The validation of regulatory test methods – Conceptual, ethical, and philosophical foundations

Main Article Content

Thomas Hartung
[show affiliations]

Abstract

Validation establishes the reproducibility and relevance of regulatory test methods, particularly for new approach methods (NAMs) as alternatives to animal testing. While validation concepts provide a framework to assess method suitability, they rarely undergo method-critical assessment. This paper explores the philosophical and ethical foundations of the validation process, drawing from various philosophical traditions and contemporary ethical frameworks. How validation intersects with utilitarian principles, ethics of responsibility, and post-modern critiques is examined, offering a multifaceted perspective on its role in scientific progress and societal values. The paper argues for a paradigm shift in validation, moving beyond traditional animal-based comparisons towards more flexible, fit-for-purpose approaches that embrace emerging technologies and ethical con­siderations. Key ethical principles guiding NAM validation are discussed, including beneficence, non-maleficence, justice, and respect for animal welfare. Integrating these principles with scientific rigor can create a more holistic validation framework that balances human safety, animal welfare, and technological innovation. By critically examining the philosophical underpinnings of validation, this paper aims to stimulate dialogue on reforming the process to better align with contemporary scientific knowledge, ethical standards, and societal expectations. It calls for a more adaptive, transparent, and ethically grounded approach to validation that can accelerate the adoption of innovative and human-relevant toxicological methods while maintaining scientific integrity and public trust.


Plain language summary
How do we know if new methods for testing chemical safety are reliable and relevant? This process, called validation, is crucial for protecting public health and reducing animal testing. This paper explores the ethical and philosophical ideas behind validation, asking important questions about fairness, animal welfare, and scientific progress. It is argued that current validation methods need updating to keep pace with new technologies and changing social values. By examining different philosophical viewpoints, ways to make validation more flexible, transparent, and ethically sound are suggested. This matters because better validation can lead to safer products, less animal suf­fering, and more effective environmental protection. The goal is to spark a conversation about how we can improve the way we evaluate new safety testing methods, balancing scientific rigor with ethical considerations and public trust.

Article Details

How to Cite
Hartung, T. (2024) “The validation of regulatory test methods – Conceptual, ethical, and philosophical foundations”, ALTEX - Alternatives to animal experimentation, 41(4), pp. 525–544. doi: 10.14573/altex.2409271.
Section
Food for Thought ...
References

Balls, M., Blaauboer, B., Brusick, D. et al. (1990). Report and recommendations of the CAAT/ERGATT workshop on the validation of toxicity test procedures. Altern Lab Anim 18, 313-337. doi:10.1177/026119299001800131.1

Balls, M., Blaauboer, B. J., Fentem, J. H. et al. (1995). Practical aspects of the validation of toxicity test procedures. The report and recommendations of ECVAM workshop 5. Altern Lab Anim 23, 129-147. doi:10.1177/026119299502300116

Balls, M., Bass, R., Curren, R. et al. (2024). 60 Years of the 3Rs symposium: Lessons learned and the road ahead. ALTEX 41, 179-201. doi:10.14573/altex.2403061

Bayne, K. and Morris, T. (2012). Laws, regulations and policies relating to the care and use of nonhuman primates in biomedical research. In C. R. Abee, K. Mansfield, S. Tardif et al. (eds), Nonhuman Primates in Biomedical Research: Biology and Management. Academic Press. doi:10.1016/B978-0-12-381365-7.00002-9

Bhuller, Y., Deonandan, R. and Krewski, D. (2024). Relevance and feasibility of principles for health and environmental risk decision-making. J Toxicol Environ Health B 27, 189-211. doi:10.1080/10937404.2024.2338078

Bhuller, Y., Hilton, G., Avey, M. et al. (submitted). Ethical principles for regulatory risk decision-making.

Bottini, A. A., Amcoff, P. and Hartung, T. (2007). Food for thought ... on globalisation of alternative methods. ALTEX 24, 255-269. doi:10.14573/altex.2007.4.255

Bottini, A. A., Alepee, N., De Silva, O. et al. (2008). Optimization of the post-validation process. The report and recommendations of ECVAM workshop 67. Altern Lab Anim 36, 353-366.

