Exploratory analysis of the application of animal reduction approaches in proteomics: How much is enough?

Main Article Content

Laura M. Langan
Bryan W. Brooks

Abstract

Animal testing has long been the cornerstone of chemical safety assessments, but fish embryo assays represent an alter­native. Omics studies allow the examination of early molecular responses of organisms to environmental stressors, but reduction of animal use within this context has been overlooked. For proteomics, there is significant disparity and vari­ability in the organismal pool size used for studies, ranging from 1-1500 embryos per replicate for zebrafish alone. However, it is unknown if varying sample pool size results in differences in protein identifications. To examine whether the detected proteome changes depend on this variable, 3 pool sizes (5, 10 or 20 embryos or larvae per replicate) were compared using the two most common fish models with an appropriate biological replicate number determined by power analysis (n = 7). Data was acquired using MSe, resulting in 1,946 and 3,172 protein groups identified (1% false discovery rate) for fathead minnow and zebrafish, respectively. Proteins were not differentially expressed among pool sizes, and no significant difference was observed among the identified protein groups. However, for the fathead minnow, a decrease in the number of identified proteins was observed with increasing pool size, while a trend towards an increase in protein identifications was observed in zebrafish between the lowest and highest pool size. Taken together, our observations suggest that a proteome characterization experiment using these fish models can achieve comparable protein identifications using pool sizes of less than 5 organisms per replicate, assuming a protein requirement of 50 μg or less.

Article Details

How to Cite
Langan , L. M. and Brooks, B. W. (2022) “Exploratory analysis of the application of animal reduction approaches in proteomics: How much is enough?”, ALTEX - Alternatives to animal experimentation, 39(2), pp. 258–270. doi: 10.14573/altex.2107212.
Section
Articles
References

Aballo, T. J., Roberts, D. S., Melby, J. A. et al. (2021). Ultrafast and reproducible proteomics from small amounts of heart tissue enabled by Azo and timsTOF Pro. J Proteome Res 20, 4203-4211. doi:10.1021/acs.jproteome.1c00446

Almeida, A. M., Ali, S. A., Ceciliani, F. et al. (2021). Domestic animal proteomics in the 21st century: A global retrospective and viewpoint analysis. J Proteomics 241, 104220. doi:10.1016/j.jprot.2021.104220

Ankley, G. T., Bennett, R. S. and Erickson, R. J. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730-741. doi:10.1002/etc.34

Avtonomov, D. M., Kong, A. and Nesvizhskii, A. I. (2019). DeltaMass: Automated detection and visualization of mass shifts in proteomic open-search results. J Proteome Res 18, 715-720. doi:10.1021/acs.jproteome.8b00728

Ayobahan, S. U., Eilebrecht, S., Baumann, L. et al. (2020). Detection of biomarkers to differentiate endocrine disruption from hepatotoxicity in zebrafish (Danio rerio) using proteomics. Chemosphere 240, 124970. doi:10.1016/j.chemosphere.2019.124970

Barkovits, K., Pacharra, S., Pfeiffer, K. et al. (2020). Reproducibility, specificity and accuracy of relative quantification using spectral library-based data-independent acquisition. Mol Cell Proteomics 19, 181-197. doi:10.1074/mcp.RA119.001714

Becker, R. A. (2019). Transforming regulatory safety evaluations using new approach methodologies: A perspective of an industrial toxicologist. Curr Opin Toxicol 15, 93-98. doi:10.1016/j.cotox.2019.07.002

Benton, H. P., Want, E. J. and Ebbels, T. M. D. (2010). Correction of mass calibration gaps in liquid chromatography-mass spectrometry metabolomics data. Bioinformatics 26, 2488-2489. doi:10.1093/bioinformatics/btq441

Bert, B., Chmielewska, J., Bergmann, S. et al. (2016). Considerations for a European animal welfare standard to evaluate adverse phenotypes in teleost fish. EMBO J 35, 1151-1154. doi:10.15252/embj.201694448

Blattmann, P., Stutz, V., Lizzo, G. et al. (2019). Generation of a zebrafish SWATH-MS spectral library to quantify 10,000 proteins. Sci Data 6, 190011. doi:10.1038/sdata.2019.11

