Applications of microphysiological systems to disease models in the biopharmaceutical industry: Opportunities and challenges
Main Article Content
Abstract
Disease models enable researchers to investigate, test, and identify therapeutic targets that would alter the patients’ disease condition and improve quality of life. Advances in genetic alteration and analytical techniques have enabled rapid development of disease models using preclinical animals and cell cultures. However, success rates of drug development remain low due to limited recapitulation of clinical pathophysiology by these models. To resolve this challenge, the pharmaceutical industry has explored microphysiological system (MPS) disease models, which are complex in vitro systems that include but are not limited to organ-on-a-chip, organoids, spheroids, and 3D bioengineered tissues (e.g., 3D printing, hydrogels). Capable of integrating key in vivo properties, such as disease-relevant human cells, multi-cellularity/dimensionality of organs, and/or well-controlled physical and molecular cues, MPS disease models are being developed for a variety of indications. With on-going qualifications or validations for wide adoption within the pharmaceutical industry, MPS disease models hold exciting potential to enable in-depth investigation of in vivo pathophysiology and enhance drug discovery and development processes. To introduce the present status of MPS disease models, this paper describes notable examples in six disease areas: cancer, liver/kidney diseases, respiratory diseases/COVID-19, neurodegenerative diseases, gastrointestinal diseases, and select rare diseases. Additionally, we describe current technical limitations and provide recommendations for future development that would expand application opportunities within the pharmaceutical industry.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Agrawal, M., Ajazuddin, Tripathi, D. K. et al. (2017). Recent advancements in liposomes targeting strategies to cross blood-brain barrier (BBB) for the treatment of Alzheimer’s disease. J Control Release 260, 61-77. doi:10.1016/j.jconrel.2017.05.019
Ahn, S. I., Sei, Y. J., Park, H. J. et al. (2020). Microengineered human blood-brain barrier platform for understanding nanoparticle transport mechanisms. Nat Commun 11, 175. doi:10.1038/s41467-019-13896-7
Ainslie, G. R., Davis, M., Ewart, L. et al. (2019). Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: A biopharmaceutical perspective. Lab Chip 19, 3152-3161. doi:10.1039/c9lc00492k
Ananthanarayanan, A., Nugraha, B., Triyatni, M. et al. (2014). Scalable spheroid model of human hepatocytes for hepatitis C infection and replication. Mol Pharm 11, 2106-2114. doi:10.1021/mp500063y
Anderson, R. M., Hadjichrysanthou, C., Evans, S. et al. (2017). Why do so many clinical trials of therapies for Alzheimer’s disease fail? Lancet 390, 2327-2329. doi:10.1016/s0140-6736(17)32399-1
Andorfer, C., Acker, C. M., Kress, Y. et al. (2005). Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25, 5446-5454. doi:10.1523/JNEUROSCI.4637-04.2005
Arian, C. M., Imaoka, T., Yang, J. et al. (2022). Gutsy science: In vitro systems of the human intestine to model oral drug disposition. Pharmacol Ther 230, 107962. doi:10.1016/j.pharmthera.2021.107962
Arrowsmith, J. and Miller, P. (2013). Trial watch: Phase II and phase III attrition rates 2011-2012. Nat Rev Drug Discov 12, 569. doi:10.1038/nrd4090
Astashkina, A. I., Mann, B. K., Prestwich, G. D. et al. (2012). A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays. Biomaterials 33, 4700-4711. doi:10.1016/j.biomaterials.2012.02.063
Atchison, L., Zhang, H., Cao, K. et al. (2017). A tissue engineered blood vessel model of Hutchinson-Gilford progeria syndrome using human iPSC-derived smooth muscle cells. Sci Rep 7, 8168. doi:10.1038/s41598-017-08632-4
Ausems, M. G., Verbiest, J., Hermans, M. P. et al. (1999). Frequency of glycogen storage disease type II in the Netherlands: Implications for diagnosis and genetic counselling. Eur J Hum Genet 7, 713-716. doi:10.1038/sj.ejhg.5200367
Austin, C. P. (2010). NIH translational research for rare diseases and orphan products: NCGC and TRND. Presentation to the IOM Committee on Accelerating Rare Diseases Research and Orphan Product Development. Washington, DC.
Avila, A. M., Bebenek, I., Bonzo, J. A. et al. (2020). An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Regul Toxicol Pharmacol 114, 104662. doi:10.1016/j.yrtph.2020.104662
Bai, H., Si, L., Jiang, A. et al. (2022). Mechanical control of innate immune responses against viral infection revealed in a human lung alveolus chip. Nat Commun 13, 1928. doi:10.1038/s41467-022-29562-4
Bailey, J., Thew, M. and Balls, M. (2015). Predicting human drug toxicity and safety via animal tests: Can any one species predict drug toxicity in any other, and do monkeys help? Altern Lab Anim 43, 393-403. doi:10.1177/026119291504300607
Baran, S. W., Brown, P. C., Baudy, A. R. et al. (2022). Perspectives on the evaluation and adoption of complex in vitro models in drug development: Workshop with the FDA and the pharmaceutical industry (IQ MPS affiliate). ALTEX 39, 297-314. doi:10.14573/altex.2112203
Barkal, L. J., Procknow, C. L., Alvarez-Garcia, Y. R. et al. (2017). Microbial volatile communication in human organotypic lung models. Nat Commun 8, 1770. doi:10.1038/s41467-017-01985-4
Baudy, A. R., Otieno, M. A., Hewitt, P. et al. (2020). Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry. Lab Chip 20, 215-225. doi:10.1039/c9lc00768g
Beal, M. F. (2010). Parkinson’s disease: A model dilemma. Nature 466, S8-10. doi:10.1038/466S8a
Beck, J. N., Singh, A., Rothenberg, A. R. et al. (2013). The independent roles of mechanical, structural and adhesion characteristics of 3D hydrogels on the regulation of cancer invasion and dissemination. Biomaterials 34, 9486-9495. doi:10.1016/j.biomaterials.2013.08.077
Benam, K. H., Dauth, S., Hassell, B. et al. (2015). Engineered in vitro disease models. Annu Rev Pathol 10, 195-262. doi:10.1146/annurev-pathol-012414-040418