Bottini, A. A. and Hartung, T. (2009). Food for thought... on the economics of animal testing. ALTEX 26, 3-16. doi:10.14573/altex.2009.1.3

Bouhifd, M., Andersen, M. E., Baghdikian, C. et al. (2015). The human toxome project. ALTEX 32, 112-124. doi:10.14573/altex.1502091

Bower, J. F., McClung, J. B., Watson, C. et al. (2014). Recommendations and best practices for reference standards and reagents used in bioanalytical method validation. AAPS J 16, 352-356. doi:10.1208/s12248-014-9566-y

Brink, C. B. and Lewis, D. I. (2023). The 12 Rs framework as a comprehensive, unifying construct for principles guiding animal research ethics. Animals 13, 1128. doi:10.3390/ani13071128

Browne, P., Delrue, N. and Gourmelon, A. (2019). Regulatory use and acceptance of alternative methods for chemical hazard identification. Curr Opin Toxicol 15, 18-25. doi:10.1016/j.cotox.2019.02.003

Caloni, F., De Angelis, I. and Hartung, T. (2022). Replacement of animal testing by integrated approaches to testing and assessment (IATA): A call for in vivitrosi. Arch Toxicol 96, 1935-1950. doi:10.1007/s00204-022-03299-x

Clippinger, A. J., Raabe, H. A., Allen, D. G. et al. (2021). Human-relevant approaches to assess eye corrosion/irritation potential of agrochemical formulations. Cutan Ocul Toxicol 40, 145-167. doi:10.1080/15569527.2021.1910291

Frazier, J. M. (1994). The role of mechanistic toxicology in test method validation. Toxicol In Vitro 8, 787-791. doi:10.1016/0887-2333(94)90068-X

Goldberg, A.M. (1986). In Vitro Toxicology: Approaches to Validation. New York, NY, USA: Mary Ann Liebert, Inc.

Goldberg, A. M., Frazier, J. M., Brusick, D. et al. (1993). Framework for validation and implementation of in vitro toxicity tests. In Vitro Cell Dev Biol Anim 29, 688-692. doi:10.1007/bf02631424

Golden, E., Allen, D. and Amberg, A. (2024). Toward implementing virtual control groups in nonclinical safety studies: Workshop report and roadmap to implementation. ALTEX 41, 282-301. doi:10.14573/altex.2310041

Gourmelon, A., Hubert, P., Grignard, E. et al. (2024). The benefits of validation of methods for toxicity testing outweigh its costs. ALTEX 41, 395-401. doi:10.14573/altex.2403051

Grinnel, F. (2009). Everyday Practice of Science: Where Intuition and Passion Meet Objectivity and Logic. Oxford University Press. doi:10.1093/acprof:oso/9780195064575.001.0001

Hartung, T. and Spielmann, H. (1995). Der lange Weg zur validierten Ersatzmethode (The sophisticated process of validation) [Article in German]. ALTEX 12, 98-103. https://www.altex.org/index.php/altex/article/view/1677

Hartung, T., Bremer, S., Casati, S. et al. (2004). A modular approach to the ECVAM principles on test validity. Altern Lab Anim 32, 467-472. doi:10.1177/026119290403200503

Hartung, T. (2007). Food for thought ... on validation. ALTEX 24, 67-80. doi:10.14573/altex.2007.2.67

Hartung T. (2008). Towards a new toxicology – Evolution or revolution? Altern Lab Anim 36, 635-639. doi:10.1177/026119290803600607

Hartung T. (2009). Food for thought … on evidence-based toxicology. ALTEX 26, 75-82. doi:10.14573/altex.2009.2.75

Hartung, T. (2010). Evidence-based toxicology – The toolbox of validation for the 21st century? ALTEX 27, 253-263. doi:10.14573/altex.2010.4.253

Hartung, T., Stephens, M. and Hoffmann, S. (2013a). Mechanistic validation. ALTEX 30, 119-130. doi:10.14573/altex.2013.2.119

Hartung, T., Luechtefeld, T., Maertens, A. and Kleensang, A. (2013b). Integrated testing strategies for safety assessments. ALTEX 30, 3-18. doi:10.14573/altex.2013.1.003

Hartung, T. and Tsatsakis, A. M. (2021). The state of the scientific revolution in toxicology. ALTEX 38, 379-386. doi:10.14573/altex.2106101

