Risk-based prioritization of PFAS using phenotypic and transcriptomic data from human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes

Main Article Content

Han-Hsuan D. Tsai, Lucie C. Ford, Zunwei Chen, Allison N. Dickey, Fred A. Wright, Ivan Rusyn
[show affiliations]

Abstract

Per- and polyfluoroalkyl substances (PFAS) are chemicals with important applications; they are persistent in the environment and may pose human health hazards. Regulatory agencies are considering restrictions and bans of PFAS; however, little data exists for informed decisions. Several prioritization strategies were proposed for evaluation of potential hazards of PFAS. Structure-based grouping could expedite the selection of PFAS for testing; still, the hypothesis that structure-effect relationships exist for PFAS requires confirmation. We tested 26 structurally diverse PFAS from 8 groups using human-induced pluripotent stem cell-derived hepatocytes and cardiomyocytes, and tested concentration-response effects on cell function and gene expression. Few phenotypic effects were observed in hepatocytes, but negative chronotropy was observed for 8 of the 26 PFAS. Substance- and cell type-dependent transcriptomic changes were more prominent but lacked substantial group-specific effects. In hepatocytes, we found up-regulation of stress-related and extracellular matrix organization pathways, and down-regulation of fat metabolism. In cardiomyocytes, contractility-related pathways were most affected. We derived phenotypic and transcriptomic points of departure and compared them to predicted PFAS exposures. The conservative estimates for bioactivity and exposure were used to derive bioactivity-to-exposure ratio (BER) for each PFAS, most (23 of 26) PFAS had BER>1. Overall, these data suggests that structure-based grouping of PFAS may not be sufficient to predict their biological effects. Testing of individual PFAS may be needed for scientific-based decision-making. Our proposed strategy of using two human cell types and considering phenotypic and transcriptomic effects, combined with dose-response analysis and calculation of BER, may be used for PFAS prioritization.


Plain language summary
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many products. However, most of these substances have not been tested for safety, and concerns exist that they may be harmful to human health and/or the environment. This study aimed to use human cell-based models to investigate if some of the PFAS may exhibit hazardous properties and if similarities among substances are observed. Few effects were observed in liver cells, but a decrease in beating frequency was observed in heart cells for some PFAS. Gene expression changes were substance- and cell type-dependent. We did not find convincing structure-based similarities among PFAS; this suggests that testing of individual PFAS may be necessary in the future to inform health decisions. Overall, this study showed that a test strategy of using two human cell types, from liver and heart, may inform PFAS prioritization without a need for testing in animals.

Article Details

How to Cite
Tsai, H.-H. D. (2024) “Risk-based prioritization of PFAS using phenotypic and transcriptomic data from human induced pluripotent stem cell-derived hepatocytes and cardiomyocytes”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2311031.
Section
Articles
References

Amstutz, V. H., Cengo, A., Gehres, F. et al. (2022). Investigating the cytotoxicity of per- and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology 480, 153312. doi:10.1016/j.tox.2022.153312

Anderson, J. K., Brecher, R. W., Cousins, I. T. et al. (2022). Grouping of PFAS for human health risk assessment: Findings from an independent panel of experts. Regul Toxicol Pharmacol 134, 105226. doi:10.1016/j.yrtph.2022.105226

Ball, N., Cronin, M. T., Shen, J. et al. (2016). Toward Good Read-Across Practice (GRAP) guidance. ALTEX 33, 149-166. doi:10.14573/altex.1601251

Behr, A. C., Plinsch, C., Braeuning, A. et al. (2020). Activation of human nuclear receptors by perfluoroalkylated substances (PFAS). Toxicol In Vitro 62, 104700. doi:10.1016/j.tiv.2019.104700

Bijland, S., Rensen, P. C., Pieterman, E. J. et al. (2011). Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-Leiden CETP mice. Toxicol Sci 123, 290-303. doi:10.1093/toxsci/kfr142

Bjork, J. A., Butenhoff, J. L. and Wallace, K. B. (2011). Multiplicity of nuclear receptor activation by PFOA and PFOS in primary human and rodent hepatocytes. Toxicology 288, 8-17. doi:10.1016/j.tox.2011.06.012

