Elements and development processes for test methods in toxicology and human health-relevant life science research

Main Article Content

Eike Cöllen, Yaroslav Tanaskov, Anna-Katharina Holzer, Michelle Dipalo, Jasmin Schäfer, Udo Kraushaar, Marcel Leist
[show affiliations]

Abstract

Many laboratory procedures generate data on properties of chemicals, but they cannot be equated with toxicological “test methods”. This apparent discrepancy is not limited to in vitro testing, using animal-free new approach methods (NAM), but also applies to animal-based testing approaches. Here, we give a brief overview of the differences between data generation and the setup or use of a complete test method. While there is excellent literature available on this topic for specialists (GIVIMP guidance; ToxTemp overview), a brief overview and easily-accessible entry point may be useful for a broader community. We provide a single figure to summarize all test method elements and processes required in the development (setup and adaptation) of a test method. The exposure scheme, the endpoint, and the test system are briefly outlined as fundamental elements of any test method. A rationale is provided, why they are not sufficient. We then explain the importance and role of purpose definition (including some information on what is modelled) and the prediction model, aka data interpretation procedure, which depends on the purpose definition, as further essential elements. This connection exemplifies that all fundamental elements are interdependent, and none can be omitted. Finally, discussion is provided on validation as a measure to provide confidence in the reliability, performance, and relevance of a test method. In this sense, validation may be considered a sixth fundamental element for practical use of test methods.


Plain language summary
Many laboratory procedures generate data on chemicals, but they cannot be considered complete toxicological “test methods”. Here, we give a brief explanation of the fundamental elements of a toxicological test method. We provide an illustration that gives a complete overview of the devel­opment of a test method for non-specialists. We introduce the six fundamental elements, i.e., the exposure scheme, the test endpoint, the test system, the purpose definition and the prediction model and describe how they work together. Finally, we discuss the concept of validation. An understanding of these concepts is important for good-quality scientific research and especially for the development and acceptance of alternatives to animal experiments.

Article Details

How to Cite
Cöllen, E. (2024) “Elements and development processes for test methods in toxicology and human health-relevant life science research”, ALTEX - Alternatives to animal experimentation, 41(1), pp. 142–148. doi: 10.14573/altex.2401041.
Section
BenchMarks
References

Aschner, M., Ceccatelli, S., Daneshian, M. et al. (2017). Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: Example lists and criteria for their selection and use. ALTEX 34, 49-74. doi:10.14573/altex.1604201

Balls, M., Blaauboer, B. J., Fentem, J. H. et al. (1995). Practical aspects of the validation of toxicity test procedures. Altern Lab Anim 23, 129-146. doi:10.1177/026119299502300116

Bal-Price, A., Hogberg, H. T., Crofton, K. M. et al. (2018). Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX 35, 306-352. doi:10.14573/altex.1712081

Bernasconi, C., Bartnicka, J., Asturiol, D. et al. (2023). Validation of a battery of mechanistic methods relevant for the detection of chemicals that can disrupt the thyroid hormone system. Publications Office of the European Union. doi:10.2760/862948

EMA (2008). Qualification of novel methodologies for drug development: Quidance to applicants. EMA/CHMP/SAWP/72894/2008. https://bit.ly/3RPtNLE

EMA (2016). Guideline on the principles of regulatory acceptance of 3Rs (replacement, reduction, refinement) testing approaches. EMA/CHMP/CVMP/JEG-3Rs/450091/2012. https://bit.ly/3TP7bxv

Hartung, T. (2007). Food for thought … on validation. ALTEX 24, 67-80. doi:10.14573/altex.2007.2.67

Hartung, T., Hoffmann, S. and Stephens, M. (2013). Mechanistic validation. ALTEX 30, 119-130. doi:10.14573/altex.2013.2.119

Hewitt, M., Ellison, C. M., Cronin, M. T. D. et al. (2015). Ensuring confidence in predictions: A scheme to assess the scientific validity of in silico models. Adv Drug Deliv Rev 86, 101-111. doi:10.1016/j.addr.2015.03.005

