Impact of in vitro experimental variation in kinetic parameters on physiologically based kinetic (PBK) model simulations

Main Article Content

Ans Punt
Peter Bos
Betty Hakkert
Jochem Louisse


In vitro toxicokinetic data are critical in meeting an increased regulatory need to improve chemical safety evaluations towards a better understanding of internal human chemical exposure and toxicity. In vitro intrinsic hepatic clearance (CLint), the fraction unbound in plasma (Fup), and the intestinal apparent permeability (Papp) are important parameters as input in a physiologically based kinetic (PBK) model to make first estimates of internal exposure after oral dosing. In the present study we explored the experimental variation in the values for these parameters as reported in the literature. Furthermore, the impact that this experimental variation has on PBK model predictions of maximum plasma concentration (Cmax) and the area under the concentration time curve (AUC0-24h) was determined. As a result of the experimental variation in CLint, Papp, and Fup, the predicted variation in Cmax for individual compounds ranged between 1.4- to 28-fold and the predicted variation in AUC0-24h ranged between 1.4- and 23-fold. These results indicate that there are still some important steps to take to achieve robust data that can be used in regulatory applications. To gain regulatory acceptance of in vitro kinetic data and PBK models based on in vitro input data, the boundaries in experimental conditions as well as the applicability domain and the use of different in vitro kinetic models need to be described in guidance documents.

Article Details

How to Cite
Punt, A., Bos, P., Hakkert, B. and Louisse, J. (2022) “Impact of in vitro experimental variation in kinetic parameters on physiologically based kinetic (PBK) model simulations”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2202131.

Andersen, M.E., McMullen, P.D., Phillips, M.B., Yoon, M., et al. (2019) Developing context appropriate toxicity testing approaches using new alternative methods (NAMs). ALTEX, 36, 523–534. doi:10.14573/altex.1906261

Arnesdotter, E., Rogiers, V., Vanhaecke, T., and Vinken, M. (2021) An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol, 51, 395–417. doi:10.1080/10408444.2021.1931027

Berezhkovskiy, L.M. (2004) Volume of distribution at steady state for a linear pharmacokinetic system with peripheral elimination. J Pharm Sci, 93, 1628-1640. doi:10.1002/jps.20073

Bessems, J.G., Loizou, G., Krishnan, K., Clewell, H.J., et al. (2014) PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment. Recommendations from a joint EPAA - EURL ECVAM ADME workshop. Regul Toxicol Pharmacol, 68, 119–139. doi:10.1016/j.yrtph.2013.11.008

Blaauboer, B.J. (2014). In Vitro Approaches to Predictive Biokinetics. In, In Vitro Toxicology Systems, Methods in Pharmacology and Toxicology. Humana Press, New York, NY, pp. 521–530. doi:10.1007/978-1-4939-0521-8_23

Black, S.R., Nichols, J.W., Fay, K.A., Matten, S.R., et al. (2021) Evaluation and comparison of in vitro intrinsic clearance rates measured using cryopreserved hepatocytes from humans, rats, and rainbow trout. Toxicology, 457, 152819. doi:10.1016/j.tox.2021.152819

de Boer, A., Krul, L., Fehr, M., Geurts, L., et al. (2020) Animal-free strategies in food safety & nutrition: What are we waiting for? Part I: Food safety. Trends Food Sci Technol, 106, 469–484. doi:10.1016/j.tifs.2020.10.034

Cai, J. and Shalan, H. (2021) Assessment of Cytochrome P450 Metabolic Clearance Using Hepatocyte Suspension. Humana, New York, NY, pp. 243–259. doi:10.1007/978-1-0716-1542-3_15

Chen, Y.-C., Kenny, J.R., Wright, M., Hop, C.E.C.A., et al. (2019) Improving Confidence in the Determination of Free Fraction for Highly Bound Drugs Using Bidirectional Equilibrium Dialysis. J Pharm Sci, 108, 1296–1302. doi:10.1016/j.xphs.2018.10.011

Choi, G.-W., Lee, Y.-B., and Cho, H.-Y. (2019) Interpretation of Non-Clinical Data for Prediction of Human Pharmacokinetic Parameters: In Vitro-In Vivo Extrapolation and Allometric Scaling. Pharmaceutics, 11, 168. doi:10.3390/pharmaceutics11040168