Blanchette, A. D., Burnett, S. D., Grimm, F. A. et al. (2020). A Bayesian Method for Population-wide Cardiotoxicity Hazard and Risk Characterization Using an In Vitro Human Model. Toxicol Sci 178, 391-403. doi:10.1093/toxsci/kfaa151

Buck, R. C., Franklin, J., Berger, U. et al. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag 7, 513-541. doi:10.1002/ieam.258

Buck, R. C., Korzeniowski, S. H., Laganis, E. et al. (2021). Identification and classification of commercially relevant per- and poly-fluoroalkyl substances (PFAS). Integr Environ Assess Manag 17, 1045-1055. doi:10.1002/ieam.4450

Burnett, S. D., Blanchette, A. D., Grimm, F. A. et al. (2019). Population-based toxicity screening in human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Appl Pharmacol 381, 114711. doi:10.1016/j.taap.2019.114711

Burnett, S. D., Blanchette, A. D., Chiu, W. A. et al. (2021a). Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes as an in vitro model in toxicology: strengths and weaknesses for hazard identification and risk characterization. Expert Opin Drug Metab Toxicol 17, 887-902. doi:10.1080/17425255.2021.1894122

Burnett, S. D., Blanchette, A. D., Chiu, W. A. et al. (2021b). Cardiotoxicity Hazard and Risk Characterization of ToxCast Chemicals Using Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Multiple Donors. Chem Res Toxicol 34, 2110-2124. doi:10.1021/acs.chemrestox.1c00203

Carlson, L. M., Angrish, M., Shirke, A. V. et al. (2022). Systematic Evidence Map for Over One Hundred and Fifty Per- and Polyfluoroalkyl Substances (PFAS). Environ Health Perspect 130, 56001. doi:10.1289/EHP10343

Carstens, K. E., Freudenrich, T., Wallace, K. et al. (2023). Evaluation of Per- and Polyfluoroalkyl Substances (PFAS) In Vitro Toxicity Testing for Developmental Neurotoxicity. Chem Res Toxicol 36, 402-419. doi:10.1021/acs.chemrestox.2c00344

Chen, Z., Jang, S., Kaihatu, J. M. et al. (2021). Potential Human Health Hazard of Post-Hurricane Harvey Sediments in Galveston Bay and Houston Ship Channel: A Case Study of Using In Vitro Bioactivity Data to Inform Risk Management Decisions. Int J Environ Res Public Health 18, 13378. doi:10.3390/ijerph182413378

Cheng, W., Yu, Z., Feng, L. et al. (2013). Perfluorooctane sulfonate (PFOS) induced embryotoxicity and disruption of cardiogenesis. Toxicol In Vitro 27, 1503-1512. doi:10.1016/j.tiv.2013.03.014

Cheng, W. and Ng, C. A. (2018). Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl Substances (PFASs) by An Efficient Molecular Dynamics Approach. Environ Sci Technol 52, 7972-7980. doi:10.1021/acs.est.8b01268

Cheng, W., Li, M., Zhang, L. et al. (2023). Close association of PFASs exposure with hepatic fibrosis than steatosis: evidences from NHANES 2017-2018. Ann Med 55, 2216943. doi:10.1080/07853890.2023.2216943

Cousins, I. T., DeWitt, J. C., Gluge, J. et al. (2020). Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environ Sci Process Impacts 22, 1444-1460. doi:10.1039/d0em00147c

Curran, I., Hierlihy, S. L., Liston, V. et al. (2008). Altered fatty acid homeostasis and related toxicologic sequelae in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS). J Toxicol Environ Health A 71, 1526-1541. doi:10.1080/15287390802361763

Das, K. P., Wood, C. R., Lin, M. T. et al. (2017). Perfluoroalkyl acids-induced liver steatosis: Effects on genes controlling lipid homeostasis. Toxicology 378, 37-52. doi:10.1016/j.tox.2016.12.007

David, N., Antignac, J. P., Roux, M. et al. (2023). Associations between perfluoroalkyl substances and the severity of non-alcoholic fatty liver disease. Environ Int 180, 108235. doi:10.1016/j.envint.2023.108235