Bouhifd, M., Beger, R., Flynn, T. et al. (2015). t4 workshop report: Quality assurance of metabolomics. ALTEX 32, 319-326. doi:10.14573/altex.1509161

Boyles, R. R., Thessen, A. E., Waldrop, A. et al. (2019). Ontology-based data integration for advancing toxicological knowledge. Curr Opin Toxicol 16, 67-74. doi:10.1016/j.cotox.2019.05.005

Brockmeier, E. K., Hodges, G., Hutchinson, T. H. et al. (2017). The role of omics in the application of adverse outcome pathways for chemical risk assessment. Toxicol Sci 158, 252-262. doi:10.1093/toxsci/kfx097

Bruderer, R., Bernhardt, O. M., Gandhi, T. et al. (2017). Optimization of experimental parameters in data-independent mass spectrometry significantly increases depth and reproducibility of results. Mol Cell Proteomics 16, 2296-2309. doi:10.1074/mcp.RA117.000314

Buesen, R., Chorley, B. N., da Silva Lima, B. et al. (2017). Applying ’omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regul Toxicol Pharmacol 91, Suppl 1, S3-S13. doi:10.1016/j.yrtph.2017.09.002

Campos, B., Colbourne, J. K., Brown, J. B. et al. (2018). How omics technologies can enhance chemical safety regulation: perspectives from academia, government, and industry. Environ Toxicol Chem 37, 1252-1259. doi:10.1002/etc.4079

Chambers, M. C., Maclean, B., Burke, R. et al. (2012). A Cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30, 918-920. doi:10.1038/nbt.2377

Chen, L., Hu, Y., He, J. et al. (2017). Responses of the proteome and metabolome in livers of zebrafish exposed chronically to environmentally relevant concentrations of microcystin-LR. Environ Sci Technol 51, 596-607. doi:10.1021/acs.est.6b03990

Chick, J. M., Kolippakkam, D., Nusinow, D. P. et al. (2015). A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol 33, 743-749. doi:10.1038/nbt.3267

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. 2nd edition. New York, USA: Lawrence Erlbaum Associates. doi:10.4324/9780203771587

Delcourt, N., Quevedo, C., Nonne, C. et al. (2015). Targeted identification of sialoglycoproteins in hypoxic endothelial cells and validation in zebrafish reveal roles for proteins in angiogenesis. J Biol Chem 290, 3405-3417. doi:10.1074/jbc.M114.618611

Della Torre, C., Maggioni, D., Ghilardi, A. et al. (2018). The interactions of fullerene C60 and benzo(α)pyrene influence their bioavailability and toxicity to zebrafish embryos. Environ Poll 241, 999-1008. doi:10.1016/j.envpol.2018.06.042

Dhillon, R. S. and Richards, J. G. (2018). Hypoxia induces selective modifications to the acetylome in the brain of zebrafish (Danio rerio). Comp Biochem Physiol B Biochem Mol Biol 224, 79-87. doi:10.1016/j.cbpb.2017.12.018

Eng, J. K., Searle, B. C., Clauser, K. R. et al. (2011). A face in the crowd: Recognizing peptides through database search. Mol Cell Proteomics 10, R111.009522. doi:10.1074/mcp.r111.009522

Feist, P. and Hummon, A. B. (2015). Proteomic challenges: Sample preparation techniques for microgram-quantity protein analysis from biological samples. Int J Mol Sci 16, 3537-3563. doi:10.3390/ijms16023537

Fernández-Costa, C., Martínez-Bartolomé, S., McClatchy, D. B. et al. (2020). Impact of the identification strategy on the reproducibility of the DDA and DIA results. J Proteome Res 19, 3153-3161. doi:10.1021/acs.jproteome.0c00153

Frøyset, A. K., Khan, E. A. and Fladmark, K. E. (2016). Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA). Sci Rep 6, 29631. doi:10.1038/srep29631

Gatto, L., Gibb, S. and Rainer, J. (2020). MSnbase, efficient and elegant R-based processing and visualization of raw mass spectrometry data. J Proteome Res 20, 1063-1069. doi:10.1021/acs.jproteome.0c00313

