Pollutant exposure and myocardial injury: Protocol and progress report for a toxicological systematic mapping review
Main Article Content
Abstract
An increasing body of evidence identifies pollutant exposure as a risk factor for cardiovascular disease (CVD), while CVD incidence is rising steadily with the aging population. Although numerous experimental studies are now available, the mechanisms through which lifetime exposure to environmental pollutants can result in CVD are not fully understood. To comprehensively describe and understand the pathways through which pollutant exposure leads to cardiotoxicity, a systematic mapping review of the available toxicological evidence is needed. This protocol outlines a step-by-step framework for conducting this review. Using the National Toxicology Program (NTP) Health Assessment and Translation (HAT) approach for conducting toxicological systematic reviews, we selected 362 out of 8110 in vitro (17%), in vivo (67%), and combined (15%) studies for 129 potential cardiotoxic environmental pollutants, including heavy metals (29%), air pollutants (16%), pesticides (27%), and other chemicals (28%). The internal validity of included studies is being assessed with HAT and SYRCLE risk of bias tools. Tabular templates are being used to extract key study elements regarding study setup, methodology, techniques, and (qualitative and quantitative) outcomes. Subsequent synthesis will consist of an explorative meta-analysis of possible pollutant-related cardiotoxicity. Evidence maps and interactive knowledge graphs will illustrate evidence streams, cardiotoxic effects, and associated quality of evidence, helping researchers and regulators to efficiently identify pollutants of interest. The evidence will be integrated in novel adverse outcome pathways to facilitate regulatory acceptance of non-animal methods for cardiotoxicity testing. The current article describes the progress of the steps made in the systematic mapping review process.
Plain language summary
Heart disease is a leading global cause of death. Recent research indicates that certain environmental chemicals can worsen heart problems. We are conducting a rigorous review of scientific studies to understand how these chemicals affect the heart, i.e. cause cardiotoxicity. This will inform policymakers and promote non-animal testing methods for cardiotoxicity by providing a clear overview of the evidence. We have reviewed over 8,000 articles and focused on 362 studies on 129 chemicals, including heavy metals, air pollutants, and pesticides, and their effects on the heart. The current manuscript describes the methods used and the different steps in this process. The outcome of our systematic review will be a comprehensive database that will aid the development of alternative testing methods for cardiotoxicity.
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
Articles are distributed under the terms of the Creative Commons Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is appropriately cited (CC-BY). Copyright on any article in ALTEX is retained by the author(s).
Agarwal, S., Zaman, T., Murat Tuzcu, E. et al. (2011). Heavy metals and cardiovascular disease: Results from the national health and nutrition examination survey (NHANES) 1999-2006. Angiology 62, 422-429. doi:10.1177/0003319710395562
Alinejad, S., Kazemi, T., Zamani, N. et al. (2015). A systematic review of the cardiotoxicity of methadone. EXCLI J 14, 577-600. doi:10.17179/excli2015-55
Ankley, G. T., Bennett, R. S., Erickson, R. J. et al. (2010). Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29, 730-741. doi:10.1002/etc.34
Bajard, L., Adamovsky, O., Audouze, K. et al. (2023). Application of AOPs to assist regulatory assessment of chemical risks – Case studies, needs and recommendations. Environ Res 217, 114650. doi:10.1016/j.envres.2022.114650
Balduzzi, S., Rücker, G. and Schwarzer, G. (2019). How to perform a meta-analysis with R: A practical tutorial. Evid Based Ment Health 22, 153-160. doi:10.1136/ebmental-2019-300117
Beard, L. and Aghassibake, N. (2021). Tableau (version 2020.3). J Med Libr Assoc 109. doi:10.5195/jmla.2021.1135
Becker, R. A., Ankley, G. T., Edwards, S. W. et al. (2015). Increasing scientific confidence in adverse outcome pathways: Application of tailored Bradford-Hill considerations for evaluating weight of evidence. Regul Toxicol Pharmacol 72, 514-537. doi:10.1016/j.yrtph.2015.04.004
