Microphysiological endothelial models to characterize subcutaneous drug absorption

Main Article Content

Giovanni S. Offeddu
Jean Carlos Serrano
Zhengpeng Wan
Mark A. Bryniarski
Sara C. Humphreys
Sophia W. Chen
Hamsini Dhoolypala
Kip Conner
Roger D. Kamm

Abstract

The high variability in subcutaneous bioavailability of protein therapeutics is poorly understood, contributing to critical delays in patient access to new therapies. Preclinical animal and in vitro models fail to provide a physiologically relevant testbed to parse potential contributors to human bioavailability, therefore new strategies are necessary. Here, we present a microphysiological model of the human hypodermal vasculature at the injection site to study the interactions of administered protein therapeutics within the microenvironment that influence subcutaneous bioavailability. Our model combines human dermal endothelial cells, fibroblasts, and adipocytes, self-assembled into three-dimensional, perfusable microvessels that express relevant extra-cellular matrix. We demonstrate the utility of the model for measurement of biophysical parameters within the hypodermal microenvironment that putatively impact protein kinetics and distribution at the injection site. We propose that microphysiological models of the sub-cutaneous space have applications in preclinical development of protein therapeutics intended for sub-cutaneous administration with optimal bioavailability.

Article Details

How to Cite
Offeddu, G. S., Serrano, J. C., Wan, Z., Bryniarski, M. A., Humphreys, S. C., Chen, S. W., Dhoolypala, H., Conner, K. and Kamm, R. D. (2022) “Microphysiological endothelial models to characterize subcutaneous drug absorption”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2207131.
Section
Articles
References

Amsden, B. (1999) ‘An Obstruction-Scaling Model for Diffusion in Homogeneous Hydrogels’, Macromolecules, 32(3), pp. 874–879. doi: 10.1021/ma980922a.

Atmeh, R. F., Arafa, I. M. and Al-Khateeb, M. (2007) ‘Albumin Aggregates: Hydrodynamic Shape and Physico-Chemical Properties’, Jordan Journal of Chemistry, 2(2), pp. 169–182.

Avery, L. B. et al. (2018) ‘Establishing in vitro in vivo correlations to screen monoclonal antibodies for physicochemical properties related to favorable human pharmacokinetics’, mAbs, 10(2), pp. 244–255. doi: 10.1080/19420862.2017.1417718.

Axpe, E. et al. (2019) ‘A Multiscale Model for Solute Diffusion in Hydrogels’, Macromolecules, 52(18). doi: 10.1021/acs.macromol.9b00753.

Baluk, P. and McDonald, D. M. (2008) ‘Markers for microscopic imaging of lymphangiogenesis and angiogenesis’, Annals of the New York Academy of Sciences, 1131, pp. 1–12. doi: 10.1196/annals.1413.001.

Betts, A. et al. (2018) ‘Linear pharmacokinetic parameters for monoclonal antibodies are similar within a species and across different pharmacological targets: A comparison between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using a population-modeling approach’, mAbs, 10(5), pp. 751–764. doi: 10.1080/19420862.2018.1462429.

Boswell, C. A. et al. (2010) ‘Effects of charge on antibody tissue distribution and pharmacokinetics’, Bioconjugate Chemistry, 21(12), pp. 2153–2163. doi: 10.1021/bc100261d.

Braverman, I. M. (2000) ‘The cutaneous microcirculation’, Journal of Investigative Dermatology Symposium Proceedings, 5(1), pp. 3–9. doi: 10.1046/j.1087-0024.2000.00010.x.

Breslin, J. W. et al. (2019) ‘Lymphatic vessel network structure and physiology’, Comprehensive Physiology, 9(1), pp. 207–299. doi: 10.1002/cphy.c180015.

Bumbaca, D. et al. (2012) ‘Physiochemical and biochemical factors influencing the pharmacokinetics of antibody therapeutics’, AAPS Journal, 14(3), pp. 554–558. doi: 10.1208/s12248-012-9369-y.

Challa, D. K. et al. (2014) ‘FcRn: From molecular interactions to regulation of IgG pharmacokinetics and functions’, Current Topics in Microbiology and Immunology, 382, pp. 249–272. doi: 10.1007/978-3-319-07911-0_12.

Chen, M. B. et al. (2013) ‘Mechanisms of tumor cell extravasation in an in vitro microvascular network platform’, Integrative Biology (United Kingdom), 5(10), pp. 1262–1271. doi: 10.1039/c3ib40149a.