Benam, K. H., Villenave, R., Lucchesi, C. et al. (2016). Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat Methods 13, 151-157. doi:10.1038/nmeth.3697
Benam, K. H., Denney, L. and Ho, L. P. (2019). How the respiratory epithelium senses and reacts to influenza virus. Am J Respir Cell Mol Biol 60, 259-268. doi:10.1165/rcmb.2018-0247TR
Berg, H. F., Hjelmeland, M. E., Lien, H. et al. (2021). Patient-derived organoids reflect the genetic profile of endometrial tumors and predict patient prognosis. Commun Med (Lond) 1, 20. doi:10.1038/s43856-021-00019-x
Bersini, S., Jeon, J. S., Dubini, G. et al. (2014). A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone. Biomaterials 35, 2454-2461. doi:10.1016/j.biomaterials.2013.11.050
Birey, F., Andersen, J., Makinson, C. D. et al. (2017). Assembly of functionally integrated human forebrain spheroids. Nature 545, 54-59. doi:10.1038/nature22330
Birgersdotter, A., Sandberg, R. and Ernberg, I. (2005). Gene expression perturbation in vitro – A growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15, 405-412. doi:10.1016/j.semcancer.2005.06.009
Bleijs, M., Van de Wetering, M., Clevers, H. et al. (2019). Xenograft and organoid model systems in cancer research. EMBO J 38, e101654. doi:10.15252/embj.2019101654
Blesa, J. and Przedborski, S. (2014). Parkinson’s disease: Animal models and dopaminergic cell vulnerability. Front Neuroanat 8, 155. doi:10.3389/fnana.2014.00155
Blomme, E. A. and Will, Y. (2016). Toxicology strategies for drug discovery: Present and future. Chem Res Toxicol 29, 473-504. doi:10.1021/acs.chemrestox.5b00407
Blume, C., Reale, R., Held, M. et al. (2017). Cellular crosstalk between airway epithelial and endothelial cells regulates barrier functions during exposure to double-stranded RNA. Immun Inflamm Dis 5, 45-56. doi:10.1002/iid3.139
Blutt, S. E., Broughman, J. R., Zou, W. et al. (2017). Gastrointestinal microphysiological systems. Exp Biol Med (Maywood) 242, 1633-1642. doi:10.1177/1535370217710638
Bolognin, S., Fossepre, M., Qing, X. et al. (2019). 3D cultures of Parkinson’s disease-specific dopaminergic neurons for high content phenotyping and drug testing. Adv Sci (Weinh) 6, 1800927. doi:10.1002/advs.201800927
Bousquet, J. and Meunier, J. M. (1962). Organotypic culture, on natural and artificial media, of fragments of the adult rat hypophysis [Article in French]. C R Seances Soc Biol Fil 156, 65-67.
Bregenzer, M. E., Horst, E. N., Mehta, P. et al. (2019). Integrated cancer tissue engineering models for precision medicine. PLoS One 14, e0216564. doi:10.1371/journal.pone.0216564
Burniston, J. G., Clark, W. A., Tan, L. B. et al. (2006). Dose-dependent separation of the hypertrophic and myotoxic effects of the β2-adrenergic receptor agonist clenbuterol in rat striated muscles. Muscle Nerve 33, 655-663. doi:10.1002/mus.20504
Bussani, R., Schneider, E., Zentilin, L. et al. (2020). Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced covid-19 pathology. EBioMedicine 61, 103104. doi:10.1016/j.ebiom.2020.103104
Carvalho, M. P., Costa, E. C., Miguel, S. P. et al. (2016). Tumor spheroid assembly on hyaluronic acid-based structures: A review. Carbohydr Polym 150, 139-148. doi:10.1016/j.carbpol.2016.05.005
Carvalho, M. R., Barata, D., Teixeira, L. M. et al. (2019). Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine. Sci Adv 5, eaaw1317. doi:10.1126/sciadv.aaw1317
Chang, S. S., Tu, S., Baek, K. I. et al. (2017). Optimal occlusion uniformly partitions red blood cells fluxes within a microvascular network. PLoS Comput Biol 13, e1005892. doi:10.1371/journal.pcbi.1005892
Chen, J., Deng, X., Liu, Y. et al. (2020). Kupffer cells in non-alcoholic fatty liver disease: Friend or foe? Int J Biol Sci 16, 2367-2378. doi:10.7150/ijbs.47143
Chen, Y. W., Huang, S. X., de Carvalho, A. et al. (2017). A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol 19, 542-549. doi:10.1038/ncb3510
Chlebanowska, P., Tejchman, A., Sulkowski, M. et al. (2020). Use of 3D organoids as a model to study idiopathic form of Parkinson’s disease. Int J Mol Sci 21, 694. doi:10.3390/ijms21030694
Cho, N. J., Elazar, M., Xiong, A. et al. (2009). Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional peg-based hydrogel. Biomed Mater 4, 011001. doi:10.1088/1748-6041/25/1/011001
Choi, S. H., Kim, Y. H., Hebisch, M. et al. (2014). A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515, 274-278. doi:10.1038/nature13800
Choi, Y. J., Chae, S., Kim, J. H. et al. (2013a). Neurotoxic amyloid beta oligomeric assemblies recreated in microfluidic platform with interstitial level of slow flow. Sci Rep 3, 1921. doi:10.1038/srep01921
Choi, Y. J., Park, J. and Lee, S. H. (2013b). Size-controllable networked neurospheres as a 3D neuronal tissue model for Alzheimer’s disease studies. Biomaterials 34, 2938-2946. doi:10.1016/j.biomaterials.2013.01.038
Choucha Snouber, L., Jacques, S., Monge, M. et al. (2012). Transcriptomic analysis of the effect of ifosfamide on MDCK cells cultivated in microfluidic biochips. Genomics 100, 27-34. doi:10.1016/j.ygeno.2012.05.001
Choucha-Snouber, L., Aninat, C., Grsicom, L. et al. (2013). Investigation of ifosfamide nephrotoxicity induced in a liver-kidney co-culture biochip. Biotechnol Bioeng 110, 597-608. doi:10.1002/bit.24707
Chowdury, M. A., Heileman, K. L., Moore, T. A. et al. (2019). Biomicrofluidic systems for hematologic cancer research and clinical applications. SLAS Technol 24, 457-476. doi:10.1177/2472630319846878
Chramiec, A., Teles, D., Yeager, K. et al. (2020). Integrated human organ-on-a-chip model for predictive studies of anti-tumor drug efficacy and cardiac safety. Lab Chip 20, 4357-4372. doi:10.1039/d0lc00424c
Clark, M. and Steger-Hartmann, T. (2018). A big data approach to the concordance of the toxicity of pharmaceuticals in animals and humans. Regul Toxicol Pharmacol 96, 94-105. doi:10.1016/j.yrtph.2018.04.018
Cleary, S. J., Pitchford, S. C., Amison, R. T. et al. (2020). Animal models of mechanisms of SARS-CoV-2 infection and COVID-19 pathology. Br J Pharmacol 177, 4851-4865. doi:10.1111/bph.15143
