Comparison of human recombinant protein coatings and fibroblast-ECM to Matrigel for induced pluripotent stem cell culture and renal podocyte differentiation

Main Article Content

Cormac Murphy
Elisabeth Naderlinger
Amber Mater
Roelof J. C. Kluin
Anja Wilmes


Human induced pluripotent stem cells (hiPSC) offer great opportunities within the 3R framework. In the field of toxicology, they may contribute greatly to the reduction and eventually replacement of animal models. However, culturing hiPSC as well as the differentiation of hiPSC into target cells that are used for toxicity testing, mainly depend on the presence of extracellular matrix (ECM) coatings. The most widely used ECM coating is Matrigel, an animal product that is derived from mice sarcomas. Drawbacks of Matrigel are widely recognized and include batch-to batch variations, usage of animal rather than human material and ethical concerns for its production. While alternative coatings exist, factors such as higher cost and limited characterizations may hinder a broader uptake by the scientific community. Here, we report an extensive comparison of three commercial human ECM coatings, vitronectin, laminin-511 and laminin-521, to Matrigel in three different hiPSC lines in long term culture (< 9 passages). Characterization included expression of pluripotent markers in a genome-wide transcriptomics study (TempO-Seq), capacity to differentiate into embryoid bodies and karyotype stability by analyzing copy number variations by shallow DNA sequencing. Furthermore, a low-cost alternative, decellularized ECM produced by human neonatal dermal fibroblasts was analyzed. In addition, all alternative coatings were tested for hiPSC differentiation into renal podocyte-like cells in a genome-wide transcriptomics screen. Our results showed that all tested coatings were highly comparable to the animal-derived Matrigel for both hiPSC maintenance and differentiation into renal podocyte-like cells. Furthermore, decellularized fibroblast ECM could be a novel attractive low-cost coating.

Article Details

How to Cite
Murphy, C., Naderlinger, E., Mater, A., Kluin, R. J. C. and Wilmes, A. (2022) “Comparison of human recombinant protein coatings and fibroblast-ECM to Matrigel for induced pluripotent stem cell culture and renal podocyte differentiation”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2112204.

Albalushi, H., Kurek, M., Karlsson, L. et al. (2018). Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. Stem Cells International 2018, 1–9. doi:10.1155/2018/7127042

Björnson Granqvist, A., Ebefors, K., Saleem, M. A. et al. (2006). Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. American Journal of Physiology-Renal Physiology 291, F722–F730. doi:10.1152/ajprenal.00433.2005

Braam, S. R., Zeinstra, L., Litjens, S. et al. (2008). Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257–2265. doi:10.1634/stemcells.2008-0291

Burgeson, R. E., Chiquet, M., Deutzmann, R. et al. (1994). A new nomenclature for the laminins. Matrix Biol 14, 209–11

Burridge, P. W., Matsa, E., Shukla, P. et al. (2014). Chemically defined generation of human cardiomyocytes. Nature Methods 2014 11:8 11, 855–860. doi:10.1038/nmeth.2999

Chandrasekaran, V., Carta, G., da Costa Pereira, D. et al. (2021). Generation and characterization of iPSC-derived renal proximal tubule-like cells with extended stability. Scientific Reports 11, 11575. doi:10.1038/s41598-021-89550-4

Chen, G., Gulbranson, D. R., Hou, Z. et al. (2011). Chemically defined conditions for human iPSC derivation and culture. Nature Methods 8, 424–429. doi:10.1038/nmeth.1593

Chichagova, V., Sanchez-Vera, I., Armstrong, L. et al. (2016). Generation of Human Induced Pluripotent Stem Cells Using RNA-Based Sendai Virus System and Pluripotency Validation of the Resulting Cell Population. Methods Mol Biol 1353, 285–307. doi:10.1007/7651_2015_205

Fergus, J., Quintanilla, R. and Lakshmipathy, U. (2016). Characterizing Pluripotent Stem Cells Using the TaqMan® hPSC Scorecard(TM) Panel. Methods Mol Biol 1307, 25–37. doi:10.1007/7651_2014_109

