Developmental neurotoxicity (DNT): A call for implementation of new approach methodologies for regulatory purposes: Summary of the 5th International Conference on DNT Testing

Main Article Content

Ivana Celardo, Michael Aschner, Randolph S. Ashton, Kelly E. Carstens, Andrea Cediel-Ulloa, Eike Cöllen, Kevin M. Crofton, Susan J. Debad, Nadine Dreser, Suzanne Fitzpatrick, Ellen Fritsche, Sebastian Gutsfeld, Barry Hardy, Thomas Hartung, Ellen Hessel, Harm Heusinkveld, Helena T. Hogberg, Jui-Hua Hsieh, Yasunari Kanda, Gavin T. Knight, Thomas Knudsen, Katharina Koch, Eliska Kuchovska, Iris Mangas, M. Sue Marty, Stephanie Melching-Kollmuss, Iris Müller, Patrick Müller, Oddvar Myhre, Martin Paparella, Emily Pitzer, Anna Bal-Price, Magdalini Sachana, Kevin Schlüppmann, Timothy J. Shafer, Jasmin Schäfer, Lena Smirnova, Tamara Tal, Yaroslav Tanaskov, Silvia Tangianu, Giuseppe Testa, Anna-Katharina Ückert, Maurice Whelan, Marcel Leist
[show affiliations]

Abstract

The 5th International Conference on Developmental Neurotoxicity (DNT) Testing (DNT5) took place in April 2024 in Konstanz, Germany, organized by CAAT-Europe, the University of Konstanz, and scientists from the US EPA, SCAHT, and CAAT at Johns Hopkins University Bloomberg School of Public Health. The conference convened experts from regulatory agencies, industry, and academia to explore the latest advancements in DNT testing and the integration of animal-free new approach methodologies (NAMs) into next-generation risk assessment (NGRA). The key topic was the appli­cation and further development of the recently established DNT in vitro test battery (DNT-IVB). To support this, OECD held a satellite meeting to discuss necessary next steps for further implementation of the DNT-IVB in regulatory contexts. Validation of new DNT test methods and use of their data for in-vitro-to-in-vivo extrapolations in physiologically based kinetic models were also important themes of the main meeting. In this context, the question was raised when a comprehensive biological and chemical coverage by the DNT-IVB would be reached. A need for additional testing data was recognized. Context-specific validation approaches for the entire DNT-IVB and the potential for intelligent combinations of assays to enhance the predictive power of the test battery were also addressed. Many presentations demonstrated the field’s embrace of novel developments, including the use of multi-endpoint embryonic zebrafish tests, the development of artificial intelligence-driven computational approaches, and the establishment of complex, electrically active brain organoids and other self-organizing structures. Through its highly interactive format, DNT5 promoted extensive collaborative efforts in advancing the field toward more human-relevant, scientifically reliable, and ethical toxicological assessments.


Plain language summary
The 5th International Conference on Developmental Neurotoxicity (DNT) Testing (DNT5) took place in April 2024 in Konstanz, Germany. Experts from regulatory agencies, industry, and academia convened to discuss how best to integrate animal-free new approach methodologies (NAMs) into next-generation risk assessment. The key topic was the application and further development of the recently established DNT in vitro test battery (DNT-IVB). The use of data from the DNT-IVB was a central theme. For instance, it was discussed how data from cell culture methods could be used to predict safe human exposures. Moreover, the conference addressed the need for comprehensive biological and chemical coverage by the DNT-IVB. Many presentations demonstrated the field’s embrace of novel developments, including the use of multi-endpoint embryonic zebrafish tests, the development of artificial intelligence-driven computational approaches, and the establishment of complex, electrically active brain organoids and other self-organizing structures.

