COVID-19 – prime time for microphysiological systems, as illustrated for the brain

Main Article Content

Ian Kang, Lena Smirnova, Jens H. Kuhn, Helena T. Hogberg, Nicole C. Kleinstreuer, Thomas Hartung
[show affiliations]


The development of therapies for and preventions against infectious diseases depends on the availability of disease models. Bioengineering of human organoids and organs-on-chips is one extremely promising avenue of research. These miniature, laboratory-grown organ systems have been broadly used during the ongoing, unprecedented coronavirus 2019 (COVID-19) pandemic to show the many effects of the etiologic agent, severe acute respiratory coronavirus 2 (SARS-CoV-2) on human organs. In contrast, exposure of most animals either did not result in infection or caused mild clinical signs – not the severe course of the infection suffered by many humans. This article illuminates the opportunities of microphysiological systems (MPS) to study COVID-19 in vitro, with a focus on brain cell infection and its translational rel­evance to COVID-19 effects on the human brain. Neurovirulence of SARS-CoV-2 has been reproduced in different types of human brain organoids by 10 groups, consistently showing infection of a small portion of brain cells accompanied by limited viral replication. This mirrors increasingly recognized neurological manifestations in COVID-19 patients (evidence of virus infection and brain-specific antibody formation in brain tissue and cerebrospinal fluid). The pathogenesis of neuro­logical signs, their long-term consequences, and possible interventions remain unclear, but future MPS technologies offer prospects to address these open questions.

Article Details

How to Cite
Kang, I. (2021) “COVID-19 – prime time for microphysiological systems, as illustrated for the brain”, ALTEX - Alternatives to animal experimentation, 38(4), pp. 535–549. doi: 10.14573/altex.2110131.
Food for Thought ...

Abbott, A. (2020). Are infections seeding some cases of Alzheimer’s disease? Nature 587, 22-25. doi:10.1038/d41586-020-03084-9

Abreu, C. M., Gama, L., Krasemann, S. et al. (2018). Microglia increase inflammatory responses in iPSC-dervied human BrainSpheres. Front Microbiol 9, 2766. doi:10.3389/fmicb.2018.02766

Aghagoli, G., Marin, B. G., Katchur, N. J. et al. (2021). Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit Care 34, 1062-1071. doi:10.1007/s12028-020-01049-4

Alene, M., Yismaw, L., Assemie, M. A. et al. (2021). Magnitude of asymptomatic COVID-19 cases throughout the course of infection: A systematic review and meta-analysis. PLoS One 16, e0249090. doi:10.1371/journal.pone.0249090

Alexopoulos, H., Magira, E., Bitzogli, K. et al. (2020). Anti-SARS-CoV-2 antibodies in the CSF, blood-brain barrier dysfunction, and neurological outcome: Studies in 8 stuporous and comatose patients. Neurol Neuroimmunol Neuroinflamm 7, e893. doi:10.1212/NXI.0000000000000893

Arbour, N., Day, R., Newcombe, J. et al. (2000). Neuroinvasion by human respiratory coronaviruses. J Virol 74, 8913-8921. doi:10.1128/jvi.74.19.8913-8921.2000.20

Asadi-Pooya, A. A. and Simani, L. (2020). Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci 413, 116832. doi:10.1016/j.jns.2020.116832

Baig, A., Khaleeq, A., Ali, U. et al. (2020). Evidence of the COVID-19 virus targeting the CNS: Tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci 11, 995-998. doi:10.1021/acschemneuro.0c00122

Benameur, K., Agarwal, A., Auld, S. C. et al. (2020). Encephalopathy and encephalitis associated with cerebrospinal fluid cytokine alterations and coronavirus disease. Emerg Infect Dis 26, 2016-2021. doi:10.3201/eid2609.202122

Bodnar, B., Patel, K., Ho, W. et al. (2021). Cellular mechanisms underlying neurological/neuropsychiatric manifestations of COVID-19. J Med Virol 93, 1983-1998. doi:10.1002/jmv.26720

