Using the monocyte activation test as a stand-alone release test for medical devices
Main Article Content
Abstract
Monocyte activation tests (MAT) are widely available but rarely used in place of animal-based pyrogen tests for safety assessment of medical devices. To address this issue, the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods and the PETA International Science Consortium Ltd. convened a workshop at the National Institutes of Health on September 18-19, 2018. Participants included representatives from MAT testing laboratories, medical device manufacturers, the U.S. Food and Drug Administration’s Center for Devices and Radiologic Health (CDRH), the U.S. Pharmacopeia, the International Organization for Standardization, and experts in the development of MAT protocols. Discussions covered industry experiences with the MAT, remaining challenges, and how CDRH’s Medical Device Development Tools (MDDT) Program, which qualifies tools for use in evaluating medical devices to streamline device development and regulatory evaluation, could be a pathway to qualify the use of MAT in place of the rabbit pyrogen test and the limulus amebocyte lysate test for medical device testing. Workshop outcomes and follow-up activities are discussed.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Anderson, R. L., Watson, W. H. and Chabot, C. C. (2013). Sublethal behavioral and physiological effects of the biomedical bleeding process on the american horseshoe crab, Limulus polyphemus. Biol Bull 225, 137-151. doi:10.1086/BBLv225n3p137
Borton, L. K. and Coleman, K. P. (2018). Material-mediated pyrogens in medical devices: Applicability of the in vitro Monocyte Activation Test. ALTEX 35, 453-463. doi:10.14573/altex.1709221
Cooper, J. F., Levin, J. and Wagner, H. N. (1971). Quantitative comparison of in vitro and in vivo methods for the detection of endotoxin. Transl Res 78, 138-148. doi:10.5555/URI:PII:0022214371902113
Correa, W., Brandenburg, K., Zähringer, U. et al. (2017). Biophysical analysis of lipopolysaccharide formulations for an understanding of the low endotoxin recovery (LER) phenomenon. Int J Mol Sci 18, 2737. doi:10.3390/ijms18122737
Davila, M. L., Riviere, I., Wang, X. et al. (2014). Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6, 224ra25-224ra25. doi:10.1126/scitranslmed.3008226
Duff, G. W. and Atkins, E. (1982). The detection of endotoxin by in vitro production of endogenous pyrogen: Comparison with limulus amebocyte lysate gelation. J Immunol Methods 52, 323-331. doi:10.1016/0022-1759(82)90004-7
EDQM (2010). General Chapter 2.6.30. Monocyte-activation test. European Pharmacopoeia.
Fennrich, S., Hennig, U., Toliashvili, L. et al. (2016). More than 70 years of pyrogen detection: Current state and future perspectives. Altern Lab Anim 44, 239-253. doi:10.1177/026119291604400305
Hartung, T. and Wendel, A. (1995). Die Erfassung von Pyrogenen in einem humanen Vollblutmodell (Detection of pyrogens using human whole blood). ALTEX 12, 70-75. https://www.altex.org/index.php/altex/article/view/1671
Hartung, T., Aaberge, I., Berthold, S. et al. (2001). Novel pyrogen tests based on the human fever reaction. Altern Lab Anim 29, 99-123. doi:10.1177/026119290102900203
Hartung, T. (2015). The human whole blood pyrogen test – Lessons learned in twenty years. ALTEX 32, 79-100. doi:10.14573/altex.1503241
Hasiwa, M., Kullmann, K., von Aulock, S. et al. (2007). An in vitro pyrogen safety test for immune-stimulating components on surfaces. Biomaterials 28, 1367-1375. doi:10.1016/j.biomaterials.2006.11.016
Hasiwa, N., Daneshian, M., Bruegger, P. et al. (2013). Evidence for the detection of non-endotoxin pyrogens by the whole blood monocyte activation test. ALTEX 30, 169-208. doi:10.14573/altex.2013.2.169
Hoffmann, S., Peterbauer, A., Schindler, S. et al. (2005). International validation of novel pyrogen tests based on human monocytoid cells. J Immunol Methods 298, 161-173. doi:10.1016/j.jim.2005.01.010
ISO (2017). ISO 10993-11:2017. Biological evaluation of medical devices – Part 11: Tests for systemic toxicity. Geneva, Switzerland: International Organization for Standardization.
ISO (2018). ISO 10993-1:2018. Biological evaluation of medical devices – Part 1: Evaluation and testing within a risk management process. Geneva, Switzerland: International Organization for Standardization.
Lee, D. W., Gardner, R., Porter, D. L. et al. (2014). Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124, 188-195. doi:10.1182/blood-2014-05-552729
Levin, J. and Bang, F. B. (1964). The role of endotoxin in the extracellular coagulation of limulus blood. Bull Johns Hopkins Hosp 115, 265-274.
Levin, J. and Bang, F. B. (1968). Clottable protein in Limulus; its localization and kinetics of its coagulation by endotoxin. Thromb Diath Haemorrh 19, 186-197. http://www.ncbi.nlm.nih.gov/pubmed/5690028
Mazzotti, F., Beuttler, J., Zeller, R. et al. (2007). In vitro pyrogen test – A new test method for solid medical devices. J Biomed Mater Res A 80, 276-282. doi:10.1002/jbm.a.30922
Schindler, S., Spreitzer, I., Löschner, B. et al. (2006). International validation of pyrogen tests based on cryopreserved human primary blood cells. J Immunol Methods 316, 42-51. doi:10.1016/j.jim.2006.07.023
Schwarz, H., Gornicec, J., Neuper, T. et al. (2017). Biological activity of masked endotoxin. Sci Rep 7, 44750. doi:10.1038/srep44750