Hartung, T. and Krewski, D. (2022). Development of an evidence-based risk assessment framework. ALTEX 39, 442. doi:10.14573/altex.22S2

Hartung T. (2023a). Artificial intelligence as the new frontier in chemical risk assessment. Front Artif Intell 6, 1269932. doi:10.3389/frai.2023.1269932

Hartung T. (2023b). ToxAIcology – The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX 40, 559-570. doi:10.14573/altex.2309191

Hartung, T. (2023c). Evidence-based toxicology. In Encyclopedia of Toxicology (4th edition, 561-565). doi:10.1016/B978-0-12-824315-2.00973-8

Hartung, T. and Tsaioun, K. (2024). Evidence-based approaches in toxicology: Their origins, challenges, and future directions. Evid Based Toxicol, in press.

Hartung, T., Maertens, A. and Luechtefeld, T. (2024a). E-validation – Unleashing AI for validation. ALTEX 41, 567-587. doi:10.14573/altex.2409211

Hartung, T., King, N. P. M., Kleinstreuer, N. et al. (2024b). Leveraging biomarkers and translational medicine for preclinical safety - Lessons for advancing the validation of alternatives to animal testing. ALTEX 41, 545-566. doi:10.14573/altex.2410011

Hoffmann, S. and Hartung, T. (2006a). Designing validation studies more efficiently according to the modular approach: Retrospective analysis of the EPISKIN test for skin corrosion. Altern Lab Anim 34, 177-191. doi:10.1177/026119290603400209

Hoffmann, S. and Hartung, T. (2006b). Towards an evidence-based toxicology. Human Exp Toxicol 25, 497-513. doi:10.1191/0960327106het648oa

Hoffmann, S., Edler, L., Gardner, I. et al. (2008). Points of reference in the validation process. Altern Lab Anim 36, 343-352. doi:10.1177/026119290803600311

Hoffmann, S., de Vries, R. B. M., Stephens, M. L. et al. (2017). A primer on systematic reviews in toxicology. Arch Toxicol 91, 2551-2575. doi:10.1007/s00204-017-1980-3

ICCVAM – Interagency Coordinating Committee on the Validation of Alternative Methods (2018). A Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of Chemicals and Medical Products in the United States. doi:10.22427/ntp-iccvam-roadmap2018

Jonas, H. (1984). The Imperative of Responsibility in Search of an Ethics for the Technological Age. Chicago, London: The University of Chicago Press.

Judson, R., Kavlock, R., Martin, M. et al. (2013). Perspectives on validation of high-throughput assays supporting 21st century toxicity testing. ALTEX 30, 51-56. doi:10.14573/altex.2013.1.051

Kleensang, A., Maertens, A., Rosenberg, M. et al. (2014). Pathways of Toxicity. ALTEX 31, 53-61. doi:10.14573/altex.1309261

Kleinstreuer, N. and Hartung, T. (2024). Artificial intelligence (AI) – It’s the end of the tox as we know it (and I feel fine). Arch Toxicol 98, 735-754. doi:10.1007/s00204-023-03666-2

Krewski, D., Saunders-Hastings, P., Baan, R. A. et al. (2022). Development of an evidence-based risk assessment framework. ALTEX 39, 667-693. doi:10.14573/altex.2004041

Leist, M., Hasiwa, N., Daneshian, M. et al. (2012). Validation and quality control of replacement alternatives – Current status and future challenges. Toxicol Res 1, 8-22. doi:10.1039/c2tx20011b

Leist, M. and Hartung, T. (2013). Inflammatory findings on species extrapolations: Humans are definitely no 70-kg mice. Arch Toxicol 87, 563-567. doi:10.1007/s00204-013-1038-0

Linkov, I., Massey, O., Keisler, J. et al. (2015). From “weight of evidence” to quantitative data integration using multicriteria decision analysis and Bayesian methods. ALTEX 32, 3-8. doi:10.14573/altex.1412231

Maertens, A., Golden, E., Luechtefeld, T. et al. (2022). Probabilistic risk assessment – The keystone for the future of toxicology. ALTEX 39, 3-29. doi:10.14573/altex.2201081

Maertens, A., Antignac, E., Benfenati, E. et al. (2024a). The probable future of toxicology – Probabilistic risk assessment. ALTEX 41, 273-281. doi:10.14573/altex.2310301