Hoffmann, S., Hartung, T. and Stephens, M. (2016). Evidence-based toxicology. Adv Exp Med Biol 856, 231-241. doi:10.1007/978-3-319-33826-2_9

Holzer, A. K., Dreser, N., Pallocca, G. et al. (2023). Acceptance criteria for new approach methods in toxicology and human health-relevant life science research – Part I. ALTEX 40, 706-712. doi:10.14573/altex.2310021

Krebs, A., Waldmann, T., Wilks, M. F. et al. (2019). Template for the description of cell-based toxicological test methods to allow evaluation and regulatory use of the data. ALTEX 36, 682-699. doi:10.14573/altex.1909271

Krebs, A., van Vugt-Lussenburg, B. M. A., Waldmann, T. et al. (2020). The EU-ToxRisk method documentation, data processing and chemical testing pipeline for the regulatory use of new approach methods. Arch Toxicol 94, 2435-2461. doi:10.1007/s00204-020-02802-6

Lanzoni, A., Castoldi, A. F., Kass, G. E. et al. (2019). Advancing human health risk assessment. EFSA J 17, e170712. doi:10.2903/j.efsa.2019.e170712

Leist, M., Efremova, L. and Karreman, C. (2010). Food for thought … considerations and guidelines for basic test method descriptions in toxicology. ALTEX 27, 309-317. doi:10.14573/altex.2010.4.309

Leist, M., Hasiwa, N., Daneshian, M. et al. (2012a). Validation and quality control of replacement alternatives – Current status and future challenges. Toxicol Res 1, 8-22. doi:10.1039/c2tx20011b

Leist, M., Lidbury, B. A., Yang, C. et al. (2012b). Novel technologies and an overall strategy to allow hazard assessment and risk prediction of chemicals, cosmetics, and drugs with animal-free methods. ALTEX 29, 373-388. doi:10.14573/altex.2012.4.373

Leist, M. and Hengstler, J. G. (2018). Essential components of methods papers. ALTEX 35, 429-432. doi:10.14573/altex.1807031

Marx-Stoelting, P., Rivière, G., Luijten, M. et al. (2023). A walk in the PARC: Developing and implementing 21st century chemical risk assessment in Europe. Arch Toxicol 97, 893-908. doi:10.1007/s00204-022-03435-7

OECD (2005). Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment. OECD Series on Testing and Assessment, No. 34. https://one.oecd.org/document/env/jm/mono(2005)14/en/pdf

OECD (2018). Guidance Document on Good In Vitro Method Practices (GIVIMP). OECD Series on Testing and Assessment, No. 286. OECD Publishing, Paris. doi:10.1787/9789264304796-en

Pallocca, G. and Leist, M. (2022). On the usefulness of animals as a model system (part II): Considering benefits within distinct use domains. ALTEX 39, 531-539. doi:10.14573/altex.2207111

Pallocca, G., Rovida, C. and Leist, M. (2022). On the usefulness of animals as a model system (part I): Overview of criteria and focus on robustness. ALTEX 39, 347-353. doi:10.14573/altex.2203291

Pamies, D., Leist, M., Coecke, S. et al. (2022). Guidance document on good cell and tissue culture practice 2.0 (GCCP 2.0). ALTEX 39, 30-70. doi:10.14573/altex.2111011

Patterson, E. A., Whelan, M. P. and Worth, A. P. (2021). The role of validation in establishing the scientific credibility of predictive toxicology approaches intended for regulatory application. Comput Toxicol 17, 100144. doi:10.1016/j.comtox.2020.100144

Schmeisser, S., Miccoli, A., von Bergen, M. et al. (2023). New approach methodologies in human regulatory toxicology – Not if, but how and when! Environ Int 178, 108082. doi:10.1016/j.envint.2023.108082

Schmidt, B. Z., Lehmann, M., Gutbier, S. et al. (2017). In vitro acute and developmental neurotoxicity screening: An overview of cellular platforms and high-throughput technical possibilities. Arch Toxicol 91, 1-33. doi:10.1007/s00204-016-1805-9

Most read articles by the same author(s)

<< < 1 2 3 4 5 6 7 8 > >>