Davidsen, N., Rosenmai, A. K., Lauschke, K. et al. (2021). Developmental effects of PFOS, PFOA and GenX in a 3D human induced pluripotent stem cell differentiation model. Chemosphere 279, 130624. doi:10.1016/j.chemosphere.2021.130624

Davidsen, N., Ramhoj, L., Kugathas, I. et al. (2022). PFOS disrupts key developmental pathways during hiPSC-derived cardiomyocyte differentiation in vitro. Toxicol In Vitro 85, 105475. doi:10.1016/j.tiv.2022.105475

Dawson, D. E., Lau, C., Pradeep, P. et al. (2023). A Machine Learning Model to Estimate Toxicokinetic Half-Lives of Per- and Polyfluoro-Alkyl Substances (PFAS) in Multiple Species. Toxics 11, doi:10.3390/toxics11020098

Dobin, A., Davis, C. A., Schlesinger, F. et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21. doi:10.1093/bioinformatics/bts635

ECHA (2023). Per- and polyfluoroalkyl substances (PFAS). https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas, Accessed on: July 11, 2023

Fang, H., Knezevic, B., Burnham, K. L. et al. (2016). XGR software for enhanced interpretation of genomic summary data, illustrated by application to immunological traits. Genome Med 8, 129. doi:10.1186/s13073-016-0384-y

Farmahin, R., Williams, A., Kuo, B. et al. (2017). Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol 91, 2045-2065. doi:10.1007/s00204-016-1886-5

Farr, S. and Dunn, R. T. (1999). Concise review: gene expression applied to toxicology. Toxicol.Sci. 50, 1-9.

Fenton, S. E., Ducatman, A., Boobis, A. et al. (2021). Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ Toxicol Chem 40, 606-630. doi:10.1002/etc.4890

Gomis, M. I., Vestergren, R., Borg, D. et al. (2018). Comparing the toxic potency in vivo of long-chain perfluoroalkyl acids and fluorinated alternatives. Environ Int 113, 1-9. doi:10.1016/j.envint.2018.01.011

Grimm, F. A., Iwata, Y., Sirenko, O. et al. (2015). High-Content Assay Multiplexing for Toxicity Screening in Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Hepatocytes. Assay Drug Dev Technol 13, 529-546. doi:10.1089/adt.2015.659

Grimm, F. A., Iwata, Y., Sirenko, O. et al. (2016). A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives. Green Chem 18, 4407-4419. doi:10.1039/c6gc01147k

Grimm, F. A., Blanchette, A., House, J. S. et al. (2018). A human population-based organotypic in vitro model for cardiotoxicity screening. ALTEX 35, 441-452. doi:10.14573/altex.1805301

Harrill, J. A., Everett, L. J., Haggard, D. E. et al. (2021). High-Throughput Transcriptomics Platform for Screening Environmental Chemicals. Toxicol Sci 181, 68-89. doi:10.1093/toxsci/kfab009

Hickey, N. J., Crump, D., Jones, S. P. et al. (2009). Effects of 18 perfluoroalkyl compounds on mRNA expression in chicken embryo hepatocyte cultures. Toxicol Sci 111, 311-320. doi:10.1093/toxsci/kfp160

Ho, S. H., Soh, S. X. H., Wang, M. X. et al. (2022). Perfluoroalkyl substances and lipid concentrations in the blood: A systematic review of epidemiological studies. Sci Total Environ 850, 158036. doi:10.1016/j.scitotenv.2022.158036

Houck, K. A., Patlewicz, G., Richard, A. M. et al. (2021). Bioactivity profiling of per- and polyfluoroalkyl substances (PFAS) identifies potential toxicity pathways related to molecular structure. Toxicology 457, 152789. doi:10.1016/j.tox.2021.152789

Houck, K. A., Friedman, K. P., Feshuk, M. et al. (2023). Evaluation of 147 perfluoroalkyl substances for immunotoxic and other (patho)physiological activities through phenotypic screening of human primary cells. ALTEX 40, 248-270. doi:10.14573/altex.2203041

