroid α/β liver X, peroxisome proliferator-activated receptor α; 
enzymes cytochrome P450 3A4 and 2A13) and to estimate the re-
sulting toxic potential. The flow chart is depicted in Figure 1. The 
Virtualtoxlab™ distribution includes a web interface with an in-
tegrated 3D viewer (Figure 2) and a 3D model builder (Figure 3) to 
generate the three-dimensional structures of the compounds to be 
tested. Results include the binding affinities towards the 12 target 
proteins along with the standard deviation and the 3D coordinates 
of the corresponding complexes — to be interactively viewed in 
real-time 3D or to be downloaded for further analyses or process-
ing. All data (input and output) are transferred over a secure SSH 
protocol. After completion of a task, all data (except the log file 
and the 3D coordinates) are automatically and irreversibly deleted 
from the server. After downloading the pertinent data, the user can 
delete all remaining data. Complete details on the technology are 
given in http://www.biograf.ch/downloads/VirtualToxLab.pdf

in simulating hydrogen bonds and metal–ligand interactions 
(Vedani and Huhta 1990, 1991).

Quasar – a mQSAR tool developed at the Biographics Labo-
ratory 3R – allows to simultaneously consider different posi-
tions, orientations, conformations, tautomeric and protonation 
states of the ligand molecule (4D), different induced-fit scenar-
ios (5D) and solvation models (6D). Quasar generates a fam-
ily of quasi-atomistic receptor surrogates that are optimized by 
means of a genetic algorithm. The hypothetical receptor site 
is characterized by a three-dimensional surface that surrounds 
the ligand molecules at van der Waals distance and which is 
populated with atomistic properties mapped onto it. The topol-
ogy of this surface mimics the three-dimensional shape of the 
binding site; the mapped properties represent other information 
of interest, such as hydrophobicity, electrostatic potential and 
hydrogen-bonding propensity (Vedani et al., 1998; Vedani and 
Dobler, 2002; Vedani et al., 2005b). For scoring the protein–
ligand interactions, Quasar employs the following function 
(equation 1):

Ebinding = Eligand–receptor –Eligand desolvation – Eligand internal strain  
               – T∆S – Einduced fit          (1)
where Eligand–receptor = Eelectrostatic + Evan der Waals  
     + Ehydrogen bonding + E polarization

∆Gbinding = | a | . Ebinding + b          (2)

Fig. 2: VirtualToxLab™: Web interface with integrated 3D viewer (the compound shown is coumestrol)
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tables 1 and 2 give the details of the receptor models used in 
the Virtualtoxlab™, in particular, the weight of the individual 
models towards the toxic potential. It depends on the number of 
employed compounds, the training-to-test set ratio and the ac-
tivity range covered by the model. In order to compute the con-
tributions of the individual binding affinities towards the toxic 
potential, the former are normalized according to equation 3.

affinity < affinitymodel, lowest → affinitynormalized = 0.0                         (3)
   affinitymodel, lowest < affinity < affinitymodel, highest → affinitynormalized =  
   log (affinitymodel, lowest) – log (affinity) / log (affinitymodel, highest –  
   affinitymodel, highest)
affinity > affinitymodel, highest → affinitynormalized = 1.0

Next, the weighted individual toxic potential, wTPindividual, is 
calculated:

wTPindividual = affinitynormalized x weightstand. dev. x weighttarget        (4a)

weightstandard deviation = 1.0 – √ 0.1 x (stand. dev. / affinity)      (4b)
weighttarget = rating of the individual models (cf. Table 2)

therefrom, the overall toxic potential (wtPoverall) is determined 
as follows: First, the 12 wtPindividual are ranked by their value. 
then, their contribution to the wtPoverall is summed up accord-
ing to equation 5.

                              12
wTPoverall = ∑ (1.0 – wTPoverall, current) x wTPindividual, n      (5)

                           n=1

the wtPoverall is a degressive, non-linear function that ranges 
from 0.0 (benign) to 1.0 (extreme). As some of the rules for its 
derivation are quite arbitrary, the wTPoverall should not be over-
valued but, instead, interpreted as a toxicity alert (cf. Figure 4).