Compston, A. and Coles, A. (2008). Multiple sclerosis. Lancet 372, 1502-1517. doi:10.1016/S0140-6736(08)61620-7
Costa, J. and Ahluwalia, A. (2019). Advances and current challenges in intestinal in vitro model engineering: A digest. Front Bioeng Biotechnol 7, 144. doi:10.3389/fbioe.2019.00144
Croft, C. L., Futch, H. S., Moore, B. D. et al. (2019). Organotypic brain slice cultures to model neurodegenerative proteinopathies. Molecular Neurodegeneration 14, 45. doi:10.1186/s13024-019-0346-0
Cruz, N. M., Song, X., Czerniecki, S. M. et al. (2017). Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease. Nat Mater 16, 1112-1119. doi:10.1038/nmat4994
Cui, X., Morales, R. T., Qian, W. et al. (2018). Hacking macrophage-associated immunosuppression for regulating glioblastoma angiogenesis. Biomaterials 161, 164-178. doi:10.1016/j.biomaterials.2018.01.053
Dagogo-Jack, I. and Shaw, A. T. (2018). Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15, 81-94. doi:10.1038/nrclinonc.2017.166
Davidson, M. D., Lehrer, M. and Khetani, S. R. (2015). Hormone and drug-mediated modulation of glucose metabolism in a microscale model of the human liver. Tissue Eng Part C Methods 21, 716-725. doi:10.1089/ten.TEC.2014.0512
Dawson, T. M., Golde, T. E. and Lagier-Tourenne, C. (2018). Animal models of neurodegenerative diseases. Nat Neurosci 21, 1370-1379. doi:10.1038/s41593-018-0236-8
DesRochers, T. M., Suter, L., Roth, A. et al. (2013). Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity. PLoS One 8, e59219. doi:10.1371/journal.pone.0059219
Dixon, E. E. and Woodward, O. M. (2018). Three-dimensional in vitro models answer the right questions in ADPKD cystogenesis. Am J Physiol Renal Physiol 315, F332-F335. doi:10.1152/ajprenal.00126.2018
Dorsey, E. R., Constantinescu, R., Thompson, J. P. et al. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68, 384-386. doi:10.1212/01.wnl.0000247740.47667.03
Douvaras, P., Wang, J., Zimmer, M. et al. (2014). Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Reports 3, 250-259. doi:10.1016/j.stemcr.2014.06.012
Edington, C. D., Chen, W. L. K., Geishecker, E. et al. (2018). Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci Rep 8, 4530. doi:10.1038/s41598-018-22749-0
Edwards, S. J., Carannante, V., Kuhnigk, K. et al. (2020). High-resolution imaging of tumor spheroids and organoids enabled by expansion microscopy. Front Mol Biosci 7, 208. doi:10.3389/fmolb.2020.00208
Ekert, J. E., Johnson, K., Strake, B. et al. (2014). Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro – Implication for drug development. PLoS One 9, e92248. doi:10.1371/journal.pone.0092248
Fabre, K., Berridge, B., Proctor, W. R. et al. (2020). Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications. Lab Chip 20, 1049-1057. doi:10.1039/c9lc01168d
Fan, H., Demirci, U. and Chen, P. (2019). Emerging organoid models: Leaping forward in cancer research. J Hematol Oncol 12, 142. doi:10.1186/s13045-019-0832-4
Feigin, V. L., Nichols, E., Alam, T. et al. (2019). Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol 18, 459-480. doi:10.1016/s1474-4422(18)30499-x
Fidler, I. J. and Kripke, M. L. (2015). The challenge of targeting metastasis. Cancer Metastasis Rev 34, 635-641. doi:10.1007/s10555-015-9586-9
Foo, M. A., You, M., Chan, S. L. et al. (2022). Clinical translation of patient-derived tumour organoids- bottlenecks and strategies. Biomark Res 10, 10. doi:10.1186/s40364-022-00356-6
Freundt, E. C., Maynard, N., Clancy, E. K. et al. (2012). Neuron-to-neuron transmission of alpha-synuclein fibrils through axonal transport. Ann Neurol 72, 517-524. doi:10.1002/ana.23747
Fujii, M., Clevers, H. and Sato, T. (2019). Modeling human digestive diseases with CRISPR-Cas9-modified organoids. Gastroenterology 156, 562-576. doi:10.1053/j.gastro.2018.11.048
Gard, A. L., Luu, R. J., Miller, C. R. et al. (2021). High-throughput human primary cell-based airway model for evaluating influenza, coronavirus, or other respiratory viruses in vitro. Sci Rep 11, 14961. doi:10.1038/s41598-021-94095-7
Gitler, A. D., Dhillon, P. and Shorter, J. (2017). Neurodegenerative disease: Models, mechanisms, and a new hope. Dis Model Mech 10, 499-502. doi:10.1242/dmm.030205
Goedert, M., Eisenberg, D. S. and Crowther, R. A. (2017). Propagation of tau aggregates and neurodegeneration. Annu Rev Neurosci 40, 189-210. doi:10.1146/annurev-neuro-072116-031153
Goris, K., Uhlenbruck, S., Schwegmann-Wessels, C. et al. (2009). Differential sensitivity of differentiated epithelial cells to respiratory viruses reveals different viral strategies of host infection. J Virol 83, 1962-1968. doi:10.1128/JVI.01271-08
Gould, S. E., Junttila, M. R. and de Sauvage, F. J. (2015). Translational value of mouse models in oncology drug development. Nat Med 21, 431-439. doi:10.1038/nm.3853
Grantham, J. J., Uchic, M., Cragoe, E. J., Jr. et al. (1989). Chemical modification of cell proliferation and fluid secretion in renal cysts. Kidney Int 35, 1379-1389. doi:10.1038/ki.1989.137
Grigoryan, B., Paulsen, S. J., Corbett, D. C. et al. (2019). Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364, 458-464. doi:10.1126/science.aav9750
Gural, N., Mancio-Silva, L., He, J. et al. (2018). Engineered livers for infectious diseases. Cell Mol Gastroenterol Hepatol 5, 131-144. doi:10.1016/j.jcmgh.2017.11.005
Han, J., Jun, Y., Kim, S. H. et al. (2016). Rapid emergence and mechanisms of resistance by U87 glioblastoma cells to doxorubicin in an in vitro tumor microfluidic ecology. Proc Natl Acad Sci U S A 113, 14283-14288. doi:10.1073/pnas.1614898113
Han, Y., Duan, X., Yang, L. et al. (2020). Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 589, 270-275. doi:10.1038/s41586-020-2901-9
Hargrove-Grimes, P., Low, L. A. and Tagle, D. A. (2022). Microphysiological systems: Stakeholder challenges to adoption in drug development. Cells Tissues Organs 211, 269-281. doi:10.1159/000517422
Herrscher, C., Roingeard, P. and Blanchard, E. (2020). Hepatitis B virus entry into cells. Cells 9, 1486. doi:10.3390/cells9061486