Clauss, M. A. and Jain, R. K. (1990) ‘Interstitial Transport of Rabbit and Sheep Antibodies in Normal and Neoplastic Tissues’, Cancer Research, 50(12), pp. 3487–3492.

Corovic, S. et al. (2015) ‘Modeling of microvascular permeability changes after electroporation’, PLoS ONE, 10(3), pp. 1–16. doi: 10.1371/journal.pone.0121370.

Datta-Mannan, A., Thangaraju, A., et al. (2015) ‘Balancing charge in the complementarity-determining regions of humanized mAbs without affecting pl reduces non-specific binding and improves the pharmacokinetics’, mAbs, 7(3), pp. 483–493. doi: 10.1080/19420862.2015.1016696.

Datta-Mannan, A., Lu, J., et al. (2015) ‘The interplay of non-specific binding, targetmediated clearance and FcRn interactions on the pharmacokinetics of humanized antibodies’, mAbs, 7(6), pp. 1084–1093. doi: 10.1080/19420862.2015.1075109.

Dostalek, M., Prueksaritanont, T. and Kelley, R. F. (2017) ‘Pharmacokinetic de-risking tools for selection of monoclonal antibody lead candidates’, mAbs, 9(5), pp. 756–766. doi: 10.1080/19420862.2017.1323160.

Edwards, L. C. et al. (1983) ‘Noninvasive monitoring of renal transplant function by analysis of beta2-microglobulin’, Kidney International, 23(5), pp. 767–770. doi: 10.1038/ki.1983.92.

Enns, C. A. and Sussman, H. H. (1981) ‘Physical characterization of the transferrin receptor in human placentae’, Journal of Biological Chemistry, 256(19), pp. 9820–9823. doi: 10.1016/s0021-9258(19)68700-4.

Farahat, W. A. et al. (2012) ‘Ensemble analysis of angiogenic growth in three-dimensional microfluidic cell cultures’, PLoS ONE, 7(5). doi: 10.1371/journal.pone.0037333.

Ghosh, C. et al. (2017) ‘Size and Structure of Cytochrome-c bound to Gold nano-clusters: Effect of Ethanol’, Journal of Chemical Sciences, 129(7), pp. 841–847. doi: 10.1007/s12039-017-1239-9.

Gill, K. L. et al. (2016) ‘A Bottom-Up Whole-Body Physiologically Based Pharmacokinetic Model to Mechanistically Predict Tissue Distribution and the Rate of Subcutaneous Absorption of Therapeutic Proteins’, AAPS Journal, 18(1), pp. 156–170. doi: 10.1208/s12248-015-9819-4.

Hajal, C., Offeddu, G. S., et al. (2021) ‘Engineered human blood-brain barrier microfluidic model for vascular permeability analyses’, Nature Protocols, IN PRESS.

Hajal, C., Ibrahim, L., et al. (2021) ‘The effects of luminal and trans-endothelial fluid flows on the extravasation and tissue invasion of tumor cells in a 3D in vitro microvascular platform’, Biomaterials, 265. doi: 10.1016/j.biomaterials.2020.120470.

Hammel, J. H. and Bellas, E. (2020) ‘Endothelial cell crosstalk improves browning but hinders white adipocyte maturation in 3D engineered adipose tissue’, Integrative biology : quantitative biosciences from nano to macro, 12(4), pp. 81–89. doi: 10.1093/intbio/zyaa006.

Hötzel, I. et al. (2012) ‘A strategy for risk mitigation of antibodies with fast clearance’, mAbs, 4(6), pp. 753–760. doi: 10.4161/mabs.22189.

Hu, X. and Weinbaum, S. (1999) ‘A new view of Starling’s hypothesis at the microstructural level’, Microvascular Research, 58(3), pp. 281–304. doi: 10.1006/mvre.1999.2177.

Imayama, S. and Urabe, H. (1986) ‘Fine structural deformation of the dermal capillary following immersion fixation procedure’, Journal of Dermatology, 13(5), pp. 339–344. doi: 10.1111/j.1346-8138.1986.tb02952.x.

Jensen, S. S. et al. (2014) ‘Insulin diffusion and self-association characterized by real-time UV imaging and Taylor dispersion analysis’, Journal of Pharmaceutical and Biomedical Analysis, 92, pp. 203–210. doi: 10.1016/j.jpba.2014.01.022.