Burroughs Peña, M. S. and Rollins, A. (2017). Environmental exposures and cardiovascular disease: A challenge for health and development in low- and middle-income countries. Cardiol Clin 35, 71-86. doi:10.1016/j.ccl.2016.09.001
Cardinale, D., Iacopo, F. and Cipolla, C. M. (2020). Cardiotoxicity of anthracyclines. Fron Cardiovasc Med 7, 26. doi:10.3389/fcvm.2020.00026
Clark, J. D., Serdar, B., Lee, D. J. et al. (2012). Exposure to polycyclic aromatic hydrocarbons and serum inflammatory markers of cardiovascular disease. Environ Res 117, 132-137. doi:10.1016/j.envres.2012.04.012
Clark, J. M., Sanders, S., Carter, M. et al. (2020). Improving the translation of search strategies using the polyglot search translator: A randomized controlled trial. J Med Libr Assoc 108, 195-207. doi:10.5195/jmla.2020.834
Cosselman, K. E., Navas-Acien, A. and Kaufman, J. D. (2015). Environmental factors in cardiovascular disease. Nat Rev Cardiol 12, 627-642. doi:10.1038/nrcardio.2015.152
Daley, M. C., Mende, U., Choi, B.-R. et al. (2023). Beyond pharmaceuticals: Fit-for-purpose new approach methodologies for environmental cardiotoxicity testing. ALTEX 40, 103-116. doi:10.14573/altex.2109131
De Vries, R. B. M., Angrish, M., Browne, P. et al. (2021). Applying evidence-based methods to the development and use of adverse outcome pathways. ALTEX 38, 336-347. doi:10.14573/altex.2101211
Dolci, A., Dominici, R., Cardinale, D. et al. (2008). Biochemical markers for prediction of chemotherapy-induced cardiotoxicity: Systematic review of the literature and recommendations for use. Am J Clin Pathol 130, 688-695. doi:10.1309/ajcpb66lriivmqdr
Donaldson, K., Duffin, R., Langrish, J. P. et al. (2013). Nanoparticles and the cardiovascular system: A critical review. Nanomedicine 8, 403-423. doi:10.2217/nnm.13.16
Du, Y., Xu, X., Chu, M. et al. (2016). Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J Thorac Dis 8, E8-e19. doi:10.3978/j.issn.2072-1439.2015.11.37
Ewer, M. S. and Ewer, S. M. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nat Rev Cardiol 7, 564-575. doi:10.1038/nrcardio.2010.121
Ewer, M. S. and Ewer, S. M. (2015). Cardiotoxicity of anticancer treatments. Nat Rev Cardiol 12, 547-558.
GBD 2019 Risk Factors Collaborators (2020). Global burden of 87 risk factors in 204 countries and territories, 1990-2019: A systematic analysis for the global burden of disease study 2019. Lancet 396, 1223-1249. doi:10.1016/S0140-6736(20)30752-2
Georgiadis, N., Tsarouhas, K., Tsitsimpikou, C. et al. (2018). Pesticides and cardiotoxicity. Where do we stand? Toxicol Appl Pharmacol 353, 1-14. doi:10.1016/j.taap.2018.06.004
Georgiadis, N., Tsarouhas, K., Dorne, J. C. M. et al. (2022). Cardiotoxicity of chemical substances: An emerging hazard class. J Cardiovasc Dev Dis 9, doi:10.3390/jcdd9070226
Gintant, G., Kaushik, E. P., Feaster, T. et al. (2020). Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 117, 104756. doi:10.1016/j.yrtph.2020.104756
Guo, D., Cai, Y., Chai, D. et al. (2010). The cardiotoxicity of macrolides: A systematic review. Pharmazie 65, 631-640.
Hayes, A. W. and Kruger, C. L. (2014). Hayes’ Principles and Methods of Toxicology. 6th edition. Taylor & Francis. https://books.google.nl/books?id=fchzbaaaqbaj
Higgins, J. P. T., Thompson, S. G., Deeks, J. J. et al. (2003). Measuring inconsistency in meta-analyses. BMJ 327, 557-560. doi:10.1136/bmj.327.7414.557
Hooijmans, C. R., Rovers, M. M., de Vries, R. B. et al. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14, 43. doi:10.1186/1471-2288-14-43
Klaassen, C. D. (2018). Casarett & Doull’s Toxicology: The Basic Science of Poisons. 9th edition. McGraw-Hill Education. https://books.google.nl/books?id=_7csvgaacaaj
Lang, I. A., Galloway, T. S., Scarlett, A. et al. (2008). Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA 300, 1303-1310. doi:10.1001/jama.300.11.1303
Leist, M., Ghallab, A., Graepel, R. et al. (2017). Adverse outcome pathways: Opportunities, limitations and open questions. Arch Toxicol 91, 3477-3505. doi:10.1007/s00204-017-2045-3
Lind, L. and Lind, P. M. (2012). Can persistent organic pollutants and plastic-associated chemicals cause cardiovascular disease? J Intern Med 271, 537-553. doi:10.1111/j.1365-2796.2012.02536.x