Article Details

How to Cite
Celardo, I. (2025) “Developmental neurotoxicity (DNT): A call for implementation of new approach methodologies for regulatory purposes: Summary of the 5th International Conference on DNT Testing”, ALTEX - Alternatives to animal experimentation, 42(2), pp. 323–349. doi: 10.14573/altex.2503191.
Section
Articles
References

Abbasi, J. (2016). Call to action on neurotoxin exposure in pregnant women and children. JAMA 316, 1436-1437. doi:10.1001/jama.2016.11576

Alam El Din, D.-M., Shin, J., Lysinger, A. et al. (2024). Organoid intelligence for developmental neurotoxicity testing. Front Cell Neurosci 18, 1480845. doi:10.3389/fncel.2024.1480845

Aschner, M., Ceccatelli, S., Daneshian, M. et al. (2017). Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use. ALTEX 34, 49-74. doi:10.14573/altex.1604201

Babaei, S., Reguyal, F. and Sarmah, A. K. (2024). A bibliometric analysis of global research hotspots and progress on emerging environmental pollutants 6PPD and 6PPD-quinone from 2004 to 2024. Environ Pollut 362, 124969. doi:10.1016/j.envpol.2024.124969

Bal-Price, A., Crofton, K. M., Leist, M. et al. (2015). International STakeholder NETwork (ISTNET): Creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch Toxicol 89, 269-287. doi:10.1007/s00204-015-1464-2

Bal-Price, A., Hogberg, H. T., Crofton, K. M. et al. (2018). Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX 35, 306-352. doi:10.14573/altex.1712081

Baltazar, M. T., Cable, S., Carmichael, P. L. et al. (2020). A next-generation risk assessment case study for coumarin in cosmetic products. Toxicol Sci 176, 236-252. doi:10.1093/toxsci/kfaa048

Bartmann, K., Bendt, F., Dönmez, A. et al. (2023). A human iPSC-based in vitro neural network formation assay to investigate neurodevelopmental toxicity of pesticides. ALTEX 40, 452-470. doi:10.14573/altex.2206031

Baze, A., Wiss, L., Horbal, L. et al. (2024). Comparison of in vitro thyroxine (T4) metabolism between Wistar rat and human hepatocyte cultures. Toxicol In Vitro 96, 105763. doi:10.1016/j.tiv.2023.105763

Berntsen, H. F., Berg, V., Thomsen, C. et al. (2017). The design of an environmentally relevant mixture of persistent organic pollutants for use in in vivo and in vitro studies. J Toxicol Environ Health A 80, 1002-1016. doi:10.1080/15287394.2017.1354439

Birtele, M., Del Dosso, A., Xu, T. et al. (2023). Non-synaptic function of the autism spectrum disorder-associated gene SYNGAP1 in cortical neurogenesis. Nat Neurosci 26, 2090-2103. doi:10.1038/s41593-023-01477-3

Blum, J., Masjosthusmann, S., Bartmann, K. et al. (2023). Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere 311, 137035. doi:10.1016/j.chemosphere.2022.137035

Blum, J., Brüll, M., Hengstler, J. G. et al. (2025). The long way from raw data to NAM-based information: Overview on data layers and processing steps. ALTEX 42, 167-180. doi:10.14573/altex.2412171

Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci 16, 551-563. doi:10.1038/nrn3992

Browne, P., Friedman, K. P., Boekelheide, K. et al. (2024). Adverse effects in traditional and alternative toxicity tests. Regul Toxicol Pharmacol 148, 105579. doi:10.1016/j.yrtph.2024.105579

Čapek, D., Safroshkin, M., Morales-Navarrete, H. et al. (2023). EmbryoNet: Using deep learning to link embryonic phenotypes to signaling pathways. Nat Methods 20, 815-823. doi:10.1038/s41592-023-01873-4

Caporale, N., Leemans, M., Birgersson, L. et al. (2022). From cohorts to molecules: Adverse impacts of endocrine disrupting mixtures. Science 375, eabe8244. doi:10.1126/science.abe8244