Frantz, C., Stewart, K. M. and Weaver, V. M. (2010). The extracellular matrix at a glance. J Cell Sci 123, 4195–4200. doi:10.1242/jcs.023820

Garitaonandia, I., Amir, H., Boscolo, F. S. et al. (2015). Increased risk of genetic and epigenetic instability in human embryonic stem cells associated with specific culture conditions. PLoS One 10, e0118307. doi:10.1371/journal.pone.0118307

Hammad, S. M., Twal, W. O., Arif, E. et al. (2020). Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins. Genes (Basel) 11, 178. doi:10.3390/genes11020178

Hayman, E. G., Pierschbacher, M. D., Öhgren, Y. et al. (1983). Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Cell biology 80, 4003–4007

Hey, C. A. B., Saltõkova, K. B., Bisgaard, H. C. et al. (2018). Comparison of two different culture conditions for derivation of early hiPSC. Cell Biology International 42, 1467–1473. doi:10.1002/cbin.10966

Holmes, R. (1967). Preparation from human serum of an alpha-one protein which induces the immediate growth of unadapted cells in vitro. The Journal Of Cell Biology 32, 297–308.

Hughes, C. S., Postovit, L. M. and Lajoie, G. A. (2010). Matrigel: A complex protein mixture required for optimal growth of cell culture. PROTEOMICS 10, 1886–1890. doi:10.1002/pmic.200900758

Hyslop, L., Stojkovic, M., Armstrong, L. et al. (2005). Downregulation of NANOG Induces Differentiation of Human Embryonic Stem Cells to Extraembryonic Lineages. STEM CELLS 23, 1035–1043. doi:10.1634/stemcells.2005-0080

Hyvärinen, T., Hyysalo, A., Kapucu, F. E. et al. (2019). Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on laminin-521 substrate: comparison to rat cortical cultures. Scientific Reports 9, 17125. doi:10.1038/s41598-019-53647-8

Imasawa, T., Obre, E., Bellance, N. et al. (2017). High glucose repatterns human podocyte energy metabolism during differentiation and diabetic nephropathy. The FASEB Journal 31, 294–307. doi:10.1096/fj.201600293r

Inoue, H., Nagata, N., Kurokawa, H. et al. (2014). IPS cells: A game changer for future medicine. EMBO Journal 33, 409–417. doi:10.1002/embj.201387098

Jacobs, K., Zambelli, F., Mertzanidou, A. et al. (2016). Higher-Density Culture in Human Embryonic Stem Cells Results in DNA Damage and Genome Instability. Stem Cell Reports 6, 330–341. doi:doi:10.1016/j.stemcr.2016.01.015

Kang, X., Yu, Q., Huang, Y. et al. (2015). Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells. PLoS One 10, e0131128. doi:10.1371/journal.pone.0131128

Kanninen, L. K., Harjumäki, R., Peltoniemi, P. et al. (2016). Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials 103, 86–100. doi:10.1016/j.biomaterials.2016.06.054

Khan, A. (2020). QDNAseq.hg38: QDNAseq bin annotation for the human genome build hg38. doi:10.5281/ZENODO.4274556

Kibbey, M. C. (1994). Maintenance of the EHS sarcoma and Matrigel preparation. Journal of tissue culture methods 16, 227–230. doi:10.1007/BF01540656

Kilpinen, H., Goncalves, A., Leha, A. et al. (2017). Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 546, 370–375. doi:10.1038/nature22403

Lake, B. B., Chen, S., Hoshi, M. et al. (2019). A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys. Nature Communications 10, 2832. doi:10.1038/s41467-019-10861-2

Lam, M. T. and Longaker, M. T. (2012). Comparison of several attachment methods for human iPS, embryonic and adipose-derived stem cells for tissue engineering. J Tissue Eng Regen Med 6 Suppl 3, s80–s86. doi:10.1002/term.1499

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Available at: [Accessed December 16, 2021].