Coecke, S., Pelkonen, O., Leite, S.B., Bernauer, U., et al. (2013) Toxicokinetics as a key to the integrated toxicity risk assessment based primarily on non-animal approaches. Toxicol Vitr, 27, 1570–1577. doi:10.1016/j.tiv.2012.06.012

Deshmukh, S. V. and Harsch, A. (2011) Direct determination of the ratio of unbound fraction in plasma to unbound fraction in microsomal system (fup/fumic) for refined prediction of phase I mediated metabolic hepatic clearance. J Pharmacol Toxicol Methods, 63, 35–39. doi:10.1016/j.vascn.2010.04.003

Elsby, R., Maggs, J.L., Ashby, J., and Park, B.K. (2001) Comparison of the modulatory effects of human and rat liver microsomal metabolism on the estrogenicity of bisphenol A: implications for extrapolation to humans. J Pharmacol Exp Ther, 297, 103–13.

EMA (2018) EMA Guideline on the reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation. doi:10.1002/psp4.12166

Estudante, M., de Mello-Sampayo, C., Sahin, S., Morais, J., et al. (2015) The utility of in vitro trials that use Caco-2 cell systems as a replacement for animal intestinal permeability and human bioequivalence measurements in drug development. J Biomed Biopharm Res, 12, 117–126. doi:10.19277/bbr.12.1.110

European Commission (2020) Chemicals strategy for sustainability—towards a toxic-free environment, communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, 14-10-2020 667 final. doi:10.54648/eerr1996017

European Commission (2019) The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. Brussels, 11–12–2019 640 final. doi:10.54648/eerr1996017

Fagerholm, U., Spjuth, O., and Hellberg, S. (2021) Comparison between lab variability and in silico prediction errors for the unbound fraction of drugs in human plasma. Xenobiotica, 51, 1095–1100. doi:10.1080/00498254.2021.1964044

Ferguson, K.C., Luo, Y.S., Rusyn, I., and Chiu, W.A. (2019) Comparative analysis of Rapid Equilibrium Dialysis (RED) and solid phase micro-extraction (SPME) methods for In Vitro-In Vivo extrapolation of environmental chemicals. Toxicol Vitr, 60, 245–251. doi:10.1016/j.tiv.2019.06.006

Fortaner, S., Mendoza-De Gyves, E., Cole, T., and Lostia, A.M. (2021) Determination of in vitro metabolic hepatic clearance of valproic acid (VPA) and five analogues by UPLC-MS-QTOF, applicable in alternatives to animal testing. J Chromatogr B Anal Technol Biomed Life Sci, 1181. doi:10.1016/j.jchromb.2021.122893

Gertz, M., Harrison, A., Houston, J.B., and Galetin, A. (2010) Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos, 38, 1147–1158. doi:10.1124/dmd.110.032649

Gouliarmou, V., Lostia, A.M., Coecke, S., Bernasconi, C., et al. (2018) Establishing a systematic framework to characterise in vitro methods for human hepatic metabolic clearance. Toxicol Vitr, 53, 233–244. doi:10.1016/j.tiv.2018.08.004

Grandoni, S., Cesari, N., Brogin, G., Puccini, P., et al. (2019) Building in-house PBPK modelling tools for oral drug administration from literature information. ADMET DMPK, 7, 4–21. doi:10.5599/admet.638

Hallifax, D., Turlizzi, E., Zanelli, U., and Houston, J.B. (2012) Clearance-dependent underprediction of in vivo intrinsic clearance from human hepatocytes: Comparison with permeabilities from artificial membrane (PAMPA) assay, in silico and caco-2 assay, for 65 drugs. Eur J Pharm Sci, 45, 570–574. doi:10.1016/j.ejps.2011.12.010

Hanioka, N., Isobe, T., Tanaka-Kagawa, T., Jinno, H., et al. (2020) In vitro glucuronidation of bisphenol A in liver and intestinal microsomes: interspecies differences in humans and laboratory animals. Drug Chem Toxicol. doi:10.1080/01480545.2020.1847133

Hou, T.J., Zhang, W., Xia, K., Qiao, X.B., et al. (2004) ADME evaluation in drug discovery. 5. Correlation of caco-2 permeation with simple molecular properties. J Chem Inf Comput Sci, 44, 1585–1600. doi:10.1021/ci049884m