Fig. 3: VirtualToxLab™: 3D model builder (the compound 
shown is benzylpenicillin)

Tab. 1: VirtualToxLab™: In silico validation of the underlying receptor models

Systema training+test=total; q2 rms training max. training p2 rms test max. test fn/fpb
 compound classes 
Androgen 88+26=114; eight 0.858 1.7 7.8 0.792 1.6 13.9 1/1
Aryl hydrocarbon 105+35=140; eight 0.824 1.8 10.2 0.769 2.3 13.5 0/2
Estrogen α 80+26=106; six 0.895 2.0 8.6 0.892 2.9 9.5 0/0
Estrogen β 72+24=96; five 0.802 2.0 8.8 0.699 2.7 13.4 0/2
Glucocorticoid 88+22=110; four 0.702 1.5 9.9 0.719 1.6 4.9 0/0
Liver X 40+12=52; two 0.763 1.2 7.5 0.697 1.3 3.3 0/0
Mineralocorticoid 40+8=48; two 0.810 1.0 3.3 0.661 1.7 4.2 0/0
PPARγ 75+20=95; two 0.832 1.4 6.2 0.723 1.4 3.9 0/0
Thyroid α  0.919 1.8 4.3 0.814 2.5 10.0 0/1
Thyroid β            } 64+18= 82; four

 0.909 2.0 7.7 0.796 2.7 8.8 1/0
CY2A13 18+6=24; six 0.854 0.8 2.0 0.661 0.8 1.7 0/0
CYP3A4 38+10=48; eighteen 0.825 2.7 7.0 0.659 3.8 7.1 0/0

q2 = cross-validated r2, p2 = predictive r2; the rms and maximal deviation from the experimental binding affinity is given as factor in Ki or IC50.
a Experimental data underlying the various models can be found in the primary references to the models or compiled for all systems under 
http://www.biograf.ch/index.php?id=projects&subid=biodata.
b Because a correlation between experimental binding affinities and toxicological classes has only been established for few receptors (cf. 
Rannug et al., 1991), we have arbitrarily defined a factor of 10 off the experimental value as threshold. fn = false-negative, fp = false-positive 
compounds.
References: AR (Lill et al., 2005); AhR (Vedani et al., 2008), ERα (Vedani et al., 2005b), ERβ (Vedani et al., 2008); GR (Spreafico et al., 2009); 
LXR (in preparation); MR (Peristera et al., in press); PPARγ (Vedani et al., 2007b); TRαβ (Vedani et al., 2007a); 2A13 (Vedani et al., 2008); 
3A4 (Lill et al., 2006).
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3  Results and discussion

Using the Virtualtoxlab™ technology, we have estimated the 
toxic (endocrine-disrupting) potential of more than 2,000 com-
pounds — drugs, chemicals and natural products. Full details 
are given at http://www.virtualtoxlab.org. Two compound class-
es were analyzed in depth: psychotropic drugs (Spreafico et al., 
2009) and anabolic steroids (Peristera et al., in press). Here, we 
shall present four representative cases: dibenzo[ah]anthracene, 
tetrahydrogestrinone, resveratrol and diethylstilbestrol; the cal-
culated toxic potential of 78 other compounds is given in Figure 
4 and Table 7, respectively.