Ge, C., Lu, W. and Chen, A. (2017). Quantitative proteomic reveals the dynamic of protein profile during final oocyte maturation in zebrafish. Biochem Biophys Res Commun 490, 657-663. doi:10.1016/j.bbrc.2017.06.093

Gouveia, D., Almunia, C., Cogne, Y. et al. (2019). Ecotoxicoproteomics: A decade of progress in our understanding of anthropogenic impact on the environment. J Proteomics 198, 66-77. doi:10.1016/j.jprot.2018.12.001

Gündel, U., Kalkhof, S., Zitzkat, D. et al. (2012). Concentration-response concept in ecotoxicoproteomics: Effects of different phenanthrene concentrations to the zebrafish (Danio rerio) embryo proteome. Ecotoxicol Environ Saf 76, 11-22. doi:10.1016/j.ecoenv.2011.10.010

Hagenaars, A., Vergauwen, L., Benoot, D. et al. (2013). Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity. Chemosphere 91, 844-856. doi:10.1016/j.chemosphere.2013.01.056

Halder, M., Léonard, M., Iguchi, T. et al. (2010). Regulatory aspects on the use of fish embryos in environmental toxicology. Int Environ Assess Manag 6, 484-491. doi:10.1002/ieam.48

Healy, M. J., Tong, W., Ostroff, S. et al. (2016). Regulatory bioinformatics for food and drug safety. Reg Toxicol Pharmacol 80, 342-347. doi:10.1016/j.yrtph.2016.05.021

Helmus, R., ter Laak, T. L., van Wezel, A. P. et al. (2021). patRoon: Open-source software platform for environmental mass spectrometry based non-target screening. J Cheminformatics 13, 1. doi:10.1186/s13321-020-00477-w

Ives, C., Campia, I., Wang, R.-L. et al. (2017). Creating a structured adverse outcome pathway knowledgebase via ontology-based annotations. Appl In Vitro Toxicol 3, 298-311. doi:10.1089/aivt.2017.0017

Jeffries, M. K. S., Stultz, A. E., Smith, A. W. et al. (2015). The fish embryo toxicity test as a replacement for the larval growth and survival test: A comparison of test sensitivity and identification of alternative endpoints in zebrafish and fathead minnows. Environ Toxicol Chem 34, 1369-1381. doi:10.1002/etc.2932

Käll, L., Canterbury, J. D., Weston, J. et al. (2007). Semi-supervised learning for peptide identification from shotgun proteomics datasets. Nat Methods 4, 923-925. doi:10.1038/nmeth1113

Kendziorski, C., Irizarry, R. A., Chen, K.-S. et al. (2005). On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A 102, 4252-4257. doi:10.1073/pnas.0500607102

Kim, H., Lee, S. and Park, H. (2019). Target-small decoy search strategy for false discovery rate estimation. BMC Bioinformatics 20, 438. doi:10.1186/s12859-019-3034-8

Kim, S. and Pevzner, P. A. (2014). MS-GF+ makes progress towards a universal database search tool for proteomics. Nat Commun 5, 5277. doi:10.1038/ncomms6277

Kimmel, C. B., Ballard, W. W., Kimmel, S. R. et al. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. doi:10.1002/aja.1002030302

Klont, F., Bras, L., Wolters, J. C. et al. (2018). Assessment of sample preparation bias in mass spectrometry-based proteomics. Anal Chem 90, 5405-5413. doi:10.1021/acs.analchem.8b00600

Knigge, T. (2015). Proteomics in marine organisms. Proteomics 15, 3921-3924. doi:10.1002/pmic.201570213

Kong, A. T., Leprevost, F. V., Avtonomov, D. M. et al. (2017). MSFragger: Ultrafast and comprehensive peptide identification in shotgun proteomics. Nat Methods 14, 513-520. doi:10.1038/nmeth.4256

Kristofco, L. A., Du, B., Chambliss, C. K. et al. (2015). Comparative pharmacology and toxicology of pharmaceuticals in the environment: Diphenhydramine protection of diazinon toxicity in Danio rerio but not Daphnia magna. AAPS J 17, 175-183. doi:10.1208/s12248-014-9677-5