Brann, D. H., Tsukahara, T., Weinreb, C. et al. (2020). Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. Sci Adv 6, eabc5801. doi:10.1126/sciadv.abc5801

Bullen, C. K., Hogberg, H. T., Bahadirli-Talbott, A. et al. (2020). Infectability of human BrainSphere neurons suggests neurotropism of SARS-CoV-2. ALTEX 37, 665-671. doi:10.14573/altex.2006111

Busquet, F., Hartung, T., Rovida, C. et al. (2020). Harnessing the power of novel animal-free test methods for the development of COVID-19 drugs and vaccines. Arch Toxicol 94, 2263-2272. doi:10.1007/s00204-020-02787-2

Calina, D., Hartung, T., Docea, A. O. et al. (2020). COVID-19 vaccines: Ethical framework concerning human challenge studies. DARU 28, 807-812 doi:10.1007/s40199-020-00371-8

Caporale, N. and Testa, G. (2021). COVID-19 lessons from the dish: Dissecting CNS manifestations through brain organoids. EMBO J 40, e107213. doi:10.15252/embj.2020107213

Chen, K. G., Park, K. and Spence, J. R. (2021). Studying SARS-CoV-2 infectivity and therapeutic responses with complex organoids. Nat Cell Biol 23, 822-833. doi:10.1038/s41556-021-00721-x

Chesnut, M., Hartung, T., Hogberg, H. T. et al. (2021a). Human oligodendrocytes and myelin in vitro to evaluate developmental neurotoxicity. Int J Mol Sci 22, 7929. doi:10.3390/ijms22157929

Chesnut, M., Paschoud, H., Repond, C. et al. (2021b). Human 3D iPSC-derived brain model to study chemical-induced myelin disruption. Int J Mol Sci 22, 9473. doi:10.3390/ijms22179473

Chigr, F., Merzouki, M. and Najimi, M. (2020). Comment on “The neuroinvasive potential of SARS‐CoV‐2 may play a role in the respiratory failure of COVID‐19 patients”. J Med Virol 92, 703-704. doi:10.1002/jmv.25960

Chou, S. H.-Y., Beghi, E., Helbok, R. et al. (2021). Global incidence of neurological manifestations among patients hospitalized with COVID-19 – A report for the GCS-NeuroCOVID consortium and the ENERGY consortium. JAMA Netw Open 4, e2112131. doi:10.1001/jamanetworkopen.2021.12131

Clevers, H. (2020). COVID-19: Organoids go viral. Nat Rev Mol Cell Biol 21, 355-356. doi:10.1038/s41580-020-0258-4

de Melo, B. A. G., Benincasa, J. C., Cruz, E. M. et al. (2021). 3D culture models to study SARS-CoV-2 infectivity and antiviral candidates: From spheroids to bioprinting. Biomed J 44, 31-42. doi:10.1016/

Deguchi, S., Serrano-Aroca, A., Tambuwala, M. M. et al. (2021). SARS-CoV-2 research using human pluripotent stem cells and organoids. Stem Cell Transl Med, online ahead of print. doi:10.1002/sctm.21-0183

DeKosky, S. T., Kochanek, P. M., Valadka, A. B. et al. (2021). Blood biomarkers for detection of brain injury in COVID-19 patients. J Neurotrauma 38, 1-43. doi:10.1089/neu.2020.7332

Desforges, M., Le Coupanec, A., Dubeau, P. et al. (2020). Human coronaviruses and other respiratory viruses: Underestimated opportunistic pathogens of the central nervous system? Viruses 12, 14. doi:10.3390/v12010014

Dickinson, P. J. (2020). Coronavirus infection of the central nervous system: Animal models in the time of COVID-19. Front Vet Sci 7, 584673. doi:10.3389/fvets.2020.584673

Dinnon, K. H., Leist, S. R., Schäfer, A. et al. (2020). A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures. Nature 586, 560-566. doi:10.1038/s41586-020-2708-8