Hubatsch, I., Ragnarsson, E.G.E., and Artursson, P. (2007) Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat Protoc, 2, 2111–2119. doi:10.1038/nprot.2007.303

Jones, H. and Rowland-Yeo, K. (2013) Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT pharmacometrics Syst Pharmacol, 2, e63. doi:10.1038/psp.2013.41

Jones, R.S., Chang, J.H., Flores, M., and Brecht, E. (2021) Evaluation of a Competitive Equilibrium Dialysis Approach for Assessing the Impact of Protein Binding on Clearance Predictions. J Pharm Sci, 110, 536–542. doi:10.1016/j.xphs.2020.09.012

Kulthong, K., Duivenvoorde, L., Mizera, B.Z., Rijkers, D., et al. (2018) Implementation of a dynamic intestinal gut-on-a-chip barrier model for transport studies of lipophilic dioxin congeners. RSC Adv, 8, 32440–32453. doi:10.1039/c8ra05430d

Larregieu, C.A. and Benet, L.Z. (2014) Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Mol Pharm, 11, 1335–1344. doi:10.1021/mp4007858

Lee, J.B., Zgair, A., Taha, D.A., Zang, X., et al. (2017) Quantitative analysis of lab-to-lab variability in Caco-2 permeability assays. Eur J Pharm Biopharm, 114, 38–42. doi:10.1016/j.ejpb.2016.12.027

Li, C., Liu, T., Cui, X., Uss, A.S., et al. (2007) Development of in vitro pharmacokinetic screens using Caco-2, human hepatocyte, and Caco-2/human hepatocyte hybrid systems for the prediction of oral bioavailability in humans. J Biomol Screen, 12, 1084–1091. doi:10.1177/1087057107308892

Loizou, G., McNally, K., Dorne, J.-L.C.M., and Hogg, A. (2021) Derivation of a Human In Vivo Benchmark Dose for Perfluorooctanoic Acid From ToxCast In Vitro Concentration–Response Data Using a Computational Workflow for Probabilistic Quantitative In Vitro to In Vivo Extrapolation. Front Pharmacol, 12. doi:10.3389/fphar.2021.630457

Louisse, J., Beekmann, K., and Rietjens, I.M.C.M. (2017) Use of physiologically based kinetic modeling-based reverse dosimetry to predict in vivo toxicity from in vitro data. Chem Res Toxicol, 30, 114–125. doi:10.1021/acs.chemrestox.6b00302

Louisse, J., Alewijn, M., Peijnenburg, A.A.C.M., Cnubben, N.H.P., et al. (2020) Towards harmonization of test methods for in vitro hepatic clearance studies. Toxicol In Vitro, 63, 104722. doi:10.1016/j.tiv.2019.104722

Maas, W.J.M., de Graaf, I.A.M., Schoen, E.D., Koster, H.J., et al. (2000) Assessment of Some Critical Factors in the Freezing Technique for the Cryopreservation of Precision-Cut Rat Liver Slices. Cryobiology, 40, 250–263. doi:10.1006/cryo.2000.2246

Mazur, C.S., Kenneke, J.F., Hess-Wilson, J.K., and Lipscomb, J.C. (2010) Differences between human and rat intestinal and hepatic bisphenol a glucuronidation and the influence of alamethicin on in vitro kinetic measurements. Drug Metab Dispos, 38, 2232–2238. doi:10.1124/dmd.110.034819

McNally, K., Hogg, A., and Loizou, G. (2018) A Computational Workflow for Probabilistic Quantitative in Vitro to in Vivo Extrapolation. Front Pharmacol, 9. doi:10.3389/fphar.2018.00508

Neuhoff, S., Ungell, A.L., Zamora, I., and Artursson, P. (2003) ph-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: Implications for drug-drug interactions. Pharm Res, 20, 1141–1148. doi:10.1023/a:1025032511040

OECD (2021) Guidance document on the characterisation, validation and reporting of Physiologically Based Kinetic (PBK) models for regulatory. Series on Testing and Assessment No. 331. purposes.