House, J. S., Grimm, F. A., Jima, D. D. et al. (2017). A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics. Front Genet 8, 168. doi:10.3389/fgene.2017.00168

House, J. S., Grimm, F. A., Klaren, W. D. et al. (2021). Grouping of UVCB substances with new approach methodologies (NAMs) data. ALTEX 38, 123-137. doi:10.14573/altex.2006262

House, J. S., Grimm, F. A., Klaren, W. D. et al. (2022). Grouping of UVCB substances with dose-response transcriptomics data from human cell-based assays. ALTEX 39, 388-404. doi:10.14573/altex.2107051

Hudson, N. J., Dalrymple, B. P. and Reverter, A. (2012). Beyond differential expression: the quest for causal mutations and effector molecules. BMC Genomics 13, 356. doi:10.1186/1471-2164-13-356

Jassal, B., Matthews, L., Viteri, G. et al. (2020). The reactome pathway knowledgebase. Nucleic Acids Res 48, D498-D503. doi:10.1093/nar/gkz1031

Johnson, K. J., Auerbach, S. S. and Costa, E. (2020). A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure. Toxicol Sci 176, 86-102. doi:10.1093/toxsci/kfaa062

Johnson, K. J., Auerbach, S. S., Stevens, T. et al. (2022). A Transformative Vision for an Omics-Based Regulatory Chemical Testing Paradigm. Toxicol Sci 190, 127-132. doi:10.1093/toxsci/kfac097

Khatri, P., Sirota, M. and Butte, A. J. (2012). Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8, e1002375. doi:10.1371/journal.pcbi.1002375

Kreutz, A., Clifton, M. S., Henderson, W. M. et al. (2023). Category-Based Toxicokinetic Evaluations of Data-Poor Per- and Polyfluoroalkyl Substances (PFAS) using Gas Chromatography Coupled with Mass Spectrometry. Toxics 11, 463. doi:10.3390/toxics11050463

LaRocca, J., Johnson, K. J., LeBaron, M. J. et al. (2017). The interface of epigenetics and toxicology in product safety assessment. Current Opinion in Toxicology 6, 87-92. doi:10.1016/j.cotox.2017.11.004

Lind, L., Araujo, J. A., Barchowsky, A. et al. (2021). Consensus on the Key Characteristics of Cardiovascular Toxicants. (submitted)

Louisse, J., Fragki, S., Rijkers, D. et al. (2023). Determination of in vitro hepatotoxic potencies of a series of perfluoroalkyl substances (PFASs) based on gene expression changes in HepaRG liver cells. Arch Toxicol 97, 1113-1131. doi:10.1007/s00204-023-03450-2

Love, M. I., Huber, W. and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550. doi:10.1186/s13059-014-0550-8

Marques, E., Pfohl, M., Wei, W. et al. (2022). Replacement per- and polyfluoroalkyl substances (PFAS) are potent modulators of lipogenic and drug metabolizing gene expression signatures in primary human hepatocytes. Toxicol Appl Pharmacol 442, 115991. doi:10.1016/j.taap.2022.115991

Massachusetts Government (2020). Massachusetts PFAS Drinking Water Standard (MCL). https://www.mass.gov/lists/massachusetts-pfas-drinking-water-standard-mcl, Accessed on: July 4th 2023.

Meneguzzi, A., Fava, C., Castelli, M. et al. (2021). Exposure to Perfluoroalkyl Chemicals and Cardiovascular Disease: Experimental and Epidemiological Evidence. Front Endocrinol (Lausanne) 12, 706352. doi:10.3389/fendo.2021.706352

Menger, F., Pohl, J., Ahrens, L. et al. (2020). Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere 245, 125573. doi:10.1016/j.chemosphere.2019.125573

Naile, J. E., Wiseman, S., Bachtold, K. et al. (2012). Transcriptional effects of perfluorinated compounds in rat hepatoma cells. Chemosphere 86, 270-277. doi:10.1016/j.chemosphere.2011.09.044