Domingues, R. B., Mendes-Correa, M. C., de Moura Leite, F. B. V. et al. (2020). First case of SARS-CoV-2 sequencing in cerebrospinal fluid of a patient with suspected demyelinating disease. J Neurol 267, 3154-3156. doi:10.1007/s00415-020-09996-w

DosSantos, M. F., Devalle, S., Aran, V. et al. (2020). Neuromechanisms of SARS-CoV-2: A review. Front Neuroanat 14, 37. doi:10.3389/fnana.2020.00037

Ellul, M. A., Benjamin, L., Singh, B. et al. (2020). Neurological associations of COVID-19. Lancet Neurol 19, 767-783. doi:10.1016/S1474-4422(20)30221-0

Espíndola, O. M., Brandão, C. O., Gomes, Y. C. al. (2021). Cerebrospinal fluid findings in neurological diseases associated with COVID-19 and insights into mechanisms of disease development. Int J Infect Dis 102, 155-162. doi:10.1016/j.ijid.2020.10.044

Fenizia, C., Biasin, M., Cetin, I. et al. (2020). Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat Commun 11, 5128. doi:10.1038/s41467-020-18933-4

Finsterer, J. and Scorza, F. A. (2021). Infectious and immune-mediated central nervous system disease in 48 COVID-19 patients. J Clin Neurosci 90, 140-143. doi:10.1016/j.jocn.2021.05.065

Fotuhi, M., Mian, A., Meysami, S. et al. (2020). Neurobiology of COVID-19. J Alzheimers Dis 76, 3-19. doi:10.3233/jad-200581

Franke, C., Ferse, C., Kreye, J. et al. (2020). High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun 93, 415-419. doi:10.1016/j.bbi.2020.12.022

Gasmi, A., Tippairote, T., Mujawdiya, P. K. et al. (2021). Neurological involvements of SARS-CoV2 infection. Mol Neurobiol 58, 944-949. doi:10.1007/s12035-020-02070-6

GBD 2016 Neurology Collaborators (2019). Global, regional, and national burden of neurological disorders, 1990-2016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol 18, 459-480. doi:10.1016/S1474-4422(18)30499-X

Giraudon, P. and Bernard, A. (2010). Inflammation in neuroviral diseases. J Neural Transm 117, 899-906. doi:10.1007/s00702-010-0402-y.18

Gomes, I. C., Karmirian, K., Oliveira, J. et al. (2020). SARS-CoV-2 infection in the central nervous system of a 1-year-old infant submitted to complete autopsy. Preprints. doi:10.20944/preprints202009.0297.v1

Graham, M. L. and Prescott, M. J. (2015). The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease. Eur J Pharmacol 759, 19-29. doi:10.1016/j.ejphar.2015.03.040

Granja, M. G., Oliveira, A. C. R., de Figueiredo, C. S. et al. (2021). SARS-CoV-2 infection in pregnant women: Neuroimmune-endocrine changes at the maternal-fetal interface. Neuroimmunomodulation 28, 1-21. doi:10.1159/000515556

Harschnitz, O. and Studer, L. (2021). Human stem cell models to study host-virus interactions in the central nervous system. Nat Rev Immunol 21, 441-453. doi:10.1038/s41577-020-00474-y

Hartung, T. (2010). Comparative analysis of the revised Directive 2010/63/EU for the protection of laboratory animals with its predecessor 86/609/EEC – A t4 report. ALTEX 27, 285-303. doi:10.14573/altex.2010.4.285

Hartung, T. and Zurlo, J. (2012). Alternative approaches for medical countermeasures to biological and chemical terrorism and warfare. ALTEX 29, 251-260. doi:10.14573/altex.2012.3.251

Hartung, T. (2013). Look back in anger – What clinical studies tell us about preclinical work. ALTEX 30, 275-291. doi:10.14573/altex.2013.3.275