Dibenzo[ah]anthracene is a known carcinogen (Brunström 
et al., 1991). Its toxic potential in silico is estimated as 0.864, 
which is classified as extreme. The individual binding affini-
ties towards the 12 target proteins tested in the Virtualtoxlab™ 
are given in Table 3. In particular, dibenzo[ah]anthracene is 
computed to bind with 5.8 nM to the aryl hydrocarbon receptor 
(experimental affinity = 16 nM; cf. Mason et al., 1986). This 
can be well understood when inspecting the binding mode of 
dibenzo[ah]anthracene at the aryl hydrocarbon receptor (Figure 
5). The polyaromatic hydrocarbon is perfectly accommodated 
in the predominantly hydrophobic pocket lined by residues 
Phe4, Phe12, Phe68, Met65, His8 and His43. The negative des-
olvation energy and the rigidity (entropic terms) of dibenzo[ah]
anthracene contribute further to the high binding affinity. Sub-
stantial affinities are also computed towards the GR (58 nM) 
and the LXR (74 nM).

tetrahydrogestrinone (also known as “the Clear”) is a syn-
thetic anabolic steroid that primarily binds to the androgen re-
ceptor (Death et al., 2004) and was banned by the FDA in 2003. 
Our results (Table 4) are in agreement with these findings, i.e. 

the calculated binding affinity towards the androgen receptor 
(16 nM) is significantly stronger than that towards the estrogen 
receptor (α: 310 nM; β: 120 nM). A similarly high affinity is 
computed towards the mineralocorticoid receptor (28 nM). At 
the androgen receptor, the high affinity can be rationalized at the 
molecular level through the three hydrogen bonds with Asn37, 
Arg84 and thr209, respectively, tetrahydrogestrinone engages 
in (Figure 6). The computed toxic potential is 0.814, classifying 
the compound as quite dangerous.

Diethylstilbestrol is a non-steroidal anti-inflammatory drug 
that has been withdrawn in 1971 due to its teratogenic effects 
(Mittendorf, 1995). In our simulation, high affinities towards the 
estrogen receptor α (57 nM) and β (14 nM) are computed (Table 
5); the computed toxic potential is 0.721, classifying the com-
pound as quite dangerous with respect to endocrine disruption. 
At the estrogen receptor α, the high affinity can be explained 
by the strong hydrogen bonds to Glu353, Arg394 and His524, 
respectively, and the interaction of the two aromatic rings and 
the ethyl groups with the hydrophobic part of the binding pocket 
(Figure 7).

Resveratrol is a phytoalexin produced naturally by several 
plants when under attack by pathogens such as bacteria or fun-
gi. Resveratrol has also been produced by chemical synthe-
sis and is sold as a nutritional supplement. It extends the life 
span of several short-living species of animals; however, this 
effect has not yet been demonstrated in mammals. In mouse 
and rat, resveratrol has anti-cancer, anti-inflammatory, blood-
sugar lowering and other beneficial cardiovascular effects 
(see, for example, Vingtdeux et al., 2008; Fan et al., 2008; 
Markus and Morris, 2008; Rocha-Gonzales et al., 2008). Res-
veratrol is found in the skin of red grapes and in red wine. 
In our simulation, significant affinities towards the estrogen 

Tab. 2: VirtualToxLab™: overall rating of the underlying receptor models

System compounds activity range protein Ki or IC50  ratinga

Androgen 88   + 26 = 114     46mM – 1.7 nM human rat 0.786
Aryl hydrocarbon 105 + 35 = 140   1.0 mM – 3.2 nM humanb rat 0.806
Estrogen α 80   + 26 = 106   2.8 mM – 0.23 nM human human 0.957
Estrogen β 72   + 24 =   96     69 µM – 0.31 nM human human 0.724
Glucocorticoid 88   + 22 = 110    2.5 µM – 0.05 nM human human 0.663
Liver X 40   + 12 =   52    3.3 µM – 0.22 nM  human human 0.474
Mineralocorticoid 40   + 8   =   48  0.70 µM – 0.60 nM human human 0.295
PPARγ 75   + 20 =   95    2.0 µM – 0.69 nM human human 0.513
Thyroid α 64   + 18 =   82     36 µM – 0.09 nM human human 0.663
Thyroid β 64   + 18 =   82     11 µM – 0.68 nM human human 0.550
CYP 2A13 18   +   6 =   24 0.43 mM – 0.46 µM human human 0.178
CYP 3A4 38   + 10 =   48   2.0 mM – 9.0 nM human human 0.423

a The rating (ranging from 0.0 to 1.0) depends on the number of employed ligands, the training:test set ratio and the covered affinity range. 
This factor is used for weighting the toxic potential.
b based on a homology model; for all other proteins, the 3D structure has been experimentally determined and is available through the 
Protein Data Bank (http://www.rcsb.org/pdb)
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Fig. 4: Toxicity alerts as generated by the VirtualToxLab™