Limonciel, A., Ates, G., Carta, G. et al. (2018). Comparison of base-line and chemical-induced transcriptomic responses in HepaRG and RPTEC/TERT1 cells using TempO-Seq. Arch Toxicol 92, 2517–2531. doi:10.1007/s00204-018-2256-2

Lin, M.-H., Miller, J. B., Kikkawa, Y. et al. (2018). Laminin-521 Protein Therapy for Glomerular Basement Membrane and Podocyte Abnormalities in a Model of Pierson Syndrome. Journal of the American Society of Nephrology 29, 1426–1436. doi:10.1681/ASN.2017060690

Liu, P., Kaplan, A., Yuan, B. et al. (2014). Passage number is a major contributor to genomic structural variations in mouse iPSCs. Stem Cells 32, 2657–2667. doi:10.1002/stem.1779

Love, M. I., Huber, W. and Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550. doi:10.1186/s13059-014-0550-8

Lu, H. F., Chai, C., Lim, T. C. et al. (2014). A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials 35, 2816–2826. doi:10.1016/j.biomaterials.2013.12.050

Lu, J., Baccei, A., Lummertz da Rocha, E. et al. (2018). Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm. Stem Cell Research 28, 48–55. doi:10.1016/j.scr.2018.01.015

Lu, Y., Ye, Y., Bao, W. et al. (2017). Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. Kidney International 92, 1119–1129. doi:doi:10.1016/j.kint.2017.04.022

Meredith, J. E., Winitz, S., Lewis, J. M. A. et al. (1996). The regulation of growth and intracellular signaling by integrins. Endocrine Reviews 17, 207–220. doi:10.1210/edrv-17-3-207

Morrison, M., Klein, C., Clemann, N. et al. (2015). StemBANCC: Governing Access to Material and Data in a Large Stem Cell Research Consortium. Stem Cell Rev 5, 681–687. doi:10.1007/s12015-015-9599-3

Murphy, C., Feifel, E., Jennings, P. et al. (2019). A Protocol for One-Step Differentiation of Human Induced Pluripotent Stem Cells into Mature Podocytes. Methods Mol Biol 1994, 93–99. doi:10.1007/978-1-4939-9477-9_8

Musah, S., Dimitrakakis, N., Camacho, D. M. et al. (2018). Directed differentiation of human induced pluripotent stem cells into mature kidney podocytes and establishment of a Glomerulus Chip. Nature Protocols 13, 1662–1685. doi:10.1038/s41596-018-0007-8

Nagaoka, M., Kobayashi, M., Kawai, C. et al. (2015). Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells. PLOS ONE 10, e0136350. doi:10.1371/journal.pone.0136350

Nagasaka, R., Matsumoto, M., Okada, M. et al. (2017). Visualization of morphological categories of colonies for monitoring of effect on induced pluripotent stem cell culture status. Regenerative Therapy 6, 41–51. doi:10.1016/j.reth.2016.12.003

Pace, J. A., Bronstein, R., Guo, Y. et al. (2021). Podocyte-specific KLF4 is required to maintain parietal epithelial cell quiescence in the kidney. Science Advances 7. doi:10.1126/sciadv.abg6600

Padhi, A. and Nain, A. S. (2020). ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Annals of Biomedical Engineering 48, 1071–1089. doi:10.1007/s10439-019-02337-7

Pan, G. and Thomson, J. A. (2007). Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Research 17, 42–49. doi:10.1038/

Quinlan, A. R. and Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. doi:10.1093/BIOINFORMATICS/BTQ033

Rauch, C., Feifel, E., Kern, G. et al. (2018). Differentiation of human iPSCs into functional podocytes. PLoS One 13, e0203869. doi:10.1371/journal.pone.0203869

Refaeli, I., Hughes, M. R., Wong, A. K.-W. et al. (2020). Distinct Functional Requirements for Podocalyxin in Immature and Mature Podocytes Reveal Mechanisms of Human Kidney Disease. Scientific Reports 10, 9419. doi:10.1038/s41598-020-64907-3

Rinschen, M. M., Huesgen, P. F. and Koch, R. E. (2018). The podocyte protease web: uncovering the gatekeepers of glomerular disease. American Journal of Physiology-Renal Physiology 315, F1812–F1816. doi:10.1152/ajprenal.00380.2018

Rodin, S., Antonsson, L., Niaudet, C. et al. (2014). Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nature Communications 5, 3195. doi:10.1038/ncomms4195