Carstens, K. E., Carpenter, A. F., Martin, M. M. et al. (2022). Integrating data from in vitro new approach methodologies for developmental neurotoxicity. Toxicol Sci 187, 62-79. doi:10.1093/toxsci/kfac018

Carstens, K. E., Freudenrich, T., Wallace, K. et al. (2023). Evaluation of per- and polyfluoroalkyl substances (PFAS) in vitro toxicity testing for developmental neurotoxicity. Chem Res Toxicol 36, 402-419. doi:10.1021/acs.chemrestox.2c00344

Cediel-Ulloa, A., Awoga, R., Dönmez, A. et al. (2025). Characterization of the C17.2 cell line as test system for endocrine disruption-induced developmental neurotoxicity. ALTEX 42, 91-110. doi:10.14573/altex.2404131

Cheroni, C., Caporale, N. and Testa, G. (2020). Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 11, 69. doi:10.1186/s13229-020-00370-1

Cheroni, C., Trattaro, S., Caporale, N. et al. (2022). Benchmarking brain organoid recapitulation of fetal corticogenesis. Transl Psychiatry 12, 520. doi:10.1038/s41398-022-02279-0

Cohn, E. F., Clayton, B. L. L., Madhavan, M. et al. (2024). Pervasive environmental chemicals impair oligodendrocyte development. Nat Neurosci 27, 836-845. doi:10.1038/s41593-024-01599-2

Cöllen, E., Tanaskov, Y., Holzer, A.-K. et al. (2024). Elements and development processes for test methods in toxicology and human health-relevant life science research. ALTEX 41, 142-148. doi:10.14573/altex.2401041

Cöllen, E., Bartman, K., Blum, J. et al. (2025). Mapping out strategies to further develop human-relevant new approach methodology (NAM)-based developmental neurotoxicity (DNT) testing. ALTEX 42, 308-322. doi:10.14573/altex.2501091

Consortium for Children’s Environmental Health, Wirth, D. A. Cropper, M. et al. (2025). Manufactured chemicals and children’s health – The need for new law. N Engl J Med 392, 299-305. doi:10.1056/nejmms2409092

Crofton, K. M. and Mundy, W. R. (2021). External scientific report on the interpretation of data from the developmental neurotoxicity in vitro testing assays for use in integrated approaches for testing and assessment. EFSA Support Publ 18, 6924E. doi:10.2903/sp.efsa.2021.EN-6924

Crofton, K. M. and Mundy, W. R. (2024). Compendium of information on the use of guideline-based developmental neurotoxicity studies. EFSA Support Publ 21, 9174E. doi:10.2903/sp.efsa.2024.EN-9174

Davidsen, N., Lauvås, A. J., Myhre, O. et al. (2021). Exposure to human relevant mixtures of halogenated persistent organic pollutants (POPs) alters neurodevelopmental processes in human neural stem cells undergoing differentiation. Reprod Toxicol 100, 17-34. doi:10.1016/j.reprotox.2020.12.013

Dent, M., Amaral, R. T, Da Silva, A. P. et al. (2018). Principles underpinning the use of new methodologies in the risk assessment of cosmetic ingredients. Comput Toxicol 7, 20-26. doi:10.1016/j.comtox.2018.06.001

Dobreniecki, S., Mendez, E., Lowit, A. et al., (2022). Integration of toxicodynamic and toxicokinetic new approach methods into a weight-of-evidence analysis for pesticide developmental neurotoxicity assessment: A case-study with DL- and L-glufosinate. Regul Toxicol Pharmacol 131, 105167. doi:10.1016/j.yrtph.2022.105167

Dolde, X., Karreman, C., Wiechers, M. et al. (2021). Profiling of human neural crest chemoattractant activity as a replacement of fetal bovine serum for in vitro chemotaxis assays. Int J Mol Sci 22, 10079. doi:10.3390/ijms221810079

EFSA Panel on Plant Protection Products and their Residues (EFSA PPR Panel), Hernández‐Jerez, A., Adriaanse, P. et al. (2021). Development of Integrated approaches to testing and assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA Support Publ 19, e06599. doi:10.2903/j.efsa.2021.6599

Eriksson, P. (1997). Developmental neurotoxicity of environmental agents in the neonate. Neurotoxicology 18, 719-726.

