How to formulate hypotheses and IATA to support grouping and read-across of nanoforms

Main Article Content

Fiona Murphy
Helinor J. Johnston
Susan Dekkers
Eric A. J. Bleeker
Agnes G. Oomen
Teresa F. Fernandes
Kirsten Rasmussen
Paula Jantunen
Hubert Rauscher
Neil Hunt
Luisana di Cristo
Hedwig M. Braakhuis
Andrea Haase
Danail Hristozov
Wendel Wohlleben
Stefania Sabella
Vicki Stone


Manufacturing and functionalizing materials at the nanoscale has led to the generation of a whole array of nanoforms (NFs) of substances varying in size, morphology and surface characteristics. Due to financial, time and ethical considerations, testing every unique NF for adverse effects is virtually impossible. Use of hypothesis-driven grouping and read-across approaches, as supported by the GRACIOUS Framework, represent a promising alternative to case-by-case testing which will make the risk assessment process more efficient. Through application of appropriate grouping hypotheses, the Framework facilitates the assessment of similarity between NFs, thereby supporting grouping and read-across of information, minimizing the need for new testing and aligning with 3R principles of Replacement, Reduction and Refinement of animals in toxicology studies. For each grouping hypothesis an Integrated Approach to Testing and Assessment (IATA) guides the user in data gathering and acquisition to test the hypothesis, following a structured format to facilitate efficient decision-making. Here we present the template used to generate the GRACIOUS grouping hypotheses encompassing information relevant to “Lifecycle, environmental release and human exposure”, “What they are: physicochemical characteristics”, “Where they go: Environmental fate, uptake and toxicokinetics”, and “What they do: human and environmental toxicity”. A summary of the template-derived hypotheses focusing on human health is provided, along with an overview of the IATAs generated by the GRACIOUS project. We discuss the application and flexibility of the template, providing the opportunity to expand the application of grouping and read-across, in a logical evidence-based manner, to a wider range of NFs and substances.

Article Details

How to Cite
Murphy, F., Johnston, H. J., Dekkers, S., Bleeker, E. A. J., Oomen, A. G., Fernandes, T. F., Rasmussen, K., Jantunen, P., Rauscher, H. ., Hunt, N., di Cristo, L., Braakhuis, H. M., Haase, A., Hristozov, D., Wohlleben, W., Sabella, S. and Stone, V. (2022) “How to formulate hypotheses and IATA to support grouping and read-across of nanoforms”, ALTEX - Alternatives to animal experimentation. doi: 10.14573/altex.2203241.

Arts, J. H., Irfan, M. A., Keene, A. M. et al. (2016). Case studies putting the decision-making framework for the grouping and testing of nanomaterials (df4nanogrouping) into practice. Regul Toxicol Pharmacol 76, 234-261. doi:10.1016/j.yrtph.2015.11.020

Arts, J. H. E., Hadi, M., Keene, A. M. et al. (2014). A critical appraisal of existing concepts for the grouping of nanomaterials. Regulatory Toxicology and Pharmacology 70, 492-506. doi:10.1016/j.yrtph.2014.07.025

Aschberger, K., Christensen, F. M., Rasmussen, K. et al. (2016). Feasibility and challenges of human health risk assessment for engineered nanomaterials. In (eds.), Engineered nanoparticles and the environment: Biophysicochemical processes and toxicity. doi:10.1002/9781119275855.ch21

Ball, N., Cronin, M. T., Shen, J. et al. (2016). Toward good read-across practice (grap) guidance. Altex 33, 149-166. doi:10.14573/altex.1601251

Bernstein, D. M., Mast, R., Anderson, R. et al. (1994). An experimental approach to the evaluation of the biopersistence of respirable synthetic fibers and minerals. Environmental Health Perspectives 102, 15-18. doi:10.1289/ehp.94102s515

Bernstein, D. M., Morscheidt, C., de Meringo, A. et al. (1997). The biopersistence of fibres following inhalation and intratracheal instillation exposure. The Annals of Occupational Hygiene 41, 224-230.