Rodin, S., Domogatskaya, A., Ström, S. et al. (2010). Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology 28, 611–615. doi:10.1038/nbt.1620

Rowland, T. J., Miller, L. M., Blaschke, A. J. et al. (2010). Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cells Dev 19, 1231–1240. doi:10.1089/scd.2009.0328

Scheinin, I., Sie, D., Bengtsson, H. et al. (2014). DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res 24, 2022–2032. doi:10.1101/gr.175141.114

Singh, P., Chandrasekaran, V., Hardy, B. et al. (2021). Temporal transcriptomic alterations of cadmium exposed human iPSC-derived renal proximal tubule-like cells. Toxicology in Vitro 76, 105229. doi:10.1016/J.TIV.2021.105229

Slamecka, J., McClellan, S., Wilk, A. et al. (2018). Induced pluripotent stem cells derived from human amnion in chemically defined conditions. Cell Cycle 17, 330–347. doi:10.1080/15384101.2017.1403690

Song, B., Smink, A. M., Jones, C. v. et al. (2012). The Directed Differentiation of Human iPS Cells into Kidney Podocytes. PLoS ONE 7, e46453. doi:10.1371/journal.pone.0046453

Suter-Dick, L., Alves, P. M., Blaauboer, B. J. et al. (2015). Stem cell-derived systems in toxicology assessment. Stem Cells and Development 24. doi:10.1089/scd.2014.0540

Suzuki, S., Oldberg, A., Hayman, E. G. et al. (1985). Complete amino acid sequence of human vitronectin deduced from cDNA. Similarity of cell attachment sites in vitronectin and fibronectin. EMBO J 4, 2519–24

Takahashi, K. and Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. doi:10.1016/j.cell.2006.07.024

Theocharis, A. D., Skandalis, S. S., Gialeli, C. et al. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews 97, 4–27. doi:10.1016/j.addr.2015.11.001

Tsankov, A. M., Akopian, V., Pop, R. et al. (2015). A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nature Biotechnology 33, 1182–1192. doi:10.1038/nbt.3387

Vierkotten, S., Muether, P. S. and Fauser, S. (2011). Overexpression of HTRA1 Leads to Ultrastructural Changes in the Elastic Layer of Bruch’s Membrane via Cleavage of Extracellular Matrix Components. PLoS ONE 6, e22959. doi:10.1371/journal.pone.0022959

van de Wiel, M. A., Kim, K. I., Vosse, S. J. et al. (2007). CGHcall: calling aberrations for array CGH tumor profiles. Bioinformatics 23, 892–894. doi:10.1093/bioinformatics/btm030

Wieser, M., Stadler, G., Jennings, P. et al. (2008). hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. AJP: Renal Physiology 295, F1365–F1375. doi:10.1152/ajprenal.90405.2008

Wight, T. N., Kang, I., Evanko, S. P. et al. (2020). Versican—A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Frontiers in Immunology 11. doi:10.3389/fimmu.2020.00512

Wilmes, A., Rauch, C., Carta, G. et al. (2017). Towards optimisation of induced pluripotent cell culture: Extracellular acidification results in growth arrest of iPSC prior to nutrient exhaustion. Toxicology in Vitro 45, 445–454. doi:10.1016/j.tiv.2017.07.023

Wolford, J. L., Chishti, Y., Jin, Q. et al. (2010). Loss of Pluripotency in Human Embryonic Stem Cells Directly Correlates with an Increase in Nuclear Zinc. PLoS ONE 5, e12308. doi:10.1371/journal.pone.0012308

Young, J. C., Major, A. T., Miyamoto, Y. et al. (2011). Distinct effects of importin α2 and α4 on Oct3/4 localization and expression in mouse embryonic stem cells. The FASEB Journal 25, 3958–3965. doi:10.1096/fj.10-176941

Zhang, P., Andrianakos, R., Yang, Y. et al. (2010). Kruppel-like Factor 4 (Klf4) Prevents Embryonic Stem (ES) Cell Differentiation by Regulating Nanog Gene Expression. Journal of Biological Chemistry 285, 9180–9189. doi:10.1074/jbc.M109.077958