Hascup, E. R. and Hascup, K. N. (2020). Does SARS-CoV-2 infection cause chronic neurological complications? Geroscience 42, 1083-1087. doi:10.1007/s11357-020-00207-y

Hogberg, H. T., de Cássia da Silveira e Sá, R., Kleensang, A. et al. (2021). Organophosphorus flame retardants are developmental neurotoxicants in a rat primary BrainSphere in vitro model. Arch Toxicol 95, 207-228, doi:10.1007/s00204-020-02903-2

Imai, M., Iwatsuki-Horimoto, K., Hatta, M. et al. (2020). Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc Natl Acad Sci U S A 117, 16587-16595. doi:10.1073/pnas.2009799117

Jacob, F., Pather, S. R., Huang, W.-K. et al. (2020). Human pluripotent stem cell-derived neural cells and brain organoids reveal SARS-CoV-2 neurotropism predominates in choroid plexus epithelium. Cell Stem Cell 27, 937-950.e9. doi:10.1016/j.stem.2020.09.016

Kanberg, N., Ashton, N. J., Andersson, L.-M. et al. (2020). Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95, e1754-e1759. doi:10.1212/WNL.0000000000010111

Keddie, S., Pakpoor, J., Mousele, C. et al. (2021). Epidemiological and cohort study finds no association between COVID-19 and Guillain-Barré syndrome. Brain 144, 682-693. doi:10.1093/brain/awaa433

Kleinstreuer, N. and Holmes, A. (2021). Harnessing the power of microphysiological systems for COVID-19 research. Drug Discov Today, online ahead of print. doi:10.1016/j.drudis.2021.06.020

Komine-Aizawa, S., Takada, K. and Hayakawa, S. (2020). Placental barrier against COVID-19. Placenta 99, 45-49. doi:10.1016/j.placenta.2020.07.022

Koralnik, I. J. and Tyler, K. L. (2020). COVID-19: A global threat to the nervous system. Ann Neurol 88, 1-11. doi:10.1002/ana.25807

Lau, K. K., Yu, W. C., Chu, C. M. et al. (2004). Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 10, 342-344. doi:10.3201/eid1002.030638.22

Li, H., Xue, Q. and Xu, X. (2020). Involvement of the nervous system in SARS-CoV-2 infection. Neurotox Res 38, 1-7. doi:10.1007/s12640-020-00219-8

Li, Y.-C., Zhang, Y. and Tan, B.-H. (2021). What can cerebrospinal fluid testing and brain autopsies tell us about viral neuroinvasion of SARS-CoV-2. J Med Virol 93, 4247-4257. doi:10.1002/jmv.26943

Lima, M., Siokas, V., Aloizou, A.-M. et al. (2020). Unraveling the possible routes of SARS-COV-2 invasion into the central nervous system. Curr Treat Options Neurol 22, 37. doi:10.1007/s11940-020-00647-z

Lins, B. (2021). Maternal immune activation as a risk factor for psychiatric illness in the context of the SARS-CoV-2 pandemic. Brain Behav Immun Health 16, 100297. doi:10.1016/j.bbih.2021.100297

Liu, J.-M., Tan, B.-H., Wu, S. et al. (2021). Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol 93, 1304-1313. doi:10.1002/jmv.26570

Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C. et al. (2021). More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. Sci Rep 11, 16144. doi:10.1038/s41598-021-95565-8

Lou, J. J., Movassaghi, M., Gordy, D. et al. (2021). Neuropathology of COVID-19 (neuro-COVID): Clinicopathological update. Free Neuropathol 2, 2. doi:10.17879/freeneuropathology-2021-2993

Luis, M. B., Liguori, N. F., López, P. A. et al. (2021). SARS-CoV-2 RNA detection in cerebrospinal fluid: Presentation of two cases and review of literature. Brain Behav Immun Health 15, 100282. doi:10.1016/j.bbih.2021.100282