NASEM - National Academies of Sciences Engineering and Medicine (2022). Guidance on PFAS Exposure, Testing, and Clinical Follow-Up. Washington, DC: The National Academies Press. doi:doi:10.17226/26156

NTP - National Toxicology Program (2018). NTP Research Report on National Toxicology Program Approach to Genomic Dose-Response Modeling: Research Report 5. doi:10.22427/NTP-RR-5

NTP (2019a). Toxicity studies of perfluoroalkyl sulfonates administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). Toxic Rep Ser doi:10.22427/NTP-TOX-96

NTP (2019b). Toxicity studies of perfluoroalkyl carboxylates administered by gavage to Sprague Dawley (Hsd:Sprague Dawley SD) rats (revised). Toxic Rep Ser doi:10.22427/NTP-TOX-97

Nyffeler, J., Willis, C., Harris, F. R. et al. (2022). Combining phenotypic profiling and targeted RNA-Seq reveals linkages between transcriptional perturbations and chemical effects on cell morphology: Retinoic acid as an example. Toxicol Appl Pharmacol 444, 116032. doi:10.1016/j.taap.2022.116032

OECD (2018). Toward a New Comprehensive Global Database of Per-and Polyfluoroalkyl Substances (PFASs): Summary Report on Updating the OECD 2007 List of Per and Polyfluoroalkyl Substances (PFASs). Acessed on: July 4, 2023.

Patlewicz, G., Richard, A. M., Williams, A. J. et al. (2019). A Chemical Category-Based Prioritization Approach for Selecting 75 Per- and Polyfluoroalkyl Substances (PFAS) for Tiered Toxicity and Toxicokinetic Testing. Environ Health Perspect 127, 14501. doi:10.1289/EHP4555

Patlewicz, G., Richard, A. M., Williams, A. J. et al. (2022). Towards reproducible structure-based chemical categories for PFAS to inform and evaluate toxicity and toxicokinetic testing. Comput Toxicol 24, 100250. doi:10.1016/j.comtox.2022.100250

Paul Friedman, K., Gagne, M., Loo, L. H. et al. (2020). Utility of In Vitro Bioactivity as a Lower Bound Estimate of In Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol Sci 173, 202-225. doi:10.1093/toxsci/kfz201

Pearce, R. G., Setzer, R. W., Strope, C. L. et al. (2017). httk: R Package for High-Throughput Toxicokinetics. J Stat Softw 79, 1-26. doi:10.18637/jss.v079.i04

Phillips, J. R., Svoboda, D. L., Tandon, A. et al. (2019). BMDExpress 2: enhanced transcriptomic dose-response analysis workflow. Bioinformatics 35, 1780-1782. doi:10.1093/bioinformatics/bty878

Qi, Q., Niture, S., Gadi, S. et al. (2023). Per- and polyfluoroalkyl substances activate UPR pathway, induce steatosis and fibrosis in liver cells. Environ Toxicol 38, 225-242. doi:10.1002/tox.23680

Ramaiahgari, S. C., Auerbach, S. S., Saddler, T. O. et al. (2019). The Power of Resolution: Contextualized Understanding of Biological Responses to Liver Injury Chemicals Using High-throughput Transcriptomics and Benchmark Concentration Modeling. Toxicol Sci 169, 553-566. doi:10.1093/toxsci/kfz065

Reardon, A. J. F., Rowan-Carroll, A., Ferguson, S. S. et al. (2021). Potency Ranking of Per- and Polyfluoroalkyl Substances Using High-Throughput Transcriptomic Analysis of Human Liver Spheroids. Toxicol Sci 184, 154-169. doi:10.1093/toxsci/kfab102

Reardon, A. J. F., Farmahin, R., Williams, A. et al. (2023). From vision toward best practices: Evaluating in vitro transcriptomic points of departure for application in risk assessment using a uniform workflow. Front Toxicol 5, 1194895. doi:10.3389/ftox.2023.1194895

Ring, C. L., Arnot, J. A., Bennett, D. H. et al. (2019). Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways. Environ Sci Technol 53, 719-732. doi:10.1021/acs.est.8b04056