Hesla, A. C., Papakonstantinou, A. and Tsagkozis, P. (2021). Current status of management and outcome for patients with Ewing sarcoma. Cancers (Basel) 13, 1202. doi:10.3390/cancers13061202
Higuita-Castro, N., Mihai, C., Hansford, D. J. et al. (2014). Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows. J Appl Physiol (1985) 117, 1231-1242. doi:10.1152/japplphysiol.00752.2013
Hild, M. and Jaffe, A. B. (2016). Production of 3-D airway organoids from primary human airway basal cells and their use in high-throughput screening. Curr Protoc Stem Cell Biol 37, IE 9 1-IE 9 15. doi:10.1002/cpsc.1
Holton, A. B., Sinatra, F. L., Kreahling, J. et al. (2017). Microfluidic biopsy trapping device for the real-time monitoring of tumor microenvironment. PLoS One 12, e0169797. doi:10.1371/journal.pone.0169797
Horvath, L., Umehara, Y., Jud, C. et al. (2015). Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5, 7974. doi:10.1038/srep07974
Huh, D., Fujioka, H., Tung, Y. C. et al. (2007). Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci U S A 104, 18886-18891. doi:10.1073/pnas.0610868104
Hui, K. P. Y., Ching, R. H. H., Chan, S. K. H. et al. (2018). Tropism, replication competence, and innate immune responses of influenza virus: An analysis of human airway organoids and ex-vivo bronchus cultures. Lancet Respir Med 6, 846-854. doi:10.1016/S2213-2600(18)30236-4
Hwang, T. J., Carpenter, D., Lauffenburger, J. C. et al. (2016). Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Intern Med 176, 1826-1833. doi:10.1001/jamainternmed.2016.6008
Ibrahim, S. H., Kohli, R. and Gores, G. J. (2011). Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr 53, 131-140. doi:10.1097/MPG.0b013e31822578db
In, J., Foulke-Abel, J., Zachos, N. C. et al. (2016a). Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell Mol Gastroenterol Hepatol 2, 48-62.e43. doi:10.1016/j.jcmgh.2015.10.001
In, J. G., Foulke-Abel, J., Estes, M. K. et al. (2016b). Human mini-guts: New insights into intestinal physiology and host-pathogen interactions. Nat Rev Gastroenterol Hepatol 13, 633-642. doi:10.1038/nrgastro.2016.142
Ingber, D. E. (2022). Human organs-on-chips for disease modelling, drug development and personalized medicine. Nat Rev Genet 23, 467-491. doi:10.1038/s41576-022-00466-9
Jacob, A., Morley, M., Hawkins, F. et al. (2017). Differentiation of human pluripotent stem cells into functional lung alveolar epithelial cells. Cell Stem Cell 21, 472-488.e410. doi:10.1016/j.stem.2017.08.014
Jalili-Firoozinezhad, S., Prantil-Baun, R., Jiang, A. et al. (2018). Modeling radiation injury-induced cell death and countermeasure drug responses in a human gut-on-a-chip. Cell Death Dis 9, 223. doi:10.1038/s41419-018-0304-8
Jang, K. J., Mehr, A. P., Hamilton, G. A. et al. (2013). Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment. Integr Biol (Camb) 5, 1119-1129. doi:10.1039/c3ib40049b
Jang, K. J., Otieno, M. A., Ronxhi, J. et al. (2019). Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med 11, eaax5516. doi:10.1126/scitranslmed.aax5516
Jucker, M. (2010). The benefits and limitations of animal models for translational research in neurodegenerative diseases. Nat Med 16, 1210-1214. doi:10.1038/nm.2224
Kang, Y. B., Cai, Y. and Zhang, H. (2017). Gut microbiota and allergy/asthma: From pathogenesis to new therapeutic strategies. Allergol Immunopathol (Madr) 45, 305-309. doi:10.1016/j.aller.2016.08.004
Kasendra, M., Tovaglieri, A., Sontheimer-Phelps, A. et al. (2018). Development of a primary human small intestine-on-a-chip using biopsy-derived organoids. Sci Rep 8, 2871. doi:10.1038/s41598-018-21201-7
Kasendra, M., Luc, R., Yin, J. et al. (2020). Duodenum intestine-chip for preclinical drug assessment in a human relevant model. Elife 9, e50135. doi:10.7554/eLife.50135
Katt, M. E., Placone, A. L., Wong, A. D. et al. (2016). In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol 4, 12. doi:10.3389/fbioe.2016.00012
Kaushik, G., Seshacharyulu, P., Rauth, S. et al. (2021). Selective inhibition of stemness through EGFR/FOXA2/SOX9 axis reduces pancreatic cancer metastasis. Oncogene 40, 848-862. doi:10.1038/s41388-020-01564-w
Khalid, M. A. U., Kim, Y. S., Ali, M. et al. (2020). A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment. Biochem Eng J 155, 107469. doi:10.1016/j.bej.2019.107469
Kim, H. N., Habbit, N. L., Su, C.-Y. et al. (2019). Microphysiological systems as enabling tools for modeling complexity in the tumor microenvironment and accelerating cancer drug development. Adv Funct Mater 29, 1807553. doi:10.1002/adfm.201807553
Kim, J., Koo, B. K. and Knoblich, J. A. (2020). Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol 21, 571-584. doi:10.1038/s41580-020-0259-3
Kobelt, G., Thompson, A., Berg, J. et al. (2017). New insights into the burden and costs of multiple sclerosis in Europe. Mult Scler 23, 1123-1136. doi:10.1177/1352458517694432
Konishi, S., Gotoh, S., Tateishi, K. et al. (2016). Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports 6, 18-25. doi:10.1016/j.stemcr.2015.11.010
Kostrzewski, T., Cornforth, T., Snow, S. A. et al. (2017). Three-dimensional perfused human in vitro model of non-alcoholic fatty liver disease. World J Gastroenterol 23, 204-215. doi:10.3748/wjg.v23.i2.204
Kozyra, M., Johansson, I., Nordling, A. et al. (2018). Human hepatic 3D spheroids as a model for steatosis and insulin resistance. Sci Rep 8, 14297. doi:10.1038/s41598-018-32722-6
Kratochwil, N. A., Triyatni, M., Mueller, M. B. et al. (2018). Simultaneous assessment of clearance, metabolism, induction, and drug-drug interaction potential using a long-term in vitro liver model for a novel hepatitis B virus inhibitor. J Pharmacol Exp Ther 365, 237-248. doi:10.1124/jpet.117.245712
Kuo, I. Y., DesRochers, T. M., Kimmerling, E. P. et al. (2014). Cyst formation following disruption of intracellular calcium signaling. Proc Natl Acad Sci U S A 111, 14283-14288. doi:10.1073/pnas.1412323111
Kwak, B., Ozcelikkale, A., Shin, C. S. et al. (2014). Simulation of complex transport of nanoparticles around a tumor using tumor-microenvironment-on-chip. J Control Release 194, 157-167. doi:10.1016/j.jconrel.2014.08.027