Mahalakshmi, A. M., Ray, B., Tuladhar, S. et al. (2021). Does COVID-19 contribute to development of neurological disease? Immun Inflamm Dis 9, 48-58. doi:10.1002/iid3.387

Mallapaty, S. (2020). Mini organs reveal how the coronavirus ravages the body. Nature 583, 15-16. doi:10.1038/d41586-020-01864-x

Mao, L., Jin, H., Wang, M. et al. (2020). Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurology 77, 683-690. doi:10.1001/jamaneurol.2020.1127

Mao, X.-Y. and Jin, W.-L. (2020). iPSCs-derived platform: A feasible tool for probing the neurotropism of SARS-CoV‑2. ACS Chem Neurosci 11, 2489-2491. doi:10.1021/acschemneuro.0c00512

Marinho, P. S., da Cunha, A. J. L. A., Chimelli, L. et al. (2021). Case report: SARS-CoV-2 mother-to-child transmission and fetal death associated with severe placental thromboembolism. Front Med 8, 677001. doi:10.3389/fmed.2021.677001

Marra, D. E., Busl, K. M. and Robinson, C. P (2021). Examination of early CNS symptoms and severe coronavirus disease 2019: A multicenter observational case series. Crit Care Explor 3, e0456. doi:10.1097/CCE.0000000000000456

Marshall, M. (2021). COVID and the brain: Researchers zero in on how damage occurs. Nature 595, 484-485. doi:10.1038/d41586-021-01693-6

Marx, U., Andersson, T. B., Bahinski, A. et al. (2016). Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing using animals. ALTEX 33, 272-321. doi:10.14573/altex.1603161

Marx, U., Akabane, T., Andersson, T. B. et al. (2020). Biology-inspired microphysiological systems to advance medicines for patient benefit and animal welfare. ALTEX 37, 365-394. doi:10.14573/altex.2001241

Matschke, J., Lütgehetmann, M., Hagel, C. et al. (2020). Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol 19, 919-929. doi:10.1016/S1474-4422(20)30308-2

Maury, A., Lyoubi, A., Peiffer-Smadja, N. et al. (2021). Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev Neurol 177, 51-64. doi:10.1016/j.neurol.2020.10.001

McMahon, C. L., Staples, H., Gazi, M. et al. (2021). SARS-CoV-2 targets glial cells in human cortical organoids. Stem Cell Reports 16, 1156-1164. doi:10.1016/j.stemcr.2021.01.016

Meigs, L., Smirnova, L., Rovida, C. et al. (2018). Animal testing and its alternatives – the most important omics is economics. ALTEX 35, 275-305. doi:10.14573/altex.1807041

Meinhardt, J., Radke, J., Dittmayer, C. et al. (2021). Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci 24, 168-175. doi:10.1038/s41593-020-00758-5

Miners, S., Kehoe, P. G. and Love, S. (2020). Cognitive impact of COVID-19: Looking beyond the short term. Alzheimers Res Ther 12, 170. doi:10.1186/s13195-020-00744-w

Modafferi, S., Zhong, X., Kleensang, A. et al. (2021). Gene-environment interactions in developmental neurotoxicity: A case study of synergy between chlorpyrifos and CHD8 knockout in human BrainSpheres. Environ Health Perspect 129, 77001. doi:10.1289/EHP8580

Monchatre-Leroy, E., Lesellier, S. and Wasniewski, M. (2021). Hamster and ferret experimental infection with intranasal low dose of a single strain of SARS-CoV-2. J Gen Virol 102. doi:10.1099/jgv.0.001567

Montalvan, V., Lee, J., Bueso, T. et al. (2020). Neurological manifestations of Covid-19 and other coronavirus infections: A systematic review. Clin Neurol Neurosurg 194, 105921. doi:101016/j.clineuro.2020.105921

Moriguchi, T., Harii, N., Goto, J. et al. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 94, 55-58. doi:10.1016/j.ijid.2020.03.062