Jones, H. M. et al. (2019) ‘A Physiologically-Based Pharmacokinetic Model for the Prediction of Monoclonal Antibody Pharmacokinetics From In Vitro Data’, CPT: Pharmacometrics and Systems Pharmacology, 8(10), pp. 738–747. doi: 10.1002/psp4.12461.

Kagan, L. (2014) ‘Special section on DMPK of therapeutic proteins - Minireview: Pharmacokinetic modeling of the subcutaneous absorption of therapeutic proteins’, Drug Metabolism and Disposition, 42(11), pp. 1890–1905. doi: 10.1124/dmd.114.059121.

Kelly, R. L. et al. (2015) ‘High throughput cross-interaction measures for human IgG1 antibodies correlate with clearance rates in mice’, mAbs, 7(4), pp. 770–777. doi: 10.1080/19420862.2015.1043503.

Kelly, R. L. et al. (2016) ‘Target-independent variable region mediated effects on antibody clearance can be FcRn independent’, mAbs, 8(7), pp. 1269–1275. doi: 10.1080/19420862.2016.1208330.

Komarova, Y. and Malik, A. B. (2009) Regulation of endothelial permeability via paracellular and transcellular transport pathways, Annual Review of Physiology. doi: 10.1146/annurev-physiol-021909-135833.

Kraft, T. E. et al. (2020) ‘Heparin chromatography as an in vitro predictor for antibody clearance rate through pinocytosis’, mAbs, 12(1). doi: 10.1080/19420862.2019.1683432.

De L Davies, C. et al. (2002) ‘Comparison of IgG diffusion and extracellular matrix composition in rhabdomyosarcomas grown in mice versus in vitro as spheroids reveals the role of host stromal cells’, British Journal of Cancer, 86(10), pp. 1639–1644. doi: 10.1038/sj.bjc.6600270.

Li, B. et al. (2014) ‘Framework selection can influence pharmacokinetics of a humanized therapeutic antibody through differences in molecule charge’, mAbs, 6(5), pp. 1255–1264. doi: 10.4161/mabs.29809.

Liu, L. et al. (2017a) ‘Biological characterization of a stable effector functionless (SEFL) monoclonal antibody scaffold in Vitro’, Journal of Biological Chemistry, 292(5), pp. 1876–1883. doi: 10.1074/jbc.M116.748707.

Liu, L. et al. (2017b) ‘Biological characterization of a stable effector functionless (SEFL) monoclonal antibody scaffold in Vitro’, Journal of Biological Chemistry, 292(5), pp. 1876–1883. doi: 10.1074/jbc.M116.748707.

Liu, Y. et al. (2014) ‘High-throughput screening for developability during early-stage antibody discovery using self-interaction nanoparticle spectroscopy’, mAbs, 6(2), pp. 483–492. doi: 10.4161/mabs.27431.

MacH, H. et al. (2011) ‘Electrostatic interactions of monoclonal antibodies with subcutaneous tissue’, Therapeutic Delivery, 2(6), pp. 727–736. doi: 10.4155/tde.11.31.

McLennan, D. N., Porter, C. J. H. and Charman, S. A. (2005) ‘Subcutaneous drug delivery and the role of the lymphatics’, Drug Discovery Today: Technologies, 2(1), pp. 89–96. doi: 10.1016/j.ddtec.2005.05.006.

Mehta, D. and Malik, A. B. (2006) ‘Signaling mechanisms regulating endothelial permeability’, Physiological Reviews, 86(1), pp. 279–367. doi: 10.1152/physrev.00012.2005.

Michel, C. C. and Curry, F. E. (1999) ‘Microvascular permeability’, Physiological Reviews, 79(3), pp. 703–761. doi: 10.1152/physrev.1999.79.3.703.

Moore, J. E. and Bertram, C. D. (2018) ‘Lymphatic System Flows’, Annual Review of Fluid Mechanics, 50, pp. 459–482. doi: 10.1146/annurev-fluid-122316-045259.

Nguyen, M. K., Kao, L. and Kurtz, I. (2009) ‘Calculation of the equilibrium pH in a multiple-buffered aqueous solution based on partitioning of proton buffering: A new predictive formula’, American Journal of Physiology - Renal Physiology, 296(6), pp. 1521–1529. doi: 10.1152/ajprenal.90651.2008.