Robarts, D. R., Venneman, K. K., Gunewardena, S. et al. (2022). GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology 477, 153259. doi:10.1016/j.tox.2022.153259

Rowan-Carroll, A., Reardon, A., Leingartner, K. et al. (2021). High-Throughput Transcriptomic Analysis of Human Primary Hepatocyte Spheroids Exposed to Per- and Polyfluoroalkyl Substances as a Platform for Relative Potency Characterization. Toxicol Sci 181, 199-214. doi:10.1093/toxsci/kfab039

Rusyn, I., Arzuaga, X., Cattley, R. C. et al. (2021). Key Characteristics of Human Hepatotoxicants as a Basis for Identification and Characterization of the Causes of Liver Toxicity. Hepatology 74, 3486-3496. doi:10.1002/hep.31999

Schillemans, T., Donat-Vargas, C. and Akesson, A. (2023). Per- and polyfluoroalkyl substances and cardiometabolic diseases: a review. Basic Clin Pharmacol Toxicol doi:10.1111/bcpt.13949

Sha, B., Schymanski, E. L., Ruttkies, C. et al. (2019). Exploring open cheminformatics approaches for categorizing per- and polyfluoroalkyl substances (PFASs). Environ Sci Process Impacts 21, 1835-1851. doi:10.1039/c9em00321e

Sipes, N. S., Wambaugh, J. F., Pearce, R. et al. (2017). An Intuitive Approach for Predicting Potential Human Health Risk with the Tox21 10k Library. Environ Sci Technol 51, 10786-10796. doi:10.1021/acs.est.7b00650

Sirenko, O., Cromwell, E. F., Crittenden, C. et al. (2013). Assessment of beating parameters in human induced pluripotent stem cells enables quantitative in vitro screening for cardiotoxicity. Toxicol Appl Pharmacol 273, 500-507. doi:10.1016/j.taap.2013.09.017

Sirenko, O., Hesley, J., Rusyn, I. et al. (2014). High-content assays for hepatotoxicity using induced pluripotent stem cell-derived cells. Assay Drug Dev Technol 12, 43-54. doi:10.1089/adt.2013.520

Sirenko, O., Grimm, F. A., Ryan, K. R. et al. (2017). In vitro cardiotoxicity assessment of environmental chemicals using an organotypic human induced pluripotent stem cell-derived model. Toxicol Appl Pharmacol 322, 60-74. doi:10.1016/j.taap.2017.02.020

Smeltz, M., Wambaugh, J. F. and Wetmore, B. A. (2023). Plasma Protein Binding Evaluations of Per- and Polyfluoroalkyl Substances for Category-Based Toxicokinetic Assessment. Chem Res Toxicol 36, 870-881. doi:10.1021/acs.chemrestox.3c00003

Solan, M. E. and Lavado, R. (2023). Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on human cytochrome P450 (CYP450) enzymes and human hepatocytes: An in vitro study. Curr Res Toxicol 5, 100116. doi:10.1016/j.crtox.2023.100116

Soldatow, V. Y., Lecluyse, E. L., Griffith, L. G. et al. (2013). In vitro models for liver toxicity testing. Toxicol Res (Camb) 2, 23-39. doi:10.1039/C2TX20051A

Subramanian, A., Tamayo, P., Mootha, V. K. et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550. doi:10.1073/pnas.0506580102

Tang, L. L., Wang, J. D., Xu, T. T. et al. (2017). Mitochondrial toxicity of perfluorooctane sulfonate in mouse embryonic stem cell-derived cardiomyocytes. Toxicology 382, 108-116. doi:10.1016/j.tox.2017.03.011

Thomas, R. S., Clewell, H. J., 3rd, Allen, B. C. et al. (2011). Application of transcriptional benchmark dose values in quantitative cancer and noncancer risk assessment. Toxicol Sci 120, 194-205. doi:10.1093/toxsci/kfq355

Thomas, R. S., Wesselkamper, S. C., Wang, N. C. et al. (2013). Temporal concordance between apical and transcriptional points of departure for chemical risk assessment. Toxicol Sci 134, 180-194. doi:10.1093/toxsci/kft094

Tibshirani, R. J. and Efron, B. (2002). Pre-validation and inference in microarrays. Stat Appl Genet Mol Biol 1, Article1.

