A rodent thyroid-liver chip to capture thyroid toxicity on organ functional level

Main Article Content

Diana Karwelat
Julia Kühnlenz
Thomas Steger-Hartmann
Remi Bars
Helen Tinwell
Uwe Marx
Sophie Bauer
Oliver Born
Marian Raschke


Endocrine disruption by environmental chemicals continues to be a concern for human safety. The rat, a widely used model organism in toxicology, is very sensitive to chemical-induced thyroid perturbation, e.g. histopathological alterations in thyroid tissue. Species differences in the susceptibility to thyroid perturbation lead to uncertainty in human safety risk assessments. Hazard identification and characterization of chemically induced thyroid perturbation would therefore benefit from in vitro models addressing different mechanisms of action in a single functional assay, ideally across species. We here introduce a rat thyroid-liver chip that enables simultaneous identification of direct and indirect (liver-mediated) thyroid perturbation on organ-level functions in vitro. A second manuscript describes our work toward a human thyroid-liver chip (Kühnlenz et al., 2022). The presented microfluidic model consisting of primary rat thyroid follicles and liver 3D spheroids maintain a tissue-specific phenotype for up to 21 days. More precisely, the thyroid model exhibits a follicular architecture expressing basolateral and apical markers and secretes T4. Likewise, liver spheroids retain hepatocellular characteristics, e.g. a stable release of albumin and urea, the presence of bile canalicular networks, and the formation of T4-glucuronide. Experiments with reference chemicals demonstrated proficiency to detect direct and indirect mechanisms of thyroid perturbation through decreased thyroid hormone secretion and increased gT4 formation, respectively. Prospectively this rat thyroid-liver chip model, together with its human counterpart, may support a species-specific quantitative in vitro to in vivo extrapolation to improve a data-driven and evidence-based human safety risk assessment with significant contributions to the 3R principles.

Article Details

How to Cite
Karwelat, D., Kühnlenz, J., Steger-Hartmann, T., Bars, R., Tinwell, H., Marx, U., Bauer, S., Born, O. and Raschke, M. (2022) “A rodent thyroid-liver chip to capture thyroid toxicity on organ functional level”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2108262.

Bale, S. S., Geerts, S., Jindal, R. et al. (2016). Isolation and co-culture of rat parenchymal and non-parenchymal liver cells to evaluate cellular interactions and response. Sci Rep 6. https://doi.org/10.1038/srep25329.

Barter, R. A. and Klaassen, C. D. (1992). Rat liver microsomal UDP-glucuronosyltransferase activity toward thyroxine: Characterization, induction, and form specificity. Toxicology and Applied Pharmacology 115, 261–267. https://doi.org/10.1016/0041-008X(92)90331-L.

Bartsch, R., Brinkmann, B., Jahnke, G. et al. (2018). Human relevance of follicular thyroid tumors in rodents caused by non-genotoxic substances. Regulatory Toxicology and Pharmacology 98, 199–208. https://doi.org/10.1016/j.yrtph.2018.07.025.

Beck-Peccoz, P., Persani, L., Calebiro, D. et al. (2006). Syndromes of hormone resistance in the hypothalamic-pituitary-thyroid axis. Best Pract Res Clin Endocrinol Metab 20, 529–546. https://doi.org/10.1016/j.beem.2006.11.001.

Bell, C. C., Hendriks, D. F. G., Moro, S. M. L. et al. (2016). Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 6, 25187. https://doi.org/10.1038/srep25187.

Bergman, AAke, Heindel, J. J., Jobling, S. et al. (2013). State of the science of endocrine disrupting chemicals 2012. World Health Organization.

Brewer, C., Yeager, N. and Cristofano, A. D. (2007). Thyroid-Stimulating Hormone–Initiated Proliferative Signals Converge In vivo on the mTOR Kinase without Activating AKT. Cancer Res 67, 8002–8006. https://doi.org/10.1158/0008-5472.CAN-07-2471.

BRUCKER-DAVIS, F. (1998). Effects of Environmental Synthetic Chemicals on Thyroid Function. Thyroid 8, 827–856. https://doi.org/10.1089/thy.1998.8.827.