Nugent, L. J. and Jain, R. K. (1984) ‘Extravascular Diffusion in Normal and Neoplastic Tissues’, Cancer Research, 44(1), pp. 238–244.

Offeddu, G. S. et al. (2018) ‘Relationship between permeability and diffusivity in polyethylene glycol hydrogels’, AIP Advances, 8(10). doi: 10.1063/1.5036999.

Offeddu, G.S., Haase, K., Gillrie, M. R., et al. (2019) ‘An on-chip model of protein paracellular and transcellular permeability in the microcirculation’, Biomaterials, 212. doi: 10.1016/j.biomaterials.2019.05.022.

Offeddu, G.S., Haase, Kristina, Gillrie, M. R., et al. (2019) ‘An on-chip model of protein paracellular and transcellular permeability in the microcirculation’, Biomaterials, 212, pp. 115–125. doi: 10.1016/j.biomaterials.2019.05.022.

Offeddu, G.S., Possenti, Luca, Loessberg-zahl, J. T., et al. (2019) ‘Application of Transmural Flow Across In Vitro Microvasculature Enables Direct Sampling of Interstitial Therapeutic Molecule Distribution’, 1902393, pp. 1–10. doi: 10.1002/smll.201902393.

Offeddu, G. S. et al. (2021) ‘The cancer glycocalyx mediates intravascular adhesion and extravasation during metastatic dissemination’, Communications Biology, 4(1), pp. 1–10. doi: 10.1038/s42003-021-01774-2.

Ono, S., Egawa, G. and Kabashima, K. (2017) ‘Regulation of blood vascular permeability in the skin’, Inflammation and Regeneration, 37(1), pp. 1–8. doi: 10.1186/s41232-017-0042-9.

Ovacik, M. and Lin, K. (2018) ‘Tutorial on Monoclonal Antibody Pharmacokinetics and Its Considerations in Early Development’, Clinical and Translational Science, 11(6), pp. 540–552. doi: 10.1111/cts.12567.

Polley, M. Y. C. (2011) ‘Practical modifications to the time-to-event continual reassessment method for phase I cancer trials with fast patient accrual and late-onset toxicities’, Statistics in Medicine, 30(17), pp. 2130–2143. doi: 10.1002/sim.4255.

Porter, C. J. H. and Charman, S. A. (2000) ‘Lymphatic transport of proteins after subcutaneous administration’, Journal of Pharmaceutical Sciences, 89(3), pp. 297–310. doi: 10.1002/(SICI)1520-6017(200003)89:3<297::AID-JPS2>3.0.CO;2-P.

Richter, W. F., Bhansali, S. G. and Morris, M. E. (2012) ‘Mechanistic determinants of biotherapeutics absorption following SC administration’, AAPS Journal, 14(3), pp. 559–570. doi: 10.1208/s12248-012-9367-0.

Rippe, B. and Haraldsson, B. (1994) ‘Transport of macromolecules across microvascular walls: The two-pore theory’, Physiological Reviews, 74(1), pp. 163–219. doi: 10.1152/physrev.1994.74.1.163.

Risueño, I. et al. (2021) ‘Skin-on-a-chip models: General overview and future perspectives’, APL Bioengineering, 5(3). doi: 10.1063/5.0046376.

Ryman, J. T. and Meibohm, B. (2017) ‘Pharmacokinetics of monoclonal antibodies’, CPT: Pharmacometrics and Systems Pharmacology, 6(9), pp. 576–588. doi: 10.1002/psp4.12224.

Sanabria, H., Kubota, Y. and Waxham, M. N. (2007) ‘Multiple diffusion mechanisms due to nanostructuring in crowded environments’, Biophysical Journal, 92(1), pp. 313–322. doi: 10.1529/biophysj.106.090498.

Sánchez-Félix, M. et al. (2020) ‘Predicting bioavailability of monoclonal antibodies after subcutaneous administration: Open innovation challenge’, Advanced Drug Delivery Reviews, 167, pp. 66–77. doi: 10.1016/j.addr.2020.05.009.

Schindelin, J. et al. (2012) ‘Fiji: An open-source platform for biological-image analysis’, Nature Methods, 9(7), pp. 676–682. doi: 10.1038/nmeth.2019.

Schlothauer, T. et al. (2013) ‘Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies’, mAbs, 5(4), pp. 576–586. doi: 10.4161/mabs.24981.