Lanz, H. L., Saleh, A., Kramer, B. et al. (2017). Therapy response testing of breast cancer in a 3D high-throughput perfused microfluidic platform. BMC Cancer 17, 709. doi:10.1186/s12885-017-3709-3
Larsen, B. M., Kannan, M., Langer, L. F. et al. (2021). A pan-cancer organoid platform for precision medicine. Cell Rep 36, 109429. doi:10.1016/j.celrep.2021.109429
Lawlor, E. R., Scheel, C., Irving, J. et al. (2002). Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene 21, 307-318. doi:10.1038/sj.onc.1205053
Lewin, T. D., Avignon, B., Tovaglieri, A. et al. (2022). An in silico model of T cell infiltration dynamics based on an advanced in vitro system to enhance preclinical decision making in cancer immunotherapy. Front Pharmacol 13, 837261. doi:10.3389/fphar.2022.837261
Li, Y. and Kumacheva, E. (2018). Hydrogel microenvironments for cancer spheroid growth and drug screening. Sci Adv 4, eaas8998. doi:10.1126/sciadv.aas8998
Liu, G., Betts, C., Cunoosamy, D. M. et al. (2019). Use of precision cut lung slices as a translational model for the study of lung biology. Respir Res 20, 162. doi:10.1186/s12931-019-1131-x
Low, L. A. and Tagle, D. A. (2016). Tissue chips to aid drug development and modeling for rare diseases. Expert Opin Orphan Drugs 4, 1113-1121. doi:10.1080/21678707.2016.1244479
Lyons, S. K., Plenker, D. and Trotman, L. C. (2021). Advances in preclinical evaluation of experimental antibody-drug conjugates. Cancer Drug Resist 4, 745-754. doi:10.20517/cdr.2021.37
Ma, C., Peng, Y., Li, H. et al. (2021). Organ-on-a-chip: A new paradigm for drug development. Trends Pharmacol Sci 42, 119-133. doi:10.1016/j.tips.2020.11.009
Madden, L., Juhas, M., Kraus, W. E. et al. (2015). Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 4, e04885. doi:10.7554/eLife.04885
Madden, L. R., Nguyen, T. V., Garcia-Mojica, S. et al. (2018). Bioprinted 3D primary human intestinal tissues model aspects of native physiology and ADME/Tox functions. iScience 2, 156-167. doi:10.1016/j.isci.2018.03.015
Mak, I. W., Evaniew, N. and Ghert, M. (2014). Lost in translation: Animal models and clinical trials in cancer treatment. Am J Transl Res 6, 114-118.
Makale, M. (2007). Cellular mechanobiology and cancer metastasis. Birth Defects Res C Embryo Today 81, 329-343. doi:10.1002/bdrc.20110
Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development. ALTEX 37, 365-394. doi:10.14573/altex.2001241
Masiello, T., Dhall, A., Hemachandra, L. P. M. et al. (2018). A dynamic culture method to produce ovarian cancer spheroids under physiologically-relevant shear stress. Cells 7, 277. doi:10.3390/cells7120277
McCauley, K. B., Hawkins, F., Serra, M. et al. (2017). Efficient derivation of functional human airway epithelium from pluripotent stem cells via temporal regulation of Wnt signaling. Cell Stem Cell 20, 844-857 e846. doi:10.1016/j.stem.2017.03.001
McColgan, P. and Tabrizi, S. J. (2018). Huntington’s disease: A clinical review. Eur J Neurol 25, 24-34. doi:10.1111/ene.13413
McDonald, J., Bayrak-Toydemir, P. and Pyeritz, R. E. (2011). Hereditary hemorrhagic telangiectasia: An overview of diagnosis, management, and pathogenesis. Genet Med 13, 607-616. doi:10.1097/GIM.0b013e3182136d32
McGowan, E., Eriksen, J. and Hutton, M. (2006). A decade of modeling Alzheimer’s disease in transgenic mice. Trends Genet 22, 281-289. doi:10.1016/j.tig.2006.03.007
Miller, C. P., Tsuchida, C., Zheng, Y. et al. (2018). A 3D human renal cell carcinoma-on-a-chip for the study of tumor angiogenesis. Neoplasia 20, 610-620. doi:10.1016/j.neo.2018.02.011
Miller, J. S., Stevens, K. R., Yang, M. T. et al. (2012). Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11, 768-774. doi:10.1038/nmat3357
Molina-Jimenez, F., Benedicto, I., Dao Thi, V. L. et al. (2012). Matrigel-embedded 3D culture of Huh-7 cells as a hepatocyte-like polarized system to study hepatitis C virus cycle. Virology 425, 31-39. doi:10.1016/j.virol.2011.12.021
Moll, S., Ebeling, M., Weibel, F. et al. (2013). Epithelial cells as active player in fibrosis: Findings from an in vitro model. PLoS One 8, e56575. doi:10.1371/journal.pone.0056575
Mollaki, V. (2021). Ethical challenges in organoid use. BioTech (Basel) 10, 12. doi:10.3390/biotech10030012
Montesano, R., Ghzili, H., Carrozzino, F. et al. (2009). cAMP-dependent chloride secretion mediates tubule enlargement and cyst formation by cultured mammalian collecting duct cells. Am J Physiol Renal Physiol 296, F446-457. doi:10.1152/ajprenal.90415.2008
Monticello, T. M., Jones, T. W., Dambach, D. M. et al. (2017). Current nonclinical testing paradigm enables safe entry to first-in-human clinical trials: The IQ consortium nonclinical to clinical translational database. Toxicol Appl Pharmacol 334, 100-109. doi:10.1016/j.taap.2017.09.006
Moreno, E. L., Hachi, S., Hemmer, K. et al. (2015). Differentiation of neuroepithelial stem cells into functional dopaminergic neurons in 3D microfluidic cell culture. Lab Chip 15, 2419-2428. doi:10.1039/c5lc00180c
Mosaad, E. O., Chambers, K. F., Futrega, K. et al. (2018). The microwell-mesh: A high-throughput 3D prostate cancer spheroid and drug-testing platform. Sci Rep 8, 253. doi:10.1038/s41598-017-18050-1
Mulay, A., Konda, B., Garcia, G. et al. (2020). SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. bioRxiv doi:10.1101/2020.06.29.174623
Müller, F. A. and Sturla, S. J. (2019). Human in vitro models of nonalcoholic fatty liver disease. Curr Opin Toxicol 16, 9-16. doi:10.1016/j.cotox.2019.03.001
Munos, B. (2009). Lessons from 60 years of pharmaceutical innovation. Nat Rev Drug Discov 8, 959-968. doi:10.1038/nrd2961
Nagle, P. W., Plukker, J. T. M., Muijs, C. T. et al. (2018). Patient-derived tumor organoids for prediction of cancer treatment response. Semin Cancer Biol 53, 258-264. doi:10.1016/j.semcancer.2018.06.005
Nawroth, J. C., Lucchesi, C., Cheng, D. et al. (2020). A microengineered airway lung chip models key features of viral-induced exacerbation of asthma. Am J Respir Cell Mol Biol 63, 591-600. doi:10.1165/rcmb.2020-0010MA