Caballero, M. V., Ares, I., Martínez, M. et al. (2015). Fipronil induces CYP isoforms in rats. Food and Chemical Toxicology 83, 215–221. https://doi.org/10.1016/j.fct.2015.06.019.

Capen, C. C. (1994). Mechanisms of chemical injury of thyroid gland. Prog Clin Biol Res 387, 173–191

Capen, C. C., Dybing, E., Rice, J. M. et al. (1999). Species difference in thyroid, kidney and urinary bladder carcinogenesis. IARC scientific publications, 1-14 I

Carvalho, D. P. and Dupuy, C. (2017). Thyroid hormone biosynthesis and release. Molecular and Cellular Endocrinology 458, 6–15. https://doi.org/10.1016/j.mce.2017.01.038.

Chang, S.-Y., Voellinger, J. L., Van Ness, K. P. et al. (2017). Characterization of rat or human hepatocytes cultured in microphysiological systems (MPS) to identify hepatotoxicity. Toxicology in Vitro 40, 170–183. https://doi.org/10.1016/j.tiv.2017.01.007.

Cox, C. R., Lynch, S., Goldring, C. et al. (2020). Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. Front Med Technol 2. https://doi.org/10.3389/fmedt.2020.611913.

Crivellente, F., Hart, A., Hernandez‐Jerez, A. F. et al. (2019). Establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA Journal 17, e05801. https://doi.org/10.2903/j.efsa.2019.5801.

Crofton, K. M. (2008). Thyroid disrupting chemicals: mechanisms and mixtures. International Journal of Andrology 31, 209–223. https://doi.org/10.1111/j.1365-2605.2007.00857.x.

Deisenroth, C., Soldatow, V. Y., Ford, J. et al. (2020). Development of an In Vitro Human Thyroid Microtissue Model for Chemical Screening. Toxicological Sciences 174, 63–78. https://doi.org/10.1093/toxsci/kfz238.

Dellarco, V. L., McGregor, D., Berry, S. C. et al. (2006). Thiazopyr and Thyroid Disruption: Case Study Within the Context of the 2006 IPCS Human Relevance Framework for Analysis of a Cancer Mode of Action. Critical Reviews in Toxicology 36, 793–801. https://doi.org/10.1080/10408440600975242.

Delmarcelle, A.-S., Villacorte, M., Hick, A.-C. et al. (2014). An Ex vivo Culture System to Study Thyroid Development. JoVE (Journal of Visualized Experiments), e51641. https://doi.org/10.3791/51641.

Denef, J.-F., Björkman, U. and Ekholm, R. (1980). Structural and functional characteristics of isolated thyroid follicles. Journal of Ultrastructure Research 71, 185–202. https://doi.org/10.1016/S0022-5320(80)90106-9.

ECHA (2021). Propylthiouracil - Substance Information - ECHA. Available at: https://echa.europa.eu/de/substance-information/-/substanceinfo/100.000.095 [Accessed May 23, 2021].

EU (2009). Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Available at: http://data.europa.eu/eli/reg/2009/1107/oj.

EU (2012). Regulation (EU) No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Available at: http://data.europa.eu/eli/reg/2012/528/oj.

European Chemical Agency (ECHA) and European Food Safety Authority (EFSA) with the technical support of the Joint Research Centre (JRC), Andersson, N., Arena, M. et al. (2018). Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA Journal 16, e05311. https://doi.org/10.2903/j.efsa.2018.5311.

European Chemicals Agency. (2017). Guidance on the application of the CLP criteria: guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures. LU: Publications Office. Available at: https://data.europa.eu/doi/10.2823/124801 [Accessed April 8, 2021].

Foster, J. R., Tinwell, H. and Melching-Kollmuss, S. (2021). A review of species differences in the control of, and response to, chemical-induced thyroid hormone perturbations leading to thyroid cancer. Arch Toxicol. https://doi.org/10.1007/s00204-020-02961-6.