Muñoz-Fontela, C., Dowling, W. E., Funnell, S. G. P. et al. (2020). Animal models for COVID-19. Nature 586, 509-515. doi:10.1038/s41586-020-2787-6

Murta, V., Villarreal, A. and Ramos, A. J. (2020). Severe acute respiratory syndrome coronavirus 2 impact on the central nervous system: Are astrocytes and microglia main players or merely bystanders? ASN Neuro 12, 1759091420954960. doi:10.1177/1759091420954960

Najjar, S., Najjar, A., Chong, D. J. et al. (2020). Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. J Neuroinflammation 17, 231. doi:10.1186/s12974-020-01896-0

Najt, P., Richards, H. L. and Fortune, D. G. (2021), Brain imaging in patients with COVID-19: A systematic review. Brain Behav Immun Health 16, 100290. doi:10.1016/j.bbih.2021.100290

Nathanson, N. and Langmuir, A. D. (1963). The Cutter incident. Poliomyelitis following formaldehyde-inactivated poliovirus vaccination in the United States during the Spring of 1955. II. Relationship of poliomyelitis to Cutter vaccine. 1963. Am J Hyg 78, 29-60. doi:10.1093/oxfordjournals.aje.a120328

Natoli, S., Oliveira, V., Calabresi, P. et al. (2020). Does SARS‐Cov‐2 invade the brain? Translational lessons from animal models. Eur J Neurol 27, 1764-1773. doi:10.1111/ene.14277

Ng, J. H., Sun, A., Je, H. S. et al. (2021). Unravelling pathophysiology of neurological and psychiatric complications of COVID-19 using brain organoids. Neuroscientist, 10738584211015136. doi:10.1177/10738584211015136

Nymark, P., Sachana, M., Leite, S. B. et al. (2021). Systematic organization of COVID-19 data supported by the adverse outcome pathway framework. Front Public Health 9, 638605. doi:10.3389/fpubh.2021.638605

Pallanti, S., Grassi, E., Makris, N. et al. (2020). Neurocovid-19: A clinical neuroscience-based approach to reduce SARS-CoV-2 related mental health sequelae. J Psychiatr Res 130, 215-217. doi:10.1016/j.jpsychires.2020.08.008

Pamies, D., Barreras, P., Block, K. et al. (2017). A human brain microphysiological system derived from iPSC to study central nervous system toxicity and disease. ALTEX 34, 362-376. doi:10.14573/altex.1609122

Pamies, D., Block, K., Lau, P. al. (2018). Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol 354, 101-114. doi:10.1016/j.taap.2018.02.003

Pamies, D., Leist, M., Coecke, S. et al. (2020). Good cell and tissue culture practice 2.0 (GCCP 2.0) – Draft for stakeholder discussion and call for action. ALTEX 37, 490-492. doi:10.14573/altex.2007091

Park, S. E., Georgescu, A. and Huh, D. (2019). Organoids-on-a-chip. Science 364, 960-965. doi:10.1126/science.aaw7894

Pedrosa, C. D. S. G., Goto-Silva, L., Temerozo, J. R. et al. (2021). Non-permissive SARS-CoV-2 infection in human neurospheres. Stem Cell Res 54, 102436. doi:10.1016/j.scr.2021.102436

Pellegrini, L., Albecka, A., Mallery, D. L. et al. (2020). SARS-CoV-2 infects the brain choroid plexus and disrupts the blood-CSF barrier in human brain organoids. Cell Stem Cell 27, 951-961.e5. doi:10.1016/j.stem.2020.10.001

Perlman, S. and Netland, J. (2009). Corona viruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol 7, 439-450. doi:10.1038/nrmicro2147.21

Pezzini, A. and Padovani, A. (2020). Lifting the mask on neurological manifestations of COVID-19. Nat Rev Neurol 16, 636-644. doi:10.1038/s41582-020-0398-3