Escher, S. E., Partosch, F., Konzok, S. et al. (2022). Development of a roadmap for action on new approach methodologies in risk assessment. EFSA Support Publ 19, 7341E. doi:10.2903/sp.efsa.2022.EN-7341

European Commission – Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs and Cronin, M. (2024). Report of the European Commission workshop on “The Roadmap Towards Phasing Out Animal Testing for Chemical Safety Assessments”: Brussels, 11 12 December 2023. Publications Office of the European Union. https://data.europa.eu/doi/10.2873/34576 (accessed 02.09.2024)

Frank, C. L., Brown, J. P., Wallace, K. et al. (2018). Defining toxicological tipping points in neuronal network development. Toxicol Appl Pharmacol 354, 81-93. doi:10.1016/j.taap.2018.01.017

Fritsche, E., Crofton, K. M., Hernandez, A. F. et al. (2017). OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. ALTEX 34, 311-315. doi:10.14573/altex.1701171

Ginhoux, F., Greter, M., Leboeuf, M. et al. (2010). Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841-845. doi:10.1126/science.1194637

Ginhoux, F., Lim, S., Hoeffel, G. et al. (2013). Origin and differentiation of microglia. Front Cell Neurosci 7, 45. doi:10.3389/fncel.2013.00045

Grandjean, P. and Landrigan, P. (2006). Developmental neurotoxicity of industrial chemicals. Lancet 368, 2167-2178. doi:10.1016/S0140-6736(06)69665-7

Grandjean, P. and Landrigan, P. J. (2014). Neurobehavioural effects of developmental toxicity. Lancet Neurol 13, 330-338. doi:10.1016/S1474-4422(13)70278-3

Grillberger, K., Cöllen, E., Trivisani, C. I. et al. (2023). Structural insights into neonicotinoids and N-unsubstituted metabolites on human nAChRs by molecular docking, dynamics simulations, and calcium imaging. Int J Mol Sci 24, 13170. doi:10.3390/ijms241713170

Grubb, B. J. (2006). Developmental biology, eighth edition. Scott F. Gilbert, editor. Integr Comp Biol 46, 652-653. doi:10.1093/icb/icl011

Hansen, S. N., Schendel, D. E. and Parner, E. T. (2015). Explaining the increase in the prevalence of autism spectrum disorders: The proportion attributable to changes in reporting practices. JAMA Pediatr 169, 56-62. doi:10.1001/jamapediatrics.2014.1893

Hartung, T., King, N. M. P., Kleinstreuer, N. et al. (2024). Leveraging biomarkers and translational medicine for preclinical safety – Lessons for advancing the validation of alternatives to animal testing. ALTEX 41, 545-566. doi:10.14573/altex.2410011

Heusinkveld, H. J., Staal, Y. C. M., Baker, N. C. et al. (2021). An ontology for developmental processes and toxicities of neural tube closure. Reprod Toxicol 99, 160-167. doi:10.1016/j.reprotox.2020.09.002

Holzer, A. K., Dreser, N., Pallocca, G. et al. (2023). Acceptance criteria for new approach methods in toxicology and human health-relevant life science research – Part I. ALTEX 40, 706-712. doi:10.14573/altex.2310021

Howe, K., Clark, M. D., Torroja, C. F. et al. (2013). The zebrafish reference genome sequence and its relationship to the human genome. Nature 496, 498-503. doi:10.1038/nature12111

Ishibashi, Y., Nagafuku, N., Kanda, Y. et al. (2023). Evaluation of neurotoxicity for pesticide-related compounds in human iPS cell-derived neurons using microelectrode array. Toxicol In Vitro 93, 105668. doi:10.1016/j.tiv.2023.105668