Gärtner, R., Greil, W., Stübner, D. et al. (1985). Preparation of porcine thyroid follicles with preserved polarity: functional and morphological properties in comparison to inside-out follicles. Molecular and Cellular Endocrinology 40, 9–16. https://doi.org/10.1016/0303-7207(85)90152-2.

Gérard, A.-C., Denef, J.-F., Colin, I. M. et al. (2004). Evidence for processing of compact insoluble thyroglobulin globules in relation with follicular cell functional activity in the human and the mouse thyroid. Eur J Endocrinol 150, 73–80. https://doi.org/10.1530/eje.0.1500073.

Hallinger, D. R., Murr, A. S., Buckalew, A. R. et al. (2017). Development of a screening approach to detect thyroid disrupting chemicals that inhibit the human sodium iodide symporter (NIS). Toxicol In Vitro 40, 66–78. https://doi.org/10.1016/j.tiv.2016.12.006.

Hartoft-Nielsen, M., Rasmussen, Å., Feldt-Rasmussen, U. et al. (2005). Estimation of number of follicles, volume of colloid and inner follicular surface area in the thyroid gland of rats. J Anat 207, 117–124. https://doi.org/10.1111/j.1469-7580.2005.00442.x.

Hurley, P. M. (1998). Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environmental Health Perspectives 106, 437–445. https://doi.org/10.1289/ehp.98106437.

Ito, O., Nakamura, Y., Tan, L. et al. (2006). Expression of cytochrome P-450 4 enzymes in the kidney and liver: Regulation by PPAR and species-difference between rat and human. Molecular and Cellular Biochemistry 284, 141–148. https://doi.org/10.1007/s11010-005-9038-x.

Jemnitz, K., Veres, Z., Monostory, K. et al. (2000). Glucuronidation of Thyroxine in Primary Monolayer Cultures of Rat Hepatocytes: In Vitro Induction of UDP-Glucuronosyltranferases by Methylcholanthrene, Clofibrate, and Dexamethasone Alone and in Combination. Drug Metab Dispos 28, 34–37

Joannard, F., Galisteo, M., Corcos, L. et al. (2000). Regulation of phenobarbital-induction of CYP2B and CYP3A genes in rat cultured hepatocytes: involvement of several serine/threonine protein kinases and phosphatases. Cell Biol Toxicol 16, 325–337. https://doi.org/10.1023/a:1026702615125.

Jones, S. A., Moore, L. B., Shenk, J. L. et al. (2000). The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 14, 27–39. https://doi.org/10.1210/mend.14.1.0409.

Kapałczyńska, M., Kolenda, T., Przybyła, W. et al. (2018). 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Arch Med Sci 14, 910–919. https://doi.org/10.5114/aoms.2016.63743.

Khoruzhenko, A., Miot, F., Massart, C. et al. (2021). Functional model of rat thyroid follicles cultured in Matrigel. Endocrine Connections 10, 570–578. https://doi.org/10.1530/EC-21-0169.

Klaassen, C. D. and Hood, A. M. (2001). Effects of Microsomal Enzyme Inducers on Thyroid Follicular Cell Proliferation and Thyroid Hormone Metabolism. Toxicol Pathol 29, 34–40. https://doi.org/10.1080/019262301301418838.

Kliewer, S. A., Moore, J. T., Wade, L. et al. (1998). An Orphan Nuclear Receptor Activated by Pregnanes Defines a Novel Steroid Signaling Pathway. Cell 92, 73–82. https://doi.org/10.1016/S0092-8674(00)80900-9.

Kocarek, T. A., Schuetz, E. G., Strom, S. C. et al. (1995). Comparative analysis of cytochrome P4503A induction in primary cultures of rat, rabbit, and human hepatocytes. Drug Metab Dispos 23, 415–421

Kühnlenz, J., Karwelat, D., Steger-Hartmann, T. et al. (2021). A microfluidic thyroid-liver platform to assess chemical safety in humans. submitted to ALTEX

Kyffin, J. A., Sharma, P., Leedale, J. et al. (2019). Characterisation of a functional rat hepatocyte spheroid model. Toxicol In Vitro 55, 160–172. https://doi.org/10.1016/j.tiv.2018.12.014.