Ng, C. P., Hinz, B. and Swartz, M. A. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci 118, 4731-4739. doi:10.1242/jcs.02605
Nikolakopoulou, P., Rauti, R., Voulgaris, D. et al. (2020). Recent progress in translational engineered in vitro models of the central nervous system. Brain 143, 3181-3213. doi:10.1093/brain/awaa268
Ortega-Prieto, A. M., Skelton, J. K., Wai, S. N. et al. (2018). 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection. Nat Commun 9, 682. doi:10.1038/s41467-018-02969-8
Osaki, T., Uzel, S. G. M. and Kamm, R. D. (2018). Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons. Sci Adv 4, eaat5847. doi:10.1126/sciadv.aat5847
Pacitti, D., Privolizzi, R. and Bax, B. E. (2019). Organs to cells and cells to organoids: The evolution of in vitro central nervous system modelling. Front Cell Neurosci 13, 129. doi:10.3389/fncel.2019.00129
Park, J., Lee, B. K., Jeong, G. S. et al. (2015). Three-dimensional brain-on-a-chip with an interstitial level of flow and its application as an in vitro model of Alzheimer’s disease. Lab Chip 15, 141-150. doi:10.1039/c4lc00962b
Park, J., Wetzel, I., Marriott, I. et al. (2018a). A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21, 941-951. doi:10.1038/s41593-018-0175-4
Park, J. Y., Ryu, H., Lee, B. et al. (2018b). Development of a functional airway-on-a-chip by 3D cell printing. Biofabrication 11, 015002. doi:10.1088/1758-5090/aae545
Park, K. M. and Gerecht, S. (2014). Hypoxia-inducible hydrogels. Nat Commun 5, 4075. doi:10.1038/ncomms5075
Park, T. E., Mustafaoglu, N., Herland, A. et al. (2019). Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat Commun 10, 2621. doi:10.1038/s41467-019-10588-0
Persson, B. D., Jaffe, A. B., Fearns, R. et al. (2014). Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS One 9, e102368. doi:10.1371/journal.pone.0102368
Peters, M. F., Landry, T., Pin, C. et al. (2019). Human 3D gastrointestinal microtissue barrier function as a predictor of drug-induced diarrhea. Toxicol Sci 168, 3-17. doi:10.1093/toxsci/kfy268
Petropolis, D. B., Faust, D. M., Tolle, M. et al. (2016). Human liver infection in a dish: Easy-to-build 3D liver models for studying microbial infection. PLoS One 11, e0148667. doi:10.1371/journal.pone.0148667
Phan, N., Hong, J. J., Tofig, B. et al. (2019). A simple high-throughput approach identifies actionable drug sensitivities in patient-derived tumor organoids. Commun Biol 2, 78. doi:10.1038/s42003-019-0305-x
Philips, T. and Rothstein, J. D. (2015). Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 69, 5.67.1-5.67.21. doi:10.1002/0471141755.ph0567s69
Phillips, J. A., Grandhi, T. S. P., Davis, M. et al. (2020). A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies. Lab Chip 20, 468-476. doi:10.1039/c9lc00925f
Picher-Martel, V., Valdmanis, P. N., Gould, P. V. et al. (2016). From animal models to human disease: A genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 4, 70. doi:10.1186/s40478-016-0340-5
Pickl, M. and Ries, C. H. (2009). Comparison of 3D and 2D tumor models reveals enhanced HER2 activation in 3D associated with an increased response to trastuzumab. Oncogene 28, 461-468. doi:10.1038/onc.2008.394
Pitrez, P. R., Estronca, L., Monteiro, L. M. et al. (2020). Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nat Commun 11, 4110. doi:10.1038/s41467-020-17901-2
Placone, J. K., Mahadik, B. and Fisher, J. P. (2020). Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioeng 4, 010901. doi:10.1063/1.5127860
Plummer, S., Wallace, S., Ball, G. et al. (2019). A human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci Rep 9, 1407. doi:10.1038/s41598-018-38130-0
Poewe, W., Seppi, K., Tanner, C. M. et al. (2017). Parkinson disease. Nat Rev Dis Primers 3, 17013. doi:10.1038/nrdp.2017.13
Polacheck, W. J., German, A. E., Mammoto, A. et al. (2014). Mechanotransduction of fluid stresses governs 3D cell migration. Proc Natl Acad Sci U S A 111, 2447-2452. doi:10.1073/pnas.1316848111
Pradhan, S., Hassani, I., Seeto, W. J. et al. (2017). PEG-fibrinogen hydrogels for three-dimensional breast cancer cell culture. J Biomed Mater Res A 105, 236-252. doi:10.1002/jbm.a.35899
Proctor, W. R., Foster, A. J., Vogt, J. et al. (2017). Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Arch Toxicol 91, 2849-2863. doi:10.1007/s00204-017-2002-1
Puls, T. J., Tan, X., Husain, M. et al. (2018). Development of a novel 3D tumor-tissue invasion model for high-throughput, high-content phenotypic drug screening. Sci Rep 8, 13039. doi:10.1038/s41598-018-31138-6
Rae, C., Amato, F. and Braconi, C. (2021). Patient-derived organoids as a model for cancer drug discovery. Int J Mol Sci 22, doi:10.3390/ijms22073483
Ramsden, D., Belair, D. G., Agarwal, S. et al. (2022). Leveraging microphysiological systems to address challenges encountered during development of oligonucleotide therapeutics. ALTEX 39, 273-296. doi:10.14573/altex.2108241
Ransohoff, R. M. (2018). All (animal) models (of neurodegeneration) are wrong. Are they also useful? J Exp Med 215, 2955-2958. doi:10.1084/jem.20182042
Rao, L., Qian, Y., Khodabukus, A. et al. (2018). Engineering human pluripotent stem cells into a functional skeletal muscle tissue. Nat Commun 9, 126. doi:10.1038/s41467-017-02636-4
Rauth, S., Karmakar, S., Batra, S. K. et al. (2021). Recent advances in organoid development and applications in disease modeling. Biochim Biophys Acta Rev Cancer 1875, 188527. doi:10.1016/j.bbcan.2021.188527
Ribas, J., Zhang, Y. S., Pitrez, P. R. et al. (2017). Biomechanical strain exacerbates inflammation on a progeria-on-a-chip model. Small 13, 1603737. doi:10.1002/smll.201603737
Rock, J. R., Onaitis, M. W., Rawlins, E. L. et al. (2009). Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106, 12771-12775. doi:10.1073/pnas.0906850106
Rogal, J., Zbinden, A., Schenke-Layland, K. et al. (2019). Stem-cell based organ-on-a-chip models for diabetes research. Adv Drug Deliv Rev 140, 101-128. doi:10.1016/j.addr.2018.10.010
Russell, W. M. S. and Burch, R. L. (1959). The Principles of Humane Experimental Technique. London, UK: Methuen.