Tsai, H. D., House, J. S., Wright, F. A. et al. (2023). A tiered testing strategy based on in vitro phenotypic and transcriptomic data for selecting representative petroleum UVCBs for toxicity evaluation in vivo. Toxicol Sci 193, 219-233. doi:10.1093/toxsci/kfad041

US EPA - US Environmental Protection Agency (2019). Per, and Polyfluoroalkyl Substances (PFAS) Action Plan. Accessed on: July 4, 2023.

US EPA (2021). National PFAS Testing Strategy: Identification of Candidate Per- and Polyfluoroalkyl Substances (PFAS) for Testing. https://www.epa.gov/system/files/documents/2021-10/pfas-natl-test-strategy.pdf Accessed on: July 4, 2023.

US EPA (2023). Standard Methods for Development of EPA Transcriptomic Assessment Products (ETAPs): External Review Draft. https://www.epa.gov/system/files/documents/2023-06/ETAP%20Standard%20Methods%20Doc_BOSC%20Report_Draft%20Final_5_19_23_508%20Tagged.pdf Accessed on: July 4, 2023.

Vinken, M., Knapen, D., Vergauwen, L. et al. (2017). Adverse outcome pathways: a concise introduction for toxicologists. Arch Toxicol 91, 3697-3707. doi:10.1007/s00204-017-2020-z

Wambaugh, J. F., Setzer, R. W., Reif, D. M. et al. (2013). High-throughput models for exposure-based chemical prioritization in the ExpoCast project. Environ Sci Technol 47, 8479-8488. doi:10.1021/es400482g

Wan, H. T., Zhao, Y. G., Wei, X. et al. (2012). PFOS-induced hepatic steatosis, the mechanistic actions on beta-oxidation and lipid transport. Biochim Biophys Acta 1820, 1092-1101. doi:10.1016/j.bbagen.2012.03.010

Wang, B., Zhang, R., Jin, F. et al. (2017). Perfluoroalkyl substances and endometriosis-related infertility in Chinese women. Environ Int 102, 207-212. doi:10.1016/j.envint.2017.03.003

Wetmore, B. A., Wambaugh, J. F., Ferguson, S. S. et al. (2012). Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125, 157-174. doi:10.1093/toxsci/kfr254

Wetmore, B. A., Wambaugh, J. F., Allen, B. et al. (2015). Incorporating High-Throughput Exposure Predictions With Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing. Toxicol Sci 148, 121-136. doi:10.1093/toxsci/kfv171

Wignall, J. A., Shapiro, A. J., Wright, F. A. et al. (2014). Standardizing benchmark dose calculations to improve science-based decisions in human health assessments. Environ Health Perspect 122, 499-505. doi:10.1289/ehp.1307539

Williams, A. J., Grulke, C. M., Edwards, J. et al. (2017). The CompTox Chemistry Dashboard: a community data resource for environmental chemistry. J Cheminform 9, 61. doi:10.1186/s13321-017-0247-6

Woodruff, T. J., Rayasam, S. D. G., Axelrad, D. A. et al. (2023). A science-based agenda for health-protective chemical assessments and decisions: overview and consensus statement. Environ Health 21, 132. doi:10.1186/s12940-022-00930-3

Yu, G. and He, Q. Y. (2016). ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol Biosyst 12, 477-479. doi:10.1039/c5mb00663e

Zhang, L., Ren, X. M., Wan, B. et al. (2014). Structure-dependent binding and activation of perfluorinated compounds on human peroxisome proliferator-activated receptor gamma. Toxicol Appl Pharmacol 279, 275-283. doi:10.1016/j.taap.2014.06.020

Zhang, Y. Y., Tang, L. L., Zheng, B. et al. (2016). Protein profiles of cardiomyocyte differentiation in murine embryonic stem cells exposed to perfluorooctane sulfonate. J Appl Toxicol 36, 726-740. doi:10.1002/jat.3207

Most read articles by the same author(s)