Linzalone, N., Donzelli, G., Morales, M. A. et al. (2022). Protocol for a systematic review and meta-analysis of observational studies on the association of exposure to toxic environmental pollutants and left ventricular dysfunction. Int J Environ Res Public Health 19, 7482. doi:10.3390/ijerph19127482
Magdy, T., Schuldt, A. J. T., Wu, J. C. et al. (2018). Human induced pluripotent stem cell (hiPSC)-derived cells to assess drug cardiotoxicity: Opportunities and problems. Annu Rev Pharmacol Toxicol 58, 83-103. doi:10.1146/annurev-pharmtox-010617-053110
Melzer, D., Rice, N. E., Lewis, C. et al. (2010). Association of urinary bisphenol A concentration with heart disease: Evidence from NHANES 2003/06. PLoS One 5, e8673. doi:10.1371/journal.pone.0008673
Melzer, D., Osborne, N. J., Henley, W. E. et al. (2012). Urinary bisphenol A concentration and risk of future coronary artery disease in apparently healthy men and women. Circulation 125, 1482-1490. doi:10.1161/circulationaha.111.069153
NASEM – National Academies of Sciences, Engineering and Medicine (2022). New Approach Methods (NAMs) for Human Health Risk Assessment: Proceedings of a Workshop – In Brief. Washington, DC, USA: The National Academies Press. doi:10.17226/26496
North, B. J. and Sinclair, D. A. (2012). The intersection between aging and cardiovascular disease. Circ Res 110, 1097-1108. doi:10.1161/circresaha.111.246876
NTP (2019). Handbook for Conducting Systematic Reviews for Health Effects Evaluations. National Institute of Environmental Health Sciences. https://ntp.niehs.nih.gov/whatwestudy/assessments/noncancer/handbook/index.html
OECD (2018). Users’ Handbook supplement to the Guidance Document for developing and assessing Adverse Outcome Pathways. OECD Series on Adverse Outcome Pathways, No. 1. OECD Publishing, Paris. doi:10.1787/5jlv1m9d1g32-en
Orphanos, G. S., Ioannidis, G. N. and Ardavanis, A. G. (2009). Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncologica 48, 964-970. doi:10.1080/02841860903229124
Ouzzani, M., Hammady, H., Fedorowicz, Z. et al. (2016). Rayyan – A web and mobile app for systematic reviews. Syst Rev 5, 210. doi:10.1186/s13643-016-0384-4
Pelch, K. E., Reade, A., Wolffe, T. A. M. et al. (2019). PFAS health effects database: Protocol for a systematic evidence map. Environ Int 130, 104851. doi:10.1016/j.envint.2019.05.045
Pelch, K. E., Reade, A., Kwiatkowski, C. F. et al. (2022). The PFAS-tox database: A systematic evidence map of health studies on 29 per- and polyfluoroalkyl substances. Environ Int 167, 107408. doi:10.1016/j.envint.2022.107408
Schaffert, A., Murugadoss, S., Mertens, B. et al. (2023). Cardiotoxicity of chemicals: Current regulatory guidelines, knowledge gaps, and needs. ALTEX 40, 337-340. doi:10.14573/altex.2301121
Schlitt, A., Jordan, K., Vordermark, D. et al. (2014). Cardiotoxicity and oncological treatments. Dtsch Arztebl Int 111, 161-168. doi:10.3238/arztebl.2014.0161
Shan, K., Lincoff, A. M. and Young, J. B. (1996). Anthracycline-induced cardiotoxicity. Ann Intern Med 125, 47-58. doi:10.7326/0003-4819-125-1-199607010-00008
Sharma, A., McKeithan, W. L., Serrano, R. et al. (2018). Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nat Protoc 13, 3018-3041. doi:10.1038/s41596-018-0076-8
Sirenko, O., Grimm, F. A., Ryan, K. R. et al. (2017). In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl Pharmacol 322, 60-74. doi:10.1016/j.taap.2017.02.020
van der Zalm, A. J., Barroso, J., Browne, P. et al. (2022). A framework for establishing scientific confidence in new approach methodologies. Arch Toxicol 96, 2865-2879. doi:10.1007/s00204-022-03365-4
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. J Stat Softw 36, 1-48. doi:10.18637/jss.v036.i03
Westmoreland, C., Bender, H. J., Doe, J. E. et al. (2022). Use of new approach methodologies (NAMs) in regulatory decisions for chemical safety: Report from an EPAA deep dive workshop. Regul Toxicol Pharmacol 135, 105261. doi:10.1016/j.yrtph.2022.105261
WHO (2019). Global Health Estimates: Leading causes of death globally. https://www.who.int/data/global-health-estimates
Zwartsen, A., de Korte, T., Nacken, P. et al. (2019). Cardiotoxicity screening of illicit drugs and new psychoactive substances (NPS) in human iPSC-derived cardiomyocytes using microelectrode array (MEA) recordings. J Mol Cell Cardiol 136, 102-112. doi:10.1016/j.yjmcc.2019.09.007