Rusyn, I., Sakolish, C., Kato, Y. et al. (2022). Microphysiological systems evaluation: Experience of TEX-VAL tissue chip testing consortium. Toxicol Sci 188, 143-152. doi:10.1093/toxsci/kfac061
Sachs, N., de Ligt, J., Kopper, O. et al. (2018). A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172, 373-386.e310. doi:10.1016/j.cell.2017.11.010
Sachs, N., Papaspyropoulos, A., Zomer-van Ommen, D. D. et al. (2019). Long-term expanding human airway organoids for disease modeling. EMBO J 38, e.100300. doi:10.15252/embj.2018100300
Saha, B., Mathur, T., Handley, K. F. et al. (2020). OvCa-chip microsystem recreates vascular endothelium-mediated platelet extravasation in ovarian cancer. Blood Adv 4, 3329-3342. doi:10.1182/bloodadvances.2020001632
Sasserath, T., Rumsey, J. W., McAleer, C. W. et al. (2020). Differential monocyte actuation in a three-organ functional innate immune system-on-a-chip. Adv Sci (Weinh) 7, 2000323. doi:10.1002/advs.202000323
Schetz, M., Dasta, J., Goldstein, S. et al. (2005). Drug-induced acute kidney injury. Curr Opin Crit Care 11, 555-565. doi:10.1097/01.ccx.0000184300.68383.95
Seok, J., Warren, H. S., Cuenca, A. G. et al. (2013). Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci U S A 110, 3507-3512. doi:10.1073/pnas.1222878110
Shaffiey, S. A., Jia, H., Keane, T. et al. (2016). Intestinal stem cell growth and differentiation on a tubular scaffold with evaluation in small and large animals. Regen Med 11, 45-61. doi:10.2217/rme.15.70
Shang, M., Soon, R. H., Lim, C. T. et al. (2019). Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 19, 369-386. doi:10.1039/c8lc00970h
Shanks, N., Greek, R. and Greek, J. (2009). Are animal models predictive for humans? Philos Ethics Humanit Med 4, 2. doi:10.1186/1747-5341-4-2
Shin, Y., Choi, S. H., Kim, E. et al. (2019). Blood-brain barrier dysfunction in a 3D in vitro model of Alzheimer’s disease. Adv Sci (Weinh) 6, 1900962. doi:10.1002/advs.201900962
Shlomai, A., Schwartz, R. E., Ramanan, V. et al. (2014). Modeling host interactions with hepatitis b virus using primary and induced pluripotent stem cell-derived hepatocellular systems. Proc Natl Acad Sci U S A 111, 12193-12198. doi:10.1073/pnas.1412631111
Si, L., Bai, H., Rodas, M. et al. (2021). A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng 5, 815-829. doi:10.1038/s41551-021-00718-9
Skardal, A., Devarasetty, M., Forsythe, S. et al. (2016). A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng 113, 2020-2032. doi:10.1002/bit.25950
Slanzi, A., Iannoto, G., Rossi, B. et al. (2020). In vitro models of neurodegenerative diseases. Front Cell Dev Biol 8, 328. doi:10.3389/fcell.2020.00328
Smits, L. M., Reinhardt, L., Reinhardt, P. et al. (2019). Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkinsons Dis 5, 5. doi:10.1038/s41531-019-0078-4
Song, B., Sun, G., Herszfeld, D. et al. (2012). Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Res 8, 259-273. doi:10.1016/j.scr.2011.12.001
Soucy, J. R., Bindas, A. J., Koppes, A. N. et al. (2019). Instrumented microphysiological systems for real-time measurement and manipulation of cellular electrochemical processes. iScience 21, 521-548. doi:10.1016/j.isci.2019.10.052
Spencer, J. I., Bell, J. S. and DeLuca, G. C. (2018). Vascular pathology in multiple sclerosis: Reframing pathogenesis around the blood-brain barrier. J Neurol Neurosurg Psychiatry 89, 42-52. doi:10.1136/jnnp-2017-316011
Spill, F., Reynolds, D. S., Kamm, R. D. et al. (2016). Impact of the physical microenvironment on tumor progression and metastasis. Curr Opin Biotechnol 40, 41-48. doi:10.1016/j.copbio.2016.02.007
Splawski, I., Timothy, K. W., Sharpe, L. M. et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119, 19-31. doi:10.1016/j.cell.2004.09.011
Stucki, J. D., Hobi, N., Galimov, A. et al. (2018). Medium throughput breathing human primary cell alveolus-on-chip model. Sci Rep 8, 14359. doi:10.1038/s41598-018-32523-x
Stys, P. K. and Tsutsui, S. (2019). Recent advances in understanding multiple sclerosis. F1000Res 8, 2100. doi:10.12688/f1000research.20906.1
Sung, K. E., Yang, N., Pehlke, C. et al. (2011). Transition to invasion in breast cancer: A microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol (Camb) 3, 439-450. doi:10.1039/c0ib00063a
Suzuki, T., Itoh, Y., Sakai, Y. et al. (2022). Generation of human bronchial organoids for SARS-CoV-2 research. Communications Biology 5, 516. doi:10.1101/2020.05.25.115600
Szot, C. S., Buchanan, C. F., Freeman, J. W. et al. (2011). 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32, 7905-7912. doi:10.1016/j.biomaterials.2011.07.001
Tan, G. A., Furber, K. L., Thangaraj, M. P. et al. (2018). Organotypic cultures from the adult CNS: A novel model to study demyelination and remyelination ex vivo. Cell Mol Neurobiol 38, 317-328. doi:10.1007/s10571-017-0529-6
Tan, Q., Choi, K. M., Sicard, D. et al. (2017). Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 113, 118-132. doi:10.1016/j.biomaterials.2016.10.046
Tong, S., Kim, K. H., Chante, C. et al. (2005). Hepatitis B virus e antigen variants. Int J Med Sci 2, 2-7. doi:10.7150/ijms.2.2
Trapecar, M., Wogram, E., Svoboda, D. et al. (2021). Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv 7, eabd1707. doi:10.1126/sciadv.abd1707
Trujillo-de Santiago, G., Flores-Garza, B. G., Tavares-Negrete, J. A. et al. (2019). The tumor-on-chip: Recent advances in the development of microfluidic systems to recapitulate the physiology of solid tumors. Materials (Basel) 12, 2945. doi:10.3390/ma12182945
Tsamandouras, N., Chen, W. L. K., Edington, C. D. et al. (2017). Integrated gut and liver microphysiological systems for quantitative in vitro pharmacokinetic studies. AAPS J 19, 1499-1512. doi:10.1208/s12248-017-0122-4
Tung, Y. C., Hsiao, A. Y., Allen, S. G. et al. (2011). High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136, 473-478. doi:10.1039/c0an00609b