Schmid-Schonbein, G. W. (1990) Microlymphatics and Lymph Flow Department, Physiological Reviews.

Schoch, A. et al. (2015) ‘Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics’, Proceedings of the National Academy of Sciences of the United States of America, 112(19), pp. 5997–6002. doi: 10.1073/pnas.1408766112.

Serrano, Jean C et al. (2022) ‘On-chip engineered human lymphatic microvasculature for physio-/pathological transport phenomena studies’, bioRxiv, p. 2022.03.06.483122. Available at: https://www.biorxiv.org/content/10.1101/2022.03.06.483122v1%0Ahttps://www.biorxiv.org/content/10.1101/2022.03.06.483122v1.abstract.

Shin, Y. et al. (2012) ‘Microfluidic assay for simultaneous culture of multiple cell types on surfaces or within hydrogels’, Nature Protocols, 7(7), pp. 1247–1259. doi: 10.1038/nprot.2012.051.

Stetefeld, J., McKenna, S. A. and Patel, T. R. (2016) ‘Dynamic light scattering: a practical guide and applications in biomedical sciences’, Biophysical Reviews, 8(4), pp. 409–427. doi: 10.1007/s12551-016-0218-6.

Sutterby, E. et al. (2020) ‘Microfluidic Skin-on-a-Chip Models: Toward Biomimetic Artificial Skin’, Small, 16(39), pp. 1–17. doi: 10.1002/smll.202002515.

Swaminathan, R., Hoang, C. P. and Verkman, A. S. (1997) ‘Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion’, Biophysical Journal, 72(4), pp. 1900–1907. doi: 10.1016/S0006-3495(97)78835-0.

Swartz, M. A. (2001) ‘The physiology of the lymphatic system’, Advanced Drug Delivery Reviews, 50(1–2), pp. 3–20. doi: 10.1016/S0169-409X(01)00150-8.

Tarbell, J. M. and Cancel, L. M. (2016) ‘The glycocalyx and its significance in human medicine’, Journal of Internal Medicine, 280(1), pp. 97–113. doi: 10.1111/joim.12465.

Thomas, V. A. and Balthasar, J. P. (2019) ‘Understanding Inter-Individual Variability in Monoclonal Antibody Disposition’, Antibodies, 8(4), p. 56. doi: 10.3390/antib8040056.

Thurber, G. M., Schmidt, M. M. and Wittrup, K. D. (2008) ‘Antibody tumor penetration: Transport opposed by systemic and antigen-mediated clearance’, Advanced Drug Delivery Reviews, 60(12), pp. 1421–1434. doi: 10.1016/j.addr.2008.04.012.

Tuma, P. L. and Hubbard, A. L. (2003) ‘Transcytosis: Crossing cellular barriers’, Physiological Reviews, 83(3), pp. 871–932. doi: 10.1152/physrev.00001.2003.

Vidarsson, G., Dekkers, G. and Rispens, T. (2014) ‘IgG subclasses and allotypes: From structure to effector functions’, Frontiers in Immunology, 5(OCT), pp. 1–17. doi: 10.3389/fimmu.2014.00520.

Wang, W., Wang, E. Q. and Balthasar, J. P. (2008) ‘Monoclonal antibody pharmacokinetics and pharmacodynamics’, Clinical Pharmacology and Therapeutics, 84(5), pp. 548–558. doi: 10.1038/clpt.2008.170.

Whisler, J. A., Chen, M. B. and Kamm, R. D. (2013) ‘Control of Perfusable Microvascular Network Morphology Using a Multiculture Microfluidic System’, 00(00). doi: 10.1089/ten.tec.2013.0370.

Wu, F. et al. (2012) ‘Fluorescence imaging of the lymph node uptake of proteins in mice after subcutaneous injection: molecular weight dependence.’, Pharmaceutical research, 29(7), pp. 1843–1853. doi: 10.1007/s11095-012-0708-6.

Xu, D. and Esko, J. D. (2014) ‘Demystifying heparan sulfate-protein interactions’, Annual Review of Biochemistry, 83, pp. 129–157. doi: 10.1146/annurev-biochem-060713-035314.

Yadav, D. B. et al. (2015) ‘Evaluating the use of antibody variable region (Fv) charge as a risk assessment tool for predicting typical cynomolgus monkey pharmacokinetics’, Journal of Biological Chemistry, 290(50), pp. 29732–29741. doi: 10.1074/jbc.M115.692434.