Kristofco, L. A., Haddad, S. P., Chambliss, C. K. et al. (2018). Differential uptake of and sensitivity to diphenhydramine in embryonic and larval zebrafish. Environ Toxicol Chem 37, 1175-1181. doi:10.1002/etc.4068

Kroeger, M. (2006). How omics technologies can contribute to the ‘3R’ principles by introducing new strategies in animal testing. Trends Biotechnol 24, 343-346. doi:10.1016/j.tibtech.2006.06.003

Kwon, O. K., Kim, S. and Lee, S. (2016). Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos: Proteomics and 2-DE. Electrophoresis 37, 3137-3145. doi:10.1002/elps.201600210

Lavelle, C., Smith, L. C., Bisesi, J. H. et al. (2018). Tissue-based mapping of the fathead minnow (Pimephales promelas) transcriptome and proteome. Front Endocrinol 9, 611. doi:10.3389/fendo.2018.00611

Lazar, C., Gatto, L., Ferro, M. et al. (2016). Accounting for the multiple natures of missing values in label-free quantitative proteomics data sets to compare imputation strategies. J Proteome Res 15, 1116-1125. doi:10.1021/acs.jproteome.5b00981

Lee, H., Sung, E. J., Seo, S. et al. (2021). Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. Environ Int 157, 106802. doi:10.1016/j.envint.2021.106802

Lemeer, S., Ruijtenbeek, R., Pinkse, M. W. H. et al. (2007). Endogenous phosphotyrosine signaling in zebrafish embryos. Mol Cell Proteomics 6, 2088-2099. doi:10.1074/mcp.M600482-MCP200

Lemeer, S., Jopling, C., Gouw, J. et al. (2008). Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 7, 2176-2187. doi:10.1074/mcp.M800081-MCP200

Levin, Y. (2011). The role of statistical power analysis in quantitative proteomics. Proteomics 11, 2565-2567. doi:10.1002/pmic.201100033

Li, D., Lu, S., Liu, W. et al. (2018). Optimal settings of mass spectrometry open search strategy for higher confidence. J Proteome Res 17, 3719-3729. doi:10.1021/acs.jproteome.8b00352

Libiseller, G., Dvorzak, M., Kleb, U. et al. (2015). IPO: A tool for automated optimization of XCMS parameters. BMC Bioinformatics 16, 118. doi:10.1186/s12859-015-0562-8

Lippolis, J. D., Powell, E. J., Reinhardt, T. A. et al. (2019). Symposium review: Omics in dairy and animal science – Promise, potential, and pitfalls. J Dairy Sci 102, 4741-4754. doi:10.3168/jds.2018-15267

Lombard-Banek, C., Moody, S. A., Manzini, M. C. et al. (2019). Microsampling capillary electrophoresis mass spectrometry enables single-cell proteomics in complex tissues: Developing cell clones in live Xenopus laevis and zebrafish embryos. Anal Chem 91, 4797-4805. doi:10.1021/acs.analchem.9b00345

López-Pedrouso, M., Varela, Z., Franco, D. et al. (2020). Can proteomics contribute to biomonitoring of aquatic pollution? A critical review. Environ Poll 267, 115473. doi:10.1016/j.envpol.2020.115473

Martinson, J., Bencic, D. C., Toth, G. P. et al. (2021). De novo assembly and annotation of a highly contiguous reference genome of the fathead minnow (Pimephales promelas) reveals an AT-rich repetitive genome with compact gene structure. bioRxiv, 2021.02.24.432777. doi:10.1101/2021.02.24.432777

Martyniuk, C. J., Alvarez, S., McClung, S. et al. (2009). Quantitative proteomic profiles of androgen receptor signaling in the liver of fathead minnows (Pimephales promelas). J Proteome Res 8, 2186-2200. doi:10.1021/pr800627n

Martyniuk, C. J. and Alvarez, S. (2013). Proteome analysis of the fathead minnow (Pimephales promelas) reproductive testes. J Proteomics 79, 28-42. doi:10.1016/j.jprot.2012.11.023

May, D. H., Tamura, K. and Noble, W. S. (2017). Param-Medic: A tool for improving MS/MS database search yield by optimizing parameter settings. J Proteome Res 16, 1817-1824. doi:10.1021/acs.jproteome.7b00028

Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – The most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.1807041

Molinari, N., Roche, S., Peoc’h, K. et al. (2018). Sample pooling and inflammation linked to the false selection of biomarkers for neurodegenerative diseases in top-down proteomics: A pilot study. Front Mol Neurosci 11, 477. doi:10.3389/fnmol.2018.00477

Moosa, J. M., Guan, S., Moran, M. F. et al. (2020). Repeat-preserving decoy database for false discovery rate estimation in peptide identification. J Proteome Res 19, 1029-1036. doi:10.1021/acs.jproteome.9b00555

Moreton, M. L., Lo, B. P., Simmons, D. B. D. et al. (2020). Toxicity of the aquatic herbicide, reward®, on the fathead minnow with pulsed-exposure proteomic profile. Comp Biochem Physiol Part D Genomics Proteomics 33, 100635. doi:10.1016/j.cbd.2019.100635

OECD (2013). Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD Publishing, Paris. doi:10.1787/9789264203709-en

Piehowski, P. D., Petyuk, V. A., Orton, D. J. et al. (2013). Sources of technical variability in quantitative LC-MS proteomics: Human brain tissue sample analysis. J Proteome Res 12, 2128-2137. doi:10.1021/pr301146m

Purushothaman, K., Das, P. P., Presslauer, C. et al. (2019). Proteomics analysis of early developmental stages of zebrafish embryos. Int J Mol Sci 20, 6359. doi:10.3390/ijms20246359

Rawlings, J. M., Belanger, S. E., Connors, K. A. et al. (2019). Fish embryo tests and acute fish toxicity tests are interchangeable in the application of the threshold approach. Environ Toxicol Chem 38, 671-681. doi:10.1002/etc.4351

Révész, Á., Milley, M. G., Nagy, K. et al. (2021). Tailoring to search engines: Bottom-up proteomics with collision energies optimized for identification confidence. J Proteome Res 20, 474-484. doi:10.1021/acs.jproteome.0c00518

Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. https://books.google.it/books/about/The_principles_of_humane_experimental_te.html?id=j75qAAAAMAAJ&redir_esc=y

Sadiq, S. T. and Agranoff, D. (2008). Pooling serum samples may lead to loss of potential biomarkers in SELDI-ToF MS proteomic profiling. Proteome Sci 6, 16. doi:10.1186/1477-5956-6-16

Sanchez, B. C., Ralston-Hooper, K. and Sepúlveda, M. S. (2011). Review of recent proteomic applications in aquatic toxicology. Environ Toxicol Chem 30, 274-282. doi:10.1002/etc.402

Sauer, U. G., Deferme, L., Gribaldo, L. et al. (2017). The challenge of the application of ’omics technologies in chemicals risk assessment: Background and outlook. Regul Toxicol Pharmacol 91, S14-S26. doi:10.1016/j.yrtph.2017.09.020

Schaeck, M., Van den Broeck, W., Hermans, K. et al. (2013). Fish as research tools: Alternatives to in vivo experiments. Altern Lab Anim 41, 219-229. doi:10.1177/026119291304100305

Searle, B. C., Turner, M. and Nesvizhskii, A. I. (2008). Improving sensitivity by probabilistically combining results from multiple MS/MS search methodologies. J Proteome Res 7, 245-253. doi:10.1021/pr070540w

Shliaha, P. V., Bond, N. J., Gatto, L. et al. (2013). Effects of traveling wave ion mobility separation on data independent acquisition in proteomics studies. J Proteome Res 12, 2323-2339. doi:10.1021/pr300775k

Smith, C. A., Want, E. J., O’Maille, G. et al. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 78, 779-787. doi:10.1021/ac051437y

Smith, L. C., Lavelle, C. M., Silva-Sanchez, C. et al. (2018). Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 8, 10212. doi:10.1038/s41598-018-28395-w

Spivak, M., Weston, J., Bottou, L. et al. (2009). Improvements to the Percolator algorithm for peptide identification from shotgun proteomics data sets. J Proteome Res 8, 3737-3745. doi:10.1021/pr801109k