JRC – Joint Research Centre (European Commission), JRC Summer School 2023 on non-animal approaches in science: Towards sustainable innovation, Berggren, E. et al. (2023). Report on the outcome of the JRC Summer School 2023 on non-animal approaches in science: Towards sustainable innovation. Publications Office of the European Union. https://data.europa.eu/doi/10.2760/891000 (accessed 02.09.2024)

Jourdon, A., Wu, F., Mariani, J. et al. (2023). Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nat Neurosci 26, 1505-1515. doi:10.1038/s41593-023-01399-0

Juberg, D. R., Fox, D. A., Forcelli, P. A. et al. (2023). A perspective on In vitro developmental neurotoxicity test assay results: An expert panel review. Regul Toxicol Pharmacol 143, 105444. doi:10.1016/j.yrtph.2023.105444

Kadereit, S., Zimmer, B., van Thriel, C. et al. (2012). Compound selection for in vitro modeling of developmental neurotoxicity. Front Biosci (Landmark Ed) 17, 2442-2460. doi:10.2741/4064

Kapr, J., Scharkin, I., Ramachandran, H. et al. (2024). hiPSC-derived 3D neural models reveal neurodevelopmental pathomechanisms of the Cockayne syndrome B. Cell Mol Life Sci 81, 368. doi:10.1007/s00018-024-05406-w

Kelava, I. and Lancaster, M. A. (2016). Dishing out mini-brains: Current progress and future prospects in brain organoid research. Dev Biol 420, 199-209. doi:10.1016/j.ydbio.2016.06.037

Kelley, K. W. and Pașca, S. P. (2022). Human brain organogenesis: Toward a cellular understanding of development and disease. Cell 185, 42-61. doi:10.1016/j.cell.2021.10.003

King, M. and Bearman, P. (2009). Diagnostic change and the increased prevalence of autism. Int J Epidemiol 38, 1224-1234. doi:10.1093/ije/dyp261

Klose, J., Pahl, M., Bartmann, K. et al. (2022). Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery. Cell Biol Toxicol 38, 781-807. doi:10.1007/s10565-021-09603-2

Klose, J., Li, L., Pahl, M. et al. (2023). Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 39, 319-343. doi:10.1007/s10565-022-09730-4

Koch, K., Bartmann, K., Hartmann, J. et al. (2022). Scientific validation of human neurosphere assays for developmental neurotoxicity evaluation. Front Toxicol 4, 816370. doi:10.3389/ftox.2022.816370

Krieger, K., Melchor, F. L. and Scharfbillig, M. (2022). Science for policy bulletin – Issue 2, December 2022. JRC Publications Repository. https://publications.jrc.ec.europa.eu/repository/handle/JRC132127 (accessed 02.09.2024)

Kuehn, B. M. (2010). Increased risk of ADHD associated with early exposure to pesticides, PCBs. JAMA 304, 27. doi:10.1001/jama.2010.860

Kwan, L. Y., Eaton, D. L., Andersen, S. L. et al. (2020). This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicol Teratol 81, 106916. doi:10.1016/j.ntt.2020.106916

Landrigan, P. J. (2010). What causes autism? Exploring the environmental contribution. Curr Opin Pediatr 22, 219-225. doi:10.1097/MOP.0b013e328336eb9a

Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch Toxicol 91, 3477-3505. doi:10.1007/s00204-017-2045-3

López-Espíndola, D., Morales-Bastos, C., Grijota-Martínez, C. et al. (2014). Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab 99, E2799-E2804. doi:10.1210/jc.2014-2162

Lundin, B. F., Knight, G. T., Fedorchak, N. J. et al. (2024). RosetteArray® platform for quantitative high-throughput screening of human neurodevelopmental risk. BioRxiv. doi:10.1101/2024.04.01.587605