Pouga, L. (2021). Encephalitic syndrome and anosmia in COVID-19: Do these clinical presentations really reflect SARS-CoV-2 neurotropism? A theory based on the review of 25 COVID-19 cases. J Med Virol 93, 550-558. doi:10.1002/jmv.26309

Poyiadji, N., Shahin, G., Noujaim, D. et al. (2020). COVID-19-associated acute hemorrhagic necrotizing encephalopathy: Imaging features. Radiology 296, E119-E120. doi:10.1148/radiol.2020201187

Pronker, E. S., Weenen, T. C., Commandeur, H. et al. (2013). Risk in vaccine research and development quantified. PLoS One 8, e57755. doi:10.1371/journal.pone.0057755

Ramani, A., Müller, L., Ostermann, P. N. et al. (2020). SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J 39, e106230. doi:10.15252/embj.2020106230

Ramani, A., Pranty, A. I. and Gopalakrishnan, J. (2021). Neurotropic effects of SARS-CoV-2 modeled by the human brain organoids. Stem Cell Reports 16, 373-384. doi:10.1016/j.stemcr.2021.02.007

Ray, S. T. J., Abdel-Mannan, O., Sa, M. et al. (2021). Neurological manifestations of SARS-CoV-2 infection in hospitalised children and adolescents in the UK: A prospective national cohort study. Lancet Child Adolesc Health 5, 631-641. doi:10.1016/S2352-4642(21)00193-0

Rogers, J. P., Watson, C. J., Badenoch, J. et al. (2021). Neurology and neuropsychiatry of COVID-19: A systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives. J Neurol Neurosurg Psychiatry 92, 932-941. doi:10.1136/jnnp-2021-326405

Roth, A. and MPS-WS Berlin 2019 (2021). Human microphysiological systems for drug development. Science 373, 1304-1306. doi:10.1126/science.abc3734

Sanclemente-Alaman, I., Moreno-Jiménez, L., Benito-Martín, M. S. et al. (2020). Experimental models for the study of central nervous system infection by SARS-CoV-2. Front Immunol 11, 2163. doi:10.3389/fimmu.2020.02163

Shan, C., Yao, Y. F., Yang, X. L. et al. (2020). Infection with novel coronavirus (SARS-CoV-2) causes pneumonia in Rhesus macaques. Cell Res 30, 670-677. doi:10.1038/s41422-020-0364-z

Sheraton, M., Deo, N., Kashyap, R. et al. (2020). A review of neurological complications of COVID-19. Cureus 12, e8192. doi:10.7759/cureus.8192

Shuid, A. N., Jayusman, P. A., Shuid, N. et al. (2021). Association between viral infections and risk of autistic disorder: An overview. Int J Environ Res Public Health 18, 2817. doi:10.3390/ijerph18062817

Solomon, I. H. and Normandin, E. (2020). Neuropathological features of Covid-19. N Engl J Med 383, 989-992. doi:10.1056/NEJMc2019373

Song, E., Zhang, C., Israelow, B. et al. (2021a). Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med 218, e20202135. doi:10.1084/jem.20202135

Song, E., Bartley, C. M., Chow, R. D. et al. (2021b). Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med 2, 100288. doi:10.1016/j.xcrm.2021.100288

Steardo, L. Jr., Steardo, L. and Verkhratsky, A. (2020). Psychiatric face of COVID-19. Transl Psychiatry 10, 261. doi:10.1038/s41398-020-00949-5

Stevens, R. (2020). How Does Coronavirus Affect the Brain? Johns Hopkins Medicine.