Steele, W. B., Kristofco, L. A., Corrales, J. et al. (2018). Comparative behavioral toxicology with two common larval fish models: Exploring relationships among modes of action and locomotor responses. Sci Total Environ 640-641, 1587-1600. doi:10.1016/j.scitotenv.2018.05.402

Stieglitz, J. D., Mager, E. M., Hoenig, R. H. et al. (2016). A novel system for embryo-larval toxicity testing of pelagic fish: Applications for impact assessment of Deepwater Horizon crude oil. Chemosphere 162, 261-268. doi:10.1016/j.chemosphere.2016.07.069

Su, T., Lian, D., Bai, Y. et al. (2021). The feasibility of the zebrafish embryo as a promising alternative for acute toxicity test using various fish species: A critical review. Sci Total Environ 787, 147705. doi:10.1016/j.scitotenv.2021.147705

Tautenhahn, R., Böttcher, C. and Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics 9, 504. doi:10.1186/1471-2105-9-504

Taylor, K. and Alvarez, L. R. (2019). An estimate of the number of animals used for scientific purposes worldwide in 2015. Altern Lab Anim 47, 196-213. doi:10.1177/0261192919899853

The, M., MacCoss, M. J., Noble, W. S. et al. (2016). Fast and accurate protein false discovery rates on large-scale proteomics data sets with Percolator 3.0. J Am Soc Mass Spectrom 27, 1719-1727. doi:10.1007/s13361-016-1460-7

Tsou, C.-C., Tsai, C.-F., Teo, G. C. et al. (2016). Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers. Proteomics 16, 2257-2271. doi:10.1002/pmic.201500526

UK Home Office (2015). Statistics of Scientific Procedures on Living Animals Great Britain 2014. https://bit.ly/3G1sMbB

US EPA (2002). Method 1000.0: Fathead Minnow, Pimephales promelas, Larval Survival and Growth; Chronic Toxicity. Environmental Protection Agency. http://www.epa.gov

US EPA (2017). Alternative Test Methods and Strategies to Reduce Vertebrate Animal Testing. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce

Välikangas, T., Suomi, T. and Elo, L. L. (2018). A systematic evaluation of normalization methods in quantitative label-free proteomics. Brief Bioinform 19, bbw095. doi:10.1093/bib/bbw095

van der Plas-Duivesteijn, S. J., Mohammed, Y., Dalebout, H. et al. (2014). Identifying proteins in zebrafish embryos using spectral libraries generated from dissected adult organs and tissues. J Proteome Res 13, 1537-1544. doi:10.1021/pr4010585

Wei, R., Wang, J., Su, M. et al. (2018). Missing value imputation approach for mass spectrometry-based metabolomics data. Sci Rep 8, 663. doi:10.1038/s41598-017-19120-0

Weng, R. R., Chu, L. J., Shu, H.-W. et al. (2013). Large precursor tolerance database search – A simple approach for estimation of the amount of spectra with precursor mass shifts in proteomic data. J Proteomics 91, 375-384. doi:10.1016/j.jprot.2013.07.030

Wiśniewski, J. R. (2016). Quantitative evaluation of filter aided sample preparation (FASP) and multienzyme digestion FASP protocols. Anal Chem 88, 5438-5443. doi:10.1021/acs.analchem.6b00859

Wit, M. D., Keil, D., van der Ven, K. et al. (2010). An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17 α-ethinylestradiol in zebrafish (Danio rerio). Gen Comp Endocrinol 167, 190-201. doi:10.1016/j.ygcen.2010.03.003

Wu, Y., Lou, Q.-Y., Ge, F. et al. (2017). Quantitative proteomics analysis reveals novel targets of miR-21 in zebrafish embryos. Sci Rep 7, 4022. doi:10.1038/s41598-017-04166-x

Yu, G., Wang, L.-G., Han, Y. et al. (2012). clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16, 284-287. doi:10.1089/omi.2011.0118

Zhang, W., Liu, Y., Zhang, H. et al. (2012). Proteomic analysis of male zebrafish livers chronically exposed to perfluorononanoic acid. Environ Int 42, 20-30. doi:10.1016/j.envint.2011.03.002

Zhou, C., Simpson, K. L., Lancashire, L. J. et al. (2012). Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery. J Proteome Res 11, 2103-2113. doi:10.1021/pr200636x