Mancini, C. and Nannoni, E. (2022). Relevance, impartiality, welfare and consent: Principles of an animal-centered research ethics. Front Anim Sci 3, 800186. doi:10.3389/fanim.2022.800186

Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – The most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.1807041

Mondou, M., Maguire, S., Pain, G. et al. (2021). Envisioning an international validation process for new approach methodologies in chemical hazard and risk assessment. Environ Adv 4, 100061. doi:10.1016/j.envadv.2021.100061

NASEM – National Academies of Sciences, Engineering, and Medicine (2023). Building Confidence in New Evidence Streams for Human Health Risk Assessment: Lessons Learned from Laboratory Mammalian Toxicity Tests. Washington, DC: The National Academies Press. (Especially Chapter 5: Issues in developing a scientific confidence framework for NAM). doi:10.17226/26906

OECD (2005). Guidance Document on the Validation and International Acceptance of New or Updated Test Methods for Hazard Assessment. Series on Testing and Assessment, No. 34. OECD Publishing, Paris.

Parish, S. T., Aschner, M., Casey, W. et al. (2020). An evaluation framework for new approach methodologies (NAMs) for human health safety assessment. Regul Toxicol Pharmacol 112, 104592. doi:10.1016/j.yrtph.2020.104592

Patterson, E. A., Whelan, M. P. and Worth, A. P. (2021). The role of validation in establishing the scientific credibility of predictive toxicology approaches intended for regulatory application. Comput Toxicol 17, 100144. doi:10.1016/j.comtox.2020.100144

Rovida, C., Alépée, N., Api, A. M. et al. (2015). Integrated testing strategies (ITS) for safety assessment. ALTEX 32, 171-181. doi:10.14573/altex.1506201

Sillé, F. C. M., Karakitsios, S., Kleensang, A. et al. (2020). The exposome – A new approach for risk assessment. ALTEX 37, 3-23. doi:10.14573/altex.2001051

Sillé, F. C. M., Busquet, F., Fitzpatrick, S. et al. (2024). The implementation moonshot project for alternative chemical testing (IMPACT) toward a human exposome project. ALTEX 41, 344-362. doi:10.14573/altex.2407081

Singer, P. (1975). Animal Liberation. London, UK: The Bodley Head.

Singer, P. (2023). Animal Liberation Now. Bodley Head Childrens.

Sloterdijk, P. (1983). Critique of Cynical Reason. Minneapolis, USA: University Of Minnesota Press.

Spielmann, H., Liebsch, M. and Reinhardt, C. (1998). ERGATT/ECVAM workshop on acceptance of validated alternative methods: Amden III [Article in German]. ALTEX 15, 18-22. https://altex.org/index.php/altex/article/view/1571

Steger-Hartmann, T., Kreuchwig, A., Vaas, L. et al. (2020). Introducing the concept of virtual control groups into preclinical toxicology testing. ALTEX 37, 343-349. doi:10.14573/altex.2001311

Stephens, M. L., Andersen, M., Becker, R. A. et al. (2013). Evidence-based toxicology for the 21st century: Opportunities and challenges. ALTEX 30, 74-104. doi:10.14573/altex.2013.1.074

Stokes, W. S. and Schechtman, L. M. (2007). Validation and regulatory acceptance of new, revised, and alternative toxicological methods. In A. W. Hayes (ed.), Principles and Methods of Toxicology (1103-1128). Philadelphia, Pennsylvania, USA: Taylor and Francis.

van der Zalm, A. J., Barroso, J., Browne, P. et al. (2022). A framework for establishing scientific confidence in new approach methodologies. Arch Toxicol 96, 2865-2879. doi:10.1007/s00204-022-03365-4

von Aulock, S., Busquet, F., Locke, P. et al. (2022). Engagement of scientists with the public and policymakers to promote alternative methods. ALTEX 39, 543-559. doi:10.14573/altex.2209261

Worth, A. P. and Balls, M. (2004). The principles of validation and the ECVAM validation process. Altern Lab Anim 32, 623-629. doi:10.1177/026119290403201s105

Most read articles by the same author(s)

<< < 8 9 10 11 12 13 14 15 16 > >>