Fig. 5: Details of the binding of dibenzo[ah]anthracene to the 
aryl hydrocarbon receptor (3D image)

Fig. 6: Details of the binding of tetrahydrogestrinone to the 
androgen receptor (3D image)

Tab. 3: VirtualToxLab™: Calculated binding affinities of dibenzo[ah]anthracene

AR AhR 2A13 3A4 ERα ERβ GR LXR MR PPARγ TRα TRβ
3.5 µM 5.8 nM 1.4 µM 1.7 µM 1.3 µM 430 nM 58 nM 74 nM 590 nM 7.8 µM 4.2 mM 260 nM

Tab. 4: VirtualToxLab™: Calculated binding affinities of tetrahydrogestrinone

AR AhR 2A13 3A4 ERα ERβ GR LXR MR PPARγ TRα TRβ
16 nM 25 µM 62 µM 14 µM 310 nM 120 nM 210 nM 230 nM 28 nM 670 µM > 1.0 M 3.4 µM
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table 7 lists the calculated toxic potential for 50 selected 
compounds. The complete listing for over 2,000 compounds 
(approx. 1,500 drugs, 500 chemicals, 150 natural compounds) 
is posted at http://www.biograf.ch/data/projects/virtualtox-
lab_results.php.

False-negative predictions: compounds that do not exert 
their toxic or adverse effects via binding to one of the proteins 
currently tested in the Virtualtoxlab™ are likely to go un-
noticed. Examples include Ochratoxin A (a highly toxic my-
cotoxin; wTP = 0.405), coumarin (a plant toxin; wTP = 0.384) 
or ibotenic acid (a neurotoxin occurring in mushrooms; wtP 
= 0.085). The binding mode of very small compounds (MW  
< 100) may not be correctly identified by the implemented pro-
tocol, which includes the sampling of up to 25 different poses, 
the eight energetically most favorable of which are used for 
the quantification in mQSAR. Such compounds include many 
of the chemicals used in the cosmetics industry. Here, semi-
automated protocols, allowing for an exhaustive sampling, 

receptor β (2.3 nM) and the glucocorticoid receptor (80 nM) 
are computed (Table 7); the computed toxic potential is 0.662, 
classifying the compound as slightly dangerous with respect 
to endocrine disruption. At the estrogen receptor β, the high 
affinity can be explained by the strong hydrogen bonds to 
Glu305, Arg346 and His475, respectively (Figure 8). In con-
trast to diethylstilbestrol (cf. above), resveratrol has a clearly 
lower endocrine-disrupting potential. This is primarily due to 
the additional hydroxyl groups which i) are not positioned op-
timally for strong hydrogen bonding and ii) leads to a higher 
desolvation energy. In addition, it does not fit snugly to the 
binding pocket as it lacks the two ethyl groups (cf. Figures 
7 and 8). To confirm this result further, we have performed 
molecular-dynamical simulations with both diethylstilbestrol 
and resveratrol. They indicate that resveratrol binds even 
more weakly — in contrast to diethylstilbestrol — as the key 
hydrogen bonds are not formed during the entire simulation 
(1.0x10–12 sec at 25ºC).