Szcześniak, D., Gładka, A., Misiak, B. et al. (2021). The SARS-CoV-2 and mental health: From biological mechanisms to social consequences. Prog Neuropsychopharmacol Biol Psychiatry 104, 110046. doi:10.1016/j.pnpbp.2020.110046

Taglauer, E., Benarroch, Y., Rop, K. et al. (2020). Consistent localization of SARS-CoV-2 spike glycoprotein and ACE2 over TMPRSS2 predominance in placental villi of 15 COVID-19 positive maternal-fetal dyads. Placenta 100, 69-74. doi:10.1016/j.placenta.2020.08.015

Tang, H., Abouleila, Y., Si, L. et al. (2020). Human organs-on-chips for virology. Trends Microbiol 28, 934-946. doi:10.1016/j.tim.2020.06.005

Tiwari, S. K., Wang, S., Smith, D. et al. (2021). Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell derived lung and cerebral organoids. Stem Cell Rep 16, 437-445. doi:10.1016/j.stemcr.2021.02.005

Troyer, E. A., Kohn, J. N. and Hong, S. (2020). Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun 87, 34-39. doi:10.1016/j.bbi.2020.04.027

Valiuddin, H. M., Kalajdzic, A., Rosati, J. et al. (2020). Update on neurological manifestations of SARS-CoV-2. West J Emerg Med 21, 45-51. doi:10.5811/westjem.2020.8.48839

Vitalakumar, D., Sharma, A., Kumar, A. et al. (2021). Neurological manifestations in COVID-19 patients: A meta-analysis. ACS Chem Neurosci 15, 2776-2797. doi:10.1021/acschemneuro.1c00353

Wang, C., Zhang, M., Garcia, G. Jr. et al. (2021). ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell 28, 331-342.e5. doi:10.1016/j.stem.2020.12.018

Wang, L., Sievert, D., Clark, A. E. et al. (2021). A human three-dimensional neural-perivascular ‘assembloid’ promotes astrocytic development and enables modeling of SARS-CoV-2 neuropathology. Nat Med 27, 1600-1606. doi:10.1038/s41591-021-01443-1

Willner, M. J., Xiao, Y., Kim, H. S. et al. (2021). Modeling SARS-CoV-2 infection in individuals with opioid use disorder with brain organoids. J Tissue Eng 12, 2041731420985299. doi:10.1177/2041731420985299

Wittwehr, C., Amorim, M. J., Clerbaux, L.-A. et al. (2021). Understanding COVID-19 through adverse outcome pathways – 2nd CIAO AOP Design Workshop. ALTEX 38, 351-357. doi:10.14573/altex.2102221

Wu, Y., Xu, X., Chen, Z. et al. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 87, 18-22. doi:10.1016/j.bbi.2020.03.031

Yachou, Y., El Idrissi, A., Belapasov, V. et al. (2020). Neuroinvasion, neurotropic, and neuroinflammatory events of SARS-CoV-2: Understanding the neurological manifestations in COVID-19 patients. Neurol Sci 41, 2657-2669. doi:10.1007/s10072-020-04575-3

Yi, S. A., Nam, K. H., Yun, J. et al. (2020). Infection of brain organoids and 2D cortical neurons with SARS-CoV-2 pseudovirus. Viruses 12, 1004. doi:10.3390/v12091004

Yinda, C. K., Port, J. R., Bushmaker, T. et al. (2021). K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog 17, e1009195. doi:10.1371/journal.ppat.1009195

Zanin, L., Saraceno, G., Panciani, P. P. et al. (2020). SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir 162, 1491-1494. doi:10.1007/s00701-020-04374-x

Zhang, B. Z., Chu, H., Han, S. et al. (2020). SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 30, 928-931. doi:10.1038/s41422-020-0390-x

Zhang, L., Zhou, L., Bao, L. et al. (2021). SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther 6, 337. doi:10.1038/s41392-021-00719-9

Zhong, X., Harris, G., Smirnova, L. et al. (2020). Paroxetine exerts developmental neurotoxicity in an iPSC derived 3D human brain model. Front Cell Neurosci 14, 25. doi:10.3389/fncel.2020.00025

Zhou, Z., Kang, H., Li, S. et al. (2020). Understanding the neurotropic characteristics of SARS-CoV-2: From neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol 267, 2179-2184. doi:10.1007/s00415-020-09929-7

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>