Bottero, J.-Y., Auffan, M., Borschnek, D. et al. (2015). Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geoscience 347, 35-42. doi:10.1016/j.crte.2014.10.004

Bove, P., Malvindi, M. A., Kote, S. S. et al. (2017). Dissolution test for risk assessment of nanoparticles: A pilot study. Nanoscale 9, 6315-6326. doi:10.1039/c6nr08131b

Braakhuis, H. M., Murphy, F., Ma-Hock, L. et al. (2021). An integrated approach to testing and assessment to support grouping and read-across of nanomaterials after inhalation exposure. Applied In Vitro Toxicology 7, 112-128. doi:10.1089/aivt.2021.0009

Broaddus, V. C., Everitt, J. I., Black, B. and Kane, A. B. (2011). Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B 14, 153-178. doi:10.1080/10937404.2011.556049

Burden, N., Aschberger, K., Chaudhry, Q. et al. (2017). The 3rs as a framework to support a 21st century approach for nanosafety assessment. Nano Today 12, 10-13. doi:10.1016/j.nantod.2016.06.007

Carnovale, C., Guarnieri, D., Di Cristo, L. et al. (2021). Biotransformation of silver nanoparticles into oro-gastrointestinal tract by integrated in vitro testing assay: Generation of exposure-dependent physical descriptors for nanomaterial grouping. Nanomaterials 11, 1587.

Cogliano, V. J., Baan, R. A., Straif, K. et al. (2008). Use of mechanistic data in iarc evaluations. Environmental and Molecular Mutagenesis 49, 100-109. doi:10.1002/em.20370

Craighead, J. E. and Mossman, B. T. (1982). The pathogenesis of asbestos-associated diseases. N Engl J Med 306, 1446-1455. doi:10.1056/nejm198206173062403

Davis, J. M., Addison, J., Bolton, R. E. et al. (1986). The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol 67, 415-430.

Dekkers, S., Oomen, A. G., Bleeker, E. A. J. et al. (2016). Towards a nanospecific approach for risk assessment. Regulatory Toxicology and Pharmacology 80, 46-59. doi:10.1016/j.yrtph.2016.05.037

Di Cristo, L., Oomen, A. G., Dekkers, S. et al. (2021). Grouping hypotheses and an integrated approach to testing and assessment of nanomaterials following oral ingestion. Nanomaterials 11, 2623.

Donaldson, K., Murphy, F. A., Duffin, R. et al. (2010). Asbestos, carbon nanotubes and the pleural mesothelium: A review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7, 5. doi:10.1186/1743-8977-7-5

Duffin, R., Tran, L., Brown, D. et al. (2007). Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: Highlighting the role of particle surface area and surface reactivity. Inhalation Toxicology 19, 849-856. doi:10.1080/08958370701479323

EC (2006). Regulation (ec) no 1907/2006 of the european parliament and of the council of 18 december 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (reach), establishing a european chemicals agency, amending directive 1999/45/ec and repealing council regulation (eec) no 793/93 and commission regulation (ec) no 1488/94 as well as council directive 76/769/eec and commission directives 91/155/eec, 93/67/eec, 93/105/ec and 2000/21/ec, o j l396, 2006.

EC (2008). Regulation (ec) no 1272/2008 of the european parliament and of the council of 16 december 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing directives 67/548/eec and 1999/45/ec, and amending regulation (ec) no 1907/2006. Oj l 353, 31.12.2008, p. 1–1355.

EC (2010). Ec (2010). Directive 2010/63/eu of the european parliament and of the council of 22 september 2010 on the protection of animals used for scientific purposes text with eea relevance. Oj l 276 of 20.10.2010, p. 33—79.

EC (2018). Commission regulation (eu) amending regulation (ec) no 1907/2006 of the european parliament and of the council on the registration, evaluation, authorisation and restriction of chemicals (reach) as regards annexes i, iii,vi, vii, viii, ix, x, xi, and xii to address nanoforms of substances. Oj l 308, 4.12.2018, p. 1–20.

