Summer school for systematic reviews of animal studies: Fostering evidence-based and rigorous animal research
Main Article Content
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Chi, K.-Y., Li, M.-Y., Chen, C. et al. (2023). Ten circumstances and solutions for finding the sample mean and standard deviation for meta-analysis. Syst Rev 12, 62. doi:10.1186/s13643-023-02217-1
Comroy, G. (2019). The 7 deadly sins of research. Nature News. https://www.nature.com/nature-index/news/the-seven-deadly-sins-of-research
Eggel, M. and Würbel, H. (2021). Internal consistency and compatibility of the 3Rs and 3Vs principles for project evaluation of animal research. Lab Anim 55, 233-243. doi:10.1177/0023677220968583
Eriksen, M. B. and Frandsen, T. F. (2018). The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J Med Libr Assoc 106, 420-431. doi:10.5195/jmla.2018.345
Harrison, H., Griffin, S. J., Kuhn, I. et al. (2020). Software tools to support title and abstract screening for systematic reviews in healthcare: An evaluation. BMC Med Res Methodol 20, 7. doi:10.1186/s12874-020-0897-3
Higgins, J. P., Thomas, J., Chandler, J. et al. (2019). Cochrane Handbook for Systematic Reviews of Interventions. John Wiley & Sons. doi:10.1002/9781119536604
Hooijmans, C. R., Hlavica, M., Schuler, F. A. F. et al. (2019). Remyelination promoting therapies in multiple sclerosis animal models: A systematic review and meta-analysis. Sci Rep 9, 822. doi:10.1038/s41598-018-35734-4
Howells, D. W., Sena, E. S. and Macleod, M. R. (2014). Bringing rigour to translational medicine. Nat Rev Neurol 10, 37-43. doi:10.1038/nrneurol.2013.232
Ineichen, B. V., Rosso, M. and Macleod, M. R. (2023). From data deluge to publomics: How AI can transform animal research. Lab Anim 52, 213-214. doi:10.1038/s41684-023-01256-4
King, H., Reiber, M., Philippi, V. et al. (2023). Anesthesia and analgesia for experimental craniotomy in mice and rats: A systematic scoping review comparing the years 2009 and 2019. Front Neurosci 17, 1143109. doi:10.3389/fnins.2023.1143109
Leenaars, C. H., Kouwenaar, C., Stafleu, F. R. et al. (2019). Animal to human translation: A systematic scoping review of reported concordance rates. J Translat Med 17, 223. doi:10.1186/s12967-019-1976-2
Leenaars, C., Tsaioun, K., Stafleu, F. et al. (2021). Reviewing the animal literature: How to describe and choose between different types of literature reviews. Lab Anim 55, 129-141. doi:10.1177/0023677220968599
Marshall, I. J. and Wallace, B. C. (2019). Toward systematic review automation: A practical guide to using machine learning tools in research synthesis. Syst Rev 8, 163. doi:10.1186/s13643-019-1074-9
NASEM – National Academies of Sciences, Engineering, and Medicine (2019). Understanding reproducibility and replicability. In Reproducibility and Replicability in Science (Chapter 3: 39-54). Washington (DC): National Academies Press. https://www.ncbi.nlm.nih.gov/books/NBK547546/
O’Collins, V. E., Macleod, M. R., Donnan, G. A. et al. (2006). 1,026 experimental treatments in acute stroke. Ann Neurol 59, 467-477. doi:10.1002/ana.20741
O’Collins, V. E., Macleod, M. R., Donnan, G. A. et al. (2012). Evaluation of combination therapy in animal models of cerebral ischemia. J Cereb Blood Flow Metab 32, 585-597. doi:10.1038/jcbfm.2011.203
Richardson, W. S., Wilson, M. C., Nishikawa, J. et al. (1995). The well-built clinical question: A key to evidence-based decisions. ACP J Club 123, A12-A13. doi:10.7326/ACPJC-1995-123-3-A12
Ritskes-Hoitinga, M. and Pound, P. (2022a). The role of systematic reviews in identifying the limitations of preclinical animal research, 2000-2022: Part 1. J R Soc Med 115, 186-192. doi:10.1177/01410768221093551
Ritskes-Hoitinga, M. and Pound, P. (2022b). The role of systematic reviews in identifying the limitations of preclinical animal research, 2000-2022: Part 2. J R Soc Med 115, 231-235. doi:10.1177/01410768221100970
Van der Mierden, S., Tsaioun, K., Bleich, A. et al. (2019). Software tools for literature screening in systematic reviews in biomedical research. ALTEX 36, 508-517. doi:10.14573/altex.1902131
Van der Mierden, S., Leenaars, C. H., Boyle, E. C. et al. (2021). Measuring endogenous corticosterone in laboratory mice-a mapping review, meta-analysis, and open source database. ALTEX 38, 111-122. doi:10.14573/altex.2004221
Vesterinen, H. M., Sena, E. S., Egan, K. J. et al. (2014). Meta-analysis of data from animal studies: A practical guide. J Neurosci Meth 221, 92-102. doi:10.1016/j.jneumeth.2013.09.010
Wang, Z., Nayfeh, T., Tetzlaff, J. et al. (2020). Error rates of human reviewers during abstract screening in systematic reviews. PLoS One 15, e0227742. doi:10.1371/journal.pone.0227742
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. et al. (2016). The fair guiding principles for scientific data management and stewardship. Sci Data 3, 160018. doi:10.1038/sdata.2016.18