Fig. 7: Details of the binding of diethylstilbestrol to the 
estrogen receptor α (3D image)

Fig. 8: Details of the binding of resveratrol to the estrogen 
receptor β (3D image)

Tab. 5: VirtualToxLab™: Calculated binding affinities of diethylstilbestrol

AR AhR 2A13 3A4 ERα ERβ GR LXR MR PPARγ TRα TRβ

39 µM 450 µM 40 µM 30 µM 57 nM 14 nM 230 nM 10 µM 950 nM 1.4 mM > 1.0 M 60 µM

Tab. 6: VirtualToxLab™: Calculated binding affinities of resveratrol

AR AhR 2A13 3A4 ERα ERβ GR LXR MR PPARγ TRα TRβ
340 µM 5.1 mM 8.4 µM 11 µM 1.0 µM 2.3 nM 80 nM 5.1 µM 1.2 µM 130 µM > 1.0 M 6.7 µM
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Tab. 7: VirtualToxLab™: Calculated endocrine-disrupting potential for 50 selected compounds

Compound calculated toxic potential class main target drug or chemical class

Aflatoxin 0.732 *** ERβ mycotoxin
Amlodipine 0.629 ** GR calcium channel blocker
Auxin 0.202   phytohormone
Benzo[a]anthracene 0.734 *** AhR polyaromatic hydrocarbon
Benzo[a]pyrene 0.810 *** AhR polyaromatic hydrocarbon
Benzylidene camphor 0.637 ** ERβ UV filter
Benzylpenicillin 0.254   antibiotic
Bisphenol A 0.600 ** ERβ polymer additive
Ciprofloxacin 0.311   antibiotic
Clofentezine 0.587 ** AR pesticide
Clopiodogrel 0.336 * GR anti-platelet agent
Cyclamate 0.133   artificial sweetener
Dibenzo[ah]anthracene 0.862 **** AhR polyaromatic hydrocarbon
Diethylstilbestrol 0.721 *** ERα withdrawn drug
Dimoxystrobin 0.533 ** GR pesticide
E100 0.606 *** GR food dye
E104 0.487 * GR food dye
E121 0.545 ** AR food dye
Ecstasy 0.514 ** AR designer drug
Finasterid 0.864 **** ERα antiandrogen
Flanzinam 0.733 *** AR pesticide
Fluticasone 0.796 *** ERα corticosteroid 
Genistein 0.674 ** ERβ antioxidant 
Hexabromodiphenylether 0.699 *** AR flame retardant
Isoxaflutole 0.623 ** ERα pesticide
Limonene 0.100   flavorant
Loracarbef 0.422 * ERβ antibiotic
Lorazepam 0.479 ** AR psychotropic drug
LSD 0.568 ** GR withdrawn drug
Methylbenzylidene camphor 0.656 ** AR UV filter
Methylparabene 0.408 * ERβ fungicide
Mifepristone 0.832 *** AR abortificant
Nicotine 0.386   tobacco alkaloid
Norethandrolone 0.786 *** AR anabolic steroid
Norethynodrel 0.779 *** AR oral contraceptive
Oseltamivir 0.486 * GR antiviral drug
Paracetamol 0.500 ** ERβ analgesic drug
Rofecoxib 0.763 *** AR withdrawn drug
TCDD 0.675 *** AhR “Seveso dioxin”
Tetracyclin 0.234   antibiotic
THC 0.553 ** AR recreational drug
Tetrahydrogestrinone 0.814 *** AR anabolic steroid
Thaliodomide 0.513 ** AR withdrawn drug
Trimipramine 0.562 ** GR psychotropic drug
Troglitazone 0.707 *** AR withdrawn drug
Vitamin A 0.454 * AR retinoid
Vitamin B2 0.478 * ERβ riboflavin
Vitamin C 0.021   ascorbic acid
Vitamin D2 0.626 ** ERβ ergocalciferol
Warfarin 0.314   anticoagulant 
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(2003) — and causing an estimated toll of 10 million laboratory 
animals. Here, our system could prove to be a useful in silico 
screening tool, as new compounds can be tested with only mod-
erate human efforts. The importance of QSARs has more re-
cently been acknowledged by the OeCD (2003) and the Danish 
environmental Protection Agency has taken the lead in the use 
of structure-based methods to prioritize hazardous chemicals 
(Cronin, 2003).
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