Ma, C.-S., Li, D.-L., Wang, F. et al. (2024). Neurotoxicity from long-term exposure to 6-PPDQ: Recent advances. Ecotoxicol Environ Saf 282, 116689. doi:10.1016/j.ecoenv.2024.116689

Maenner, M. J., Warren, Z., Williams, A. R. et al. (2023). Prevalence and characteristics of autism spectrum disorder among children aged 8 years – Autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill Summ 72, 1-14. doi:10.15585/mmwr.ss7202a1

Magel, V., Blum, J., Dolde, X. et al. (2024). Inhibition of neural crest cell migration by strobilurin fungicides and other mitochondrial toxicants. Cells 13, 2057. doi:10.3390/cells13242057

Marable, C. A., Frank, C. L., Seim, R. F. et al. (2022). Integrated omic analyses identify pathways and transcriptomic regulators associated with chemical alterations of in vitro neural network formation. Toxicol Sci 186, 118-133. doi:10.1093/toxsci/kfab151

Martin, M. M., Carpenter, A. F., Shafer, T. J. et al. (2024). Chemical effects on neuronal network activity: Comparison of acute versus network formation exposure in microelectrode array assay. Toxicology 505, 153842. doi:10.1016/j.tox.2024.153842

Marty, M. S., Sauer, U. G., Charlton, A. et al. (2022). Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny – Part III: How is substance-mediated thyroid hormone imbalance in pregnant/lactating rats or their progeny related to neurodevelopmental effects? Crit Rev Toxicol 52, 546-617. doi:10.1080/10408444.2022.2130166

Marty, S., Beekhuijzen, M., Charlton, A. et al. (2021). Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny – Part II: How can key events of relevant adverse outcome pathways be addressed in toxicological assessments? Crit Rev Toxicol 51, 328-358. doi:10.1080/10408444.2021.1910625

Masjosthusmann, S., Blum, J., Bartmann, K. et al. (2020). Establishment of an a priori protocol for the implementation and interpretation of an in‐vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support Publ 17, 1938E doi:10.2903/sp.efsa.2020.EN-1938

Masuda, T., Sankowski, R., Staszewski, O. et al. (2020). Microglia heterogeneity in the single-cell era. Cell Reports 30, 1271-1281. doi:10.1016/j.celrep.2020.01.010

Middleton, A. M., Reynolds, J., Cable, S. et al. (2022). Are non-animal systemic safety assessments protective? A toolbox and workflow. Toxicol Sci 189, 124-147. doi:10.1093/toxsci/kfac068

Morales Pantoja, I. E., Ding, L., Leite, P. E. C. et al. (2024). A novel approach to increase glial cell populations in brain microphysiological systems. Adv Biol 8, 2300198. doi:10.1002/adbi.202300198

Mundy, W. R. and Crofton, K. M. (2024). Recommended DNT reference chemical test set for in vitro assay development. EFSA Support Publ 21, 9175E. doi:10.2903/sp.efsa.2024.EN-9175

Naphade, O., Barham, K., Spencer, R. et al. (2023). Microglial dynamics, blood-brain barrier morphogenesis, and developmental toxicity: A brief review and computational model. Curr Opin Toxicol 36, 100419. doi:10.1016/j.cotox.2023.100419

Nyffeler, J., Dolde, X., Krebs, A. et al. (2017). Combination of multiple neural crest migration assays to identify environmental toxicants from a proof-of-concept chemical library. Arch Toxicol 91, 3613-3632. doi:10.1007/s00204-017-1977-y

Nyffeler, J., Chovancova, P., Dolde, X. et al. (2018). A structure-activity relationship linking non-planar PCBs to functional deficits of neural crest cells: New roles for connexins. Arch Toxicol 92, 1225-1247. doi:10.1007/s00204-017-2125-4