Van Den Eeden, S. K., Tanner, C. M., Bernstein, A. L. et al. (2003). Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am J Epidemiol 157, 1015-1022. doi:10.1093/aje/kwg068
Van der Meer, A. D., Orlova, V. V., ten Dijke, P. et al. (2013). Three-dimensional co-cultures of human endothelial cells and embryonic stem cell-derived pericytes inside a microfluidic device. Lab Chip 13, 3562-3568. doi:10.1039/c3lc50435b
Van der Sanden, S. M. G., Sachs, N., Koekkoek, S. M. et al. (2018). Enterovirus 71 infection of human airway organoids reveals VP1-145 as a viral infectivity determinant. Emerg Microbes Infect 7, 84. doi:10.1038/s41426-018-0077-2
Van Ness, K. P., Chang, S. Y., Weber, E. J. et al. (2017). Microphysiological systems to assess nonclinical toxicity. Curr Protoc Toxicol 73, 14.18.11-14.18.28. doi:10.1002/cptx.27
VanDussen, K. L., Marinshaw, J. M., Shaikh, N. et al. (2015). Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64, 911-920. doi:10.1136/gutjnl-2013-306651
Vatine, G. D., Barrile, R., Workman, M. J. et al. (2019). Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995-1005.e6. doi:10.1016/j.stem.2019.05.011
Veeranki, O. L., Tong, Z., Mejia, A. et al. (2019). A novel patient-derived orthotopic xenograft model of esophageal adenocarcinoma provides a platform for translational discoveries. Dis Model Mech 12, dmm.041004. doi:10.1242/dmm.041004
Villasante, A., Marturano-Kruik, A. and Vunjak-Novakovic, G. (2014). Bioengineered human tumor within a bone niche. Biomaterials 35, 5785-5794. doi:10.1016/j.biomaterials.2014.03.081
Vitek, M. P., Araujo, J. A., Fossel, M. et al. (2020). Translational animal models for Alzheimer’s disease: An Alzheimer’s association business consortium think tank. Alzheimers Dement (N Y) 6, e12114. doi:10.1002/trc2.12114
Vlachogiannis, G., Hedayat, S., Vatsiou, A. et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359, 920-926. doi:10.1126/science.aao2774
Wallace, D. P., Grantham, J. J. and Sullivan, L. P. (1996). Chloride and fluid secretion by cultured human polycystic kidney cells. Kidney Int 50, 1327-1336. doi:10.1038/ki.1996.445
Walsh, K., Megyesi, J. and Hammond, R. (2005). Human central nervous system tissue culture: A historical review and examination of recent advances. Neurobiol Dis 18, 2-18. doi:10.1016/j.nbd.2004.09.002
Wang, G., McCain, M. L., Yang, L. et al. (2014). Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 20, 616-623. doi:10.1038/nm.3545
Wang, J., Zhou, C. J., Khodabukus, A. et al. (2021). Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol 4, 524. doi:10.1038/s42003-021-02059-4
Wang, Q., Cohen, J. D., Yukawa, T. et al. (2022). Assessment of a 3D neural spheroid model to detect pharmaceutical-induced neurotoxicity. ALTEX 39, 560-582. doi:10.14573/altex.2112221
Watson, D. E., Hunziker, R. and Wikswo, J. P. (2017). Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology. Exp Biol Med (Maywood) 242, 1559-1572. doi:10.1177/1535370217732765
Weiswald, L. B., Bellet, D. and Dangles-Marie, V. (2015). Spherical cancer models in tumor biology. Neoplasia 17, 1-15. doi:10.1016/j.neo.2014.12.004
Wevers, N. R., Kasi, D. G., Gray, T. et al. (2018). A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport. Fluids Barriers CNS 15, 23. doi:10.1186/s12987-018-0108-3
Winer, J. P., Oake, S. and Janmey, P. A. (2009). Non-linear elasticity of extracellular matrices enables contractile cells to communicate local position and orientation. PLoS One 4, e6382. doi:10.1371/journal.pone.0006382
Witt-Kehati, D., Bitton Alaluf, M. and Shlomai, A. (2016). Advances and challenges in studying hepatitis B virus in vitro. Viruses 8, 21. doi:10.3390/v8010021
Wong, C. H., Siah, K. W. and Lo, A. W. (2019). Estimation of clinical trial success rates and related parameters. Biostatistics 20, 273-286. doi:10.1093/biostatistics/kxx069
Wu, G. F. and Alvarez, E. (2011). The immunopathophysiology of multiple sclerosis. Neurol Clin 29, 257-278. doi:10.1016/j.ncl.2010.12.009
Xicoy, H., Wieringa, B. and Martens, G. J. (2017). The SH-SY5Y cell line in Parkinson’s disease research: A systematic review. Mol Neurodegener 12, 10. doi:10.1186/s13024-017-0149-0
Xu, X., Sabanayagam, C. R., Harrington, D. A. et al. (2014). A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. Biomaterials 35, 3319-3330. doi:10.1016/j.biomaterials.2013.12.080
Yan, H. H. N., Siu, H. C., Ho, S. L. et al. (2020). Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut 69, 2165-2179. doi:10.1136/gutjnl-2019-320019
Yazawa, M. and Dolmetsch, R. E. (2013). Modeling Timothy syndrome with iPS cells. J Cardiovasc Transl Res 6, 1-9. doi:10.1007/s12265-012-9444-x
Youk, J., Kim, T., Evans, K. V. et al. (2020). Three-dimensional human alveolar stem cell culture models reveal infection response to SARS-CoV-2. Cell Stem Cell 27, 905-919.e10. doi:10.1016/j.stem.2020.10.004
Zacharias, W. J., Frank, D. B., Zepp, J. A. et al. (2018). Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature 555, 251-255. doi:10.1038/nature25786
Zager, R. A. (1997). Pathogenetic mechanisms in nephrotoxic acute renal failure. Semin Nephrol 17, 3-14.
Zhang, B. and Radisic, M. (2017). Organ-on-a-chip devices advance to market. Lab Chip 17, 2395-2420. doi:10.1039/c6lc01554a
Zhang, H., Jarjour, A. A., Boyd, A. et al. (2011). Central nervous system remyelination in culture – A tool for multiple sclerosis research. Exp Neurol 230, 138-148. doi:10.1016/j.expneurol.2011.04.009
Zhang, M., Wang, P., Luo, R. et al. (2020). Biomimetic human disease model of SARS-CoV-2 induced lung injury and immune responses on organ chip system. Adv Sci (Weinh) 8, 2002928. doi:10.1002/advs.202002928
Zhao, Y., Kankala, R. K., Wang, S. B. et al. (2019). Multi-organs-on-chips: Towards long-term biomedical investigations. Molecules 24, 675. doi:10.3390/molecules24040675
Zhu, W., Castro, N. J., Cui, H. et al. (2016). A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions. Nanotechnology 27, 315103. doi:10.1088/0957-4484/27/31/315103