Lee, H. B. and Blaufox, M. D. (1985). Blood Volume in the Rat. Journal of Nuclear Medicine 26, 72–76

Li, F., Cao, L., Parikh, S. et al. (2020). Three-Dimensional Spheroids With Primary Human Liver Cells and Differential Roles of Kupffer Cells in Drug-Induced Liver Injury. Journal of Pharmaceutical Sciences 109, 1912–1923. https://doi.org/10.1016/j.xphs.2020.02.021.

Mullur, R., Liu, Y.-Y. and Brent, G. A. (2014). Thyroid hormone regulation of metabolism. Physiol Rev 94, 355–382. https://doi.org/10.1152/physrev.00030.2013.

Noyes, Friedman Katie Paul, Browne Patience et al. (2019). Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. Environmental Health Perspectives 127, 095001. https://doi.org/10.1289/EHP5297.

Noyes, P. D., Friedman, K. P., Browne, P. et al. (2019). Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. Environ Health Perspect 127. https://doi.org/10.1289/EHP5297.

OECD (2018). Revised Guidance Document 150 on Standardised Test Guidelines for Evaluating Chemicals for Endocrine Disruption. Available at: https://www.oecd-ilibrary.org/content/publication/9789264304741-en.

Oredsson, S., Coecke, S., van der Valk, J. et al. (2019). What is understood by “animal-free research”? Toxicology in Vitro 57, 143–144. https://doi.org/10.1016/j.tiv.2019.03.001.

Paul Friedman, K., Watt, E. D., Hornung, M. W. et al. (2016). Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. Toxicol Sci 151, 160–180. https://doi.org/10.1093/toxsci/kfw034.

Paul, K. B., Hedge, J. M., Macherla, C. et al. (2013). Cross-species analysis of thyroperoxidase inhibition by xenobiotics demonstrates conservation of response between pig and rat. Toxicology 312, 97–107. https://doi.org/10.1016/j.tox.2013.08.006.

Paul, K. B., Hedge, J. M., Rotroff, D. M. et al. (2014). Development of a thyroperoxidase inhibition assay for high-throughput screening. Chem Res Toxicol 27, 387–399. https://doi.org/10.1021/tx400310w.

Peeters, R. P. and Visser, T. J. (2000). Metabolism of Thyroid Hormone. In K. R. Feingold, B. Anawalt, A. Boyce, et al. (eds.), Endotext. South Dartmouth (MA): MDText.com, Inc. Available at: http://www.ncbi.nlm.nih.gov/books/NBK285545/ [Accessed March 2, 2021].

Punt, A., Bouwmeester, H., Blaauboer, B. J. et al. (2020). New approach methodologies (NAMs) for human-relevant biokinetics predictions: Meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. ALTEX - Alternatives to animal experimentation 37, 607–622. https://doi.org/10.14573/altex.2003242.

Raasch, M., Fritsche, E., Kurtz, A. et al. (2019). Microphysiological systems meet hiPSC technology - New tools for disease modeling of liver infections in basic research and drug development. Adv Drug Deliv Rev 140, 51–67. https://doi.org/10.1016/j.addr.2018.06.008.

Richardson, T. A. and Klaassen, C. D. (2010). Disruption of thyroid hormone homeostasis in Ugt1a-deficient Gunn rats by microsomal enzyme inducers is not due to enhanced thyroxine glucuronidation. Toxicol Appl Pharmacol 248, 38–44. https://doi.org/10.1016/j.taap.2010.07.010.

Richardson, V. M., Ferguson, S. S., Sey, Y. M. et al. (2014). In vitro metabolism of thyroxine by rat and human hepatocytes. Xenobiotica 44, 391–403. https://doi.org/10.3109/00498254.2013.847990.

Roques, B. B., Lacroix, M. Z., Puel, S. et al. (2012). CYP450-dependent biotransformation of the insecticide fipronil into fipronil sulfone can mediate fipronil-induced thyroid disruption in rats. Toxicol Sci 127, 29–41. https://doi.org/10.1093/toxsci/kfs094.