Paini, A., Tan, Y.M., Sachana, M., and Worth, A. (2021) Gaining acceptance in next generation PBK modelling approaches for regulatory assessments – An OECD international effort. Comput Toxicol, 18, 100163. doi:10.1016/j.comtox.2021.100163

Paul Friedman, K., Gagne, M., Loo, L.-H., Karamertzanis, P., et al. (2020) Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol Sci, 173, 202–225. doi:10.1093/toxsci/kfz201

Peters, S.A. (2012) Review of Pharmacokinetic Principles. In, Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 17–42. doi:10.1002/9781118140291.ch3

Punt, A., Bouwmeester, H., Blaauboer, B.J., Coecke, S., et al. (2020) New approach methodologies (NAMs) for human-relevant biokinetics predictions. Meeting the paradigm shift in toxicology towards an animal-free chemical risk assessment. ALTEX, 37, 607–622. doi:10.14573/altex.2003242

Punt, A., Peijnenburg, A.A.C.M., Hoogenboom, R.L.A.P., and Bouwmeester, H. (2017) Non-animal approaches for toxicokinetics in risk evaluations of food chemicals. ALTEX, 34, 501–514. doi:10.14573/altex.1702211

Punt, A., Louisse, J., Beekmann, K., Pinckaers, N., et al. (2022) Predictive performance of next generation human physiologically based kinetic (PBK) models based on in vitro and in silico input data. ALTEX, 39, 221–234. doi:10.14573/altex.2108301

R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

Rodgers, T. and Rowland, M. (2006) Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci, 95, 1238–1257. doi:10.1002/jps.20502

Sager, J.E., Yu, J., Ragueneau-Majlessi, I., and Isoherranen, N. (2015) Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: A systematic review of published models, applications, and model verification. Drug Metab Dispos, 43, 1823–1837. doi:10.1124/dmd.115.065920

SCCS (2018) The SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation. 10th revision, section 3-4.12.1.

Schmitt, W. (2008) General approach for the calculation of tissue to plasma partition coefficients. Toxicol Vitr, 22, 457–467. doi:10.1016/j.tiv.2007.09.010

Seibert, E. and Tracy, T.S. (2014) Fundamentals of enzyme kinetics. Methods Mol Biol, 1113, 9–22.

Srivastava, A., Pike, A., Williamson, B., and Fenner, K. (2021) A Novel Method for Preventing Non-specific Binding in Equilibrium Dialysis Assays Using Solutol® as an Additive. J Pharm Sci, 110, 1412–1417. doi:10.1016/j.xphs.2020.11.018

Usansky, H.H. and Sinko, P.J. (2005) Estimating human drug oral absorption kinetics from Caco-2 permeability using an absorption-disposition model: Model development and evaluation and derivation of analytical solutions for ka and Fa. J Pharmacol Exp Ther, 314, 391–399. doi:10.1124/jpet.104.076182

Wambaugh, J.F., Wetmore, B.A., Ring, C.L., Nicolas, C.I., et al. (2019) Assessing Toxicokinetic Uncertainty and Variability in Risk Prioritization. Toxicol Sci, 172, 235–251. doi:10.1093/toxsci/kfz205

Wang, H., Zrada, M., Anderson, K., Katwaru, R., et al. (2014) Understanding and reducing the experimental variability of in vitro plasma protein binding measurements. J Pharm Sci, 103, 3302–3309. doi:10.1002/jps.24119

Watanabe, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., et al. (2018) Predicting Fraction Unbound in Human Plasma from Chemical Structure: Improved Accuracy in the Low Value Ranges. Mol Pharm, 15, 5302–5311. doi:10.1021/acs.molpharmaceut.8b00785

Wilk-Zasadna, I., Bernasconi, C., Pelkonen, O., and Coecke, S. (2015) Biotransformation in vitro: An essential consideration in the quantitative in vitro-to-in vivo extrapolation (QIVIVE) of toxicity data. Toxicology, 332, 8–19. doi:10.1016/j.tox.2014.10.006

Ye, M., Nagar, S., and Korzekwa, K. (2016) A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding. Biopharm Drug Dispos, 37, 123–141. doi:10.1002/bdd.1996

Zare Jeddi, M., Hopf, N.B., Viegas, S., Price, A.B., et al. (2021) Towards a systematic use of effect biomarkers in population and occupational biomonitoring. Environ Int, 146, 106257. doi:10.1016/j.envint.2020.106257

Most read articles by the same author(s)