OECD (2016). Guidance Document for the Use of Adverse Outcome Pathways in Developing Integrated Approaches to Testing and Assessment (IATA). Series on Testing and Assessment, No. 260. OECD Publishing, Paris. https://one.oecd.org/document/env/jm/mono(2016)67/en/pdf

OECD (2023). Initial Recommendations on Evaluation of Data from the Developmental Neurotoxicity (DNT) In-Vitro Testing Battery. Series on Testing and Assessment, No. 377. OECD Publishing, Paris. https://one.oecd.org/document/env/cbc/mono(2023)13/en/pdf

Olney, J. W. (2002). New insights and new issues in developmental neurotoxicology. Neurotoxicology 23, 659-668. doi:10.1016/S0161-813X(01)00092-4

Pallocca, G. and Leist, M. (2022). On the usefulness of animals as a model system (part II): Considering benefits within distinct use domains. ALTEX 39, 531-539. doi:10.14573/altex.2207111

Pallocca, G., Moné, M. J., Kamp, H. et al. (2022). Next-generation risk assessment of chemicals – Rolling out a human-centric testing strategy to drive 3R implementation: The RISK-HUNT3R project perspective. ALTEX 39, 419-426. doi:10.14573/altex.2204051

Pamies, D., Barreras, P., Block, K. et al. (2017). A human brain microphysiological system derived from induced pluripotent stem cells to study neurological diseases and toxicity. ALTEX, 362-376. doi:10.14573/altex.1609122

Pamies, D., Bal-Price, A., Chesné, C. et al. (2018). Advanced good cell culture practice for human primary, stem cell-derived and organoid models as well as microphysiological systems. ALTEX, 353-378. doi:10.14573/altex.1710081

Patterson, E. A., Whelan, M. P. and Worth, A. P. (2021). The role of validation in establishing the scientific credibility of predictive toxicology approaches intended for regulatory application. Comput Toxicol 17, 100144. doi:10.1016/j.comtox.2020.100144

Pitzer, E. M., Shafer, T. J. and Herr, D. W. (2023). Identification of neurotoxicology (NT)/developmental neurotoxicology (DNT) adverse outcome pathways and key event linkages with in vitro DNT screening assays. Neurotoxicology 99, 184-194. doi:10.1016/j.neuro.2023.10.007

Rajagopal, R., Baltazar, M. T., Carmichael, P. L. et al. (2022). Beyond AOPs: A mechanistic evaluation of NAMs in DART testing. Front Toxicol 4, 838466. doi:10.3389/ftox.2022.838466

Rawlinson, C., Jenkins, S., Thei, L. et al. (2020). Post-ischaemic immunological response in the brain: Targeting microglia in ischaemic stroke therapy. Brain Sci 10, 159. doi:10.3390/brainsci10030159

Reemst, K., Noctor, S. C., Lucassen, P. J. et al. (2016). The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci 10, 566. doi:10.3389/fnhum.2016.00566

Romero, J. C., Berlinicke, C., Chow, S. et al. (2023). Oligodendrogenesis and myelination tracing in a CRISPR/Cas9-engineered brain microphysiological system. Front Cell Neurosci 16, 1094291. doi:10.3389/fncel.2022.1094291

Rossignol, D. A., Genuis, S. J. and Frye, R. E. (2014). Environmental toxicants and autism spectrum disorders: A systematic review. Transl Psychiatry 4, e360. doi:10.1038/tp.2014.4

Sachana, M., Bal-Price, A., Crofton, K. M. et al. (2019). International regulatory and scientific effort for improved developmental neurotoxicity testing. Toxicol Sci 167, 45-57. doi:10.1093/toxsci/kfy211

Sagiv, S. K., Thurston, S. W., Bellinger, D. C. et al. (2010). Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol 171, 593-601. doi:10.1093/aje/kwp427

Saili, K. S., Zurlinden, T. J., Schwab, A. J. et al. (2017). Blood‐brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 109, 1680-1710. doi:10.1002/bdr2.1180