Roques, B. B., Leghait, J., Lacroix, M. Z. et al. (2013). The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism. Biochem Pharmacol 86, 997–1039. https://doi.org/10.1016/j.bcp.2013.08.012.

Rousset, B., Dupuy, C., Miot, F. et al. (2000). In K. R. Feingold, B. Anawalt, A. Boyce, et al. (eds.), Thyroid Hormone Synthesis And Secretion. Available at: http://www.ncbi.nlm.nih.gov/books/NBK285550/ [Accessed June 3, 2021].

Saito, K., Kaneko, H., Sato, K. et al. (1991). Hepatic UDP-glucuronyltransferase(s) activity toward thyroid hormones in rats: Induction and effects on serum thyroid hormone levels following treatment with various enzyme inducers. Toxicology and Applied Pharmacology 111, 99–106. https://doi.org/10.1016/0041-008X(91)90138-5.

Saito, Y., Onishi, N., Takami, H. et al. (2018). Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun 497, 783–789. https://doi.org/10.1016/j.bbrc.2018.02.154.

Samimi, H., Atlasi, R., Parichehreh-Dizaji, S. et al. (2021). A systematic review on thyroid organoid models: time-trend and its achievements. American Journal of Physiology-Endocrinology and Metabolism 320, E581–E590. https://doi.org/10.1152/ajpendo.00479.2020.

Santini, F., Vitti, P., Ceccarini, G. et al. (2003). In vitro assay of thyroid disruptors affecting TSH-stimulated adenylate cyclase activity. J Endocrinol Invest 26, 950–955. https://doi.org/10.1007/BF03348190.

Schröder-van der Elst, J. P., van der Heide, D., Romijn, J. A. et al. (2004). Differential effects of natural flavonoids on growth and iodide content in a human Na*/I- symporter-transfected follicular thyroid carcinoma cell line. Eur J Endocrinol 150, 557–564. https://doi.org/10.1530/eje.0.1500557.

Singh, G. and Correa, R. (2021). Methimazole. In StatPearls. Treasure Island (FL): StatPearls Publishing. Available at: http://www.ncbi.nlm.nih.gov/books/NBK545223/ [Accessed May 23, 2021].

Sutcliffe, C. and Harvey, P. W. (2015). Chapter 11 - Endocrine Disruption of Thyroid Function: Chemicals, Mechanisms, and Toxicopathology. In P. D. Darbre (ed.), Endocrine Disruption and Human Health (201–217). Boston: Academic Press. https://doi.org/10.1016/B978-0-12-801139-3.00011-9.

Vansell, N. R., Muppidi, J. R., Habeebu, S. M. et al. (2004). Promotion of Thyroid Tumors in Rats by Pregnenolone-16α-Carbonitrile (PCN) and Polychlorinated Biphenyl (PCB). Toxicological Sciences 81, 50–59. https://doi.org/10.1093/toxsci/kfh197.

Viollon-Abadie, C., Lassere, D., Debruyne, E. et al. (1999). Phenobarbital, β-Naphthoflavone, Clofibrate, and Pregnenolone-16α-Carbonitrile Do Not Affect Hepatic Thyroid Hormone UDP-Glucuronosyl Transferase Activity, and Thyroid Gland Function in Mice. Toxicology and Applied Pharmacology 155, 1–12. https://doi.org/10.1006/taap.1998.8558.

Wang, J., Hallinger, D. R., Murr, A. S. et al. (2018). High-Throughput Screening and Quantitative Chemical Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical Library. Environ Sci Technol 52, 5417–5426. https://doi.org/10.1021/acs.est.7b06145.

Wikswo, J. P. (2014). The relevance and potential roles of microphysiological systems in biology and medicine. Exp Biol Med (Maywood) 239, 1061–1072. https://doi.org/10.1177/1535370214542068.

Zoeller, R. T., Tan, S. W. and Tyl, R. W. (2007). General Background on the Hypothalamic-Pituitary-Thyroid (HPT) Axis. Critical Reviews in Toxicology 37, 11–53. https://doi.org/10.1080/10408440601123446.

Most read articles by the same author(s)