Satterstrom, F. K., Kosmicki, J. A., Wang, J. et al. (2020). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568-584.e23. doi:10.1016/j.cell.2019.12.036

Schmeisser, S., Miccoli, A., Von Bergen, M. et al. (2023). New approach methodologies in human regulatory toxicology – Not if, but how and when! Environ Int 178, 108082. doi:10.1016/j.envint.2023.108082

Schruben, L. W. (1980). Establishing the credibility of simulations. Simulation 34, 101-105. doi:10.1177/003754978003400310

Shah, I., Setzer, R.W., Jack, J. et al. (2016). Using ToxCast™ data to reconstruct dynamic cell state trajectories and estimate toxicological points of departure. Environ Health Perspect 124, 910-919. doi:10.1289/ehp.1409029

Skogheim, T. S., Villanger, G. D., Weyde, K. V. F. et al. (2020). Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children. Int J Hyg Environ Health 223, 80-92. doi:10.1016/j.ijheh.2019.10.003

Skogheim, T. S., Weyde, K. V. F., Aase, H. et al. (2021). Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and associations with attention-deficit/hyperactivity disorder and autism spectrum disorder in children. Environ Res 202, 111692. doi:10.1016/j.envres.2021.111692

Smirnova, L., Hogberg, H. T., Leist, M. et al. (2014). Developmental neurotoxicity – Challenges in the 21st century and in vitro opportunities. ALTEX 31, 129-156. doi:10.14573/altex.1403271

Smirnova, L., Caffo, B. S., Gracias, D. H. et al. (2023). Organoid intelligence (OI): The new frontier in biocomputing and intelligence-in-a-dish. Front Sci 1, 1017235. doi:10.3389/fsci.2023.1017235

Smirnova, L., Hogberg, H. T., Leist, M. et al. (2024a). Revolutionizing developmental neurotoxicity testing – A journey from animal models to advanced in vitro systems. ALTEX 41, 152-178. doi:10.14573/altex.2403281

Smirnova, L., Modafferi, S., Schlett, C. et al. (2024b). Blood extracellular vesicles carrying brain-specific mRNAs are potential biomarkers for detecting gene expression changes in the female brain. Mol Psychiatry 29, 962-973. doi:10.1038/s41380-023-02384-6

Spinu, N., Bal-Price, A., Cronin, M. T. D. et al. (2019). Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol 93, 2759-2772. doi:10.1007/s00204-019-02551-1

Squarzoni, P., Oller, G., Hoeffel, G. et al. (2014). Microglia modulate wiring of the embryonic forebrain. Cell Reports 8, 1271-1279. doi:10.1016/j.celrep.2014.07.042

van Thriel, C., Westerink, R. H. S., Beste, C. et al. (2012). Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology 33, 911-924. doi:10.1016/j.neuro.2011.10.002

Vinken, M., Benfenati, E., Busquet, F. et al. (2021). Safer chemicals using less animals: Kick-off of the European ONTOX project. Toxicology 458, 152846. doi:10.1016/j.tox.2021.152846

Werner, J. M., Negesse, M. Y., Brooks, D. L. et al. (2021). Hallmarks of primary neurulation are conserved in the zebrafish forebrain. Commun Biol 4, 147. doi:10.1038/s42003-021-01655-8

Zimmer, B., Pallocca, G., Dreser, N. et al. (2014). Profiling of drugs and environmental chemicals for functional impairment of neural crest migration in a novel stem cell-based test battery. Arch Toxicol 88, 1109-1126. doi:10.1007/s00204-014-1231-9

Zurlinden, T. J., Saili, K. S., Rush, N. et al. (2020). Profiling the ToxCast library with a pluripotent human (H9) stem cell line-based biomarker assay for developmental toxicity. Toxicol Sci 174, 189-209. doi:10.1093/toxsci/kfaa014

Most read articles by the same author(s)

<< < 20 21 22 23 24 25