ECHA (2008). Guidance on information requirements and chemical safety assessment. Chapter r.6: Qsars and grouping of chemicals. Guidance for the implementation of reach. European chemicals agency (echa).

ECHA (2017a). Read-across assessment framework (raaf). European chemicals agency (echa). doi:10.2823/619212

ECHA (2017b). Appendix r.6-1 for nanomaterials applicable to the guidance on qsars and grouping of chemicals. In: Guidance on information requirements and chemical safety assessment. European chemicals agency (echa). doi:10.2823/273911

Fernandez-Cruz, M. L., Hernandez-Moreno, D., Catalan, J. et al. (2018). Quality evaluation of human and environmental toxicity studies performed with nanomaterials - the guidenano approach. Environmental Science: Nano 5, 381-397. doi:10.1039/C7EN00716G

Fraser, K., Kodali, V., Yanamala, N. et al. (2020). Physicochemical characterization and genotoxicity of the broad class of carbon nanotubes and nanofibers used or produced in u.S. Facilities. Particle and Fibre Toxicology 17, 62. doi:10.1186/s12989-020-00392-w

Grosse, Y., Loomis, D., Guyton, K. Z. et al. (2014). Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. The Lancet Oncology 15, 1427-1428.

Hunt, N. (2021). Guidance on the gracious framework for grouping and read-across of nanomaterials and nanoforms. doi:doi:10.5281/zenodo.5534465

ISO (2017). Iso/tr 19057:2017 nanotechnologies. Use and application of acellular in vitro tests and methodologies to assess nanomaterial biodurability. ISO/TR 19057:2017.

Jeliazkova, N., Bleeker, E., Cross, R. et al. (2022). How can we justify grouping of nanoforms for hazard assessment? Concepts and tools to quantify similarity. NanoImpact 25, 100366. doi:doi:10.1016/j.impact.2021.100366

Krug, H. F. (2014). Nanosafety research--are we on the right track? Angew Chem Int Ed Engl 53, 12304-12319. doi:10.1002/anie.201403367

Kuempel, E. D., Geraci, C. L. and Schulte, P. A. (2012). Risk assessment and risk management of nanomaterials in the workplace: Translating research to practice. The Annals of Occupational Hygiene 56, 491-505. doi:10.1093/annhyg/mes040

Lamon, L., Aschberger, K., Asturiol, D. et al. (2019). Grouping of nanomaterials to read-across hazard endpoints: A review. Nanotoxicology 13, 100-118. doi:10.1080/17435390.2018.1506060

Landsiedel, R. (2016). Concern-driven integrated approaches for the grouping, testing and assessment of nanomaterials. Environ Pollut 218, 1376-1380. doi:10.1016/j.envpol.2015.10.060

Mech, A., Rasmussen, K., Jantunen, P. et al. (2019). Insights into possibilities for grouping and read-across for nanomaterials in eu chemicals legislation. Nanotoxicology 13, 119-141. doi:10.1080/17435390.2018.1513092

Murphy, F., Dekkers, S., Braakhuis, H. et al. (2021). An integrated approach to testing and assessment of high aspect ratio nanomaterials and its application for grouping based on a common mesothelioma hazard. NanoImpact 22, 100314. doi:doi:10.1016/j.impact.2021.100314

Nagai, H., Okazaki, Y., Chew, S. H. et al. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 108, E1330-E1338. doi:10.1073/pnas.1110013108

OECD (2016). Grouping and read-across for the hazard assessment of manufactured nanomaterials. OECD Series on the Safety of Manufactured Nanomaterials. OECD Publishing,

OECD (2017a). Guidance on grouping of chemicals, second edition. OECD Series on Testing and Assessment,. P. OECD Publishing, doi:10.1787/9789264274679-en

OECD (2017b). Guidance document on the reporting of defined approaches to be used within integrated approaches to testing and assessment. Vol. doi:10.1787/9789264274822-en

OECD (2018). Test no. 451: Carcinogenicity studies. Vol. doi:10.1787/9789264071186-en

Oomen, A. G., Bleeker, E. A., Bos, P. M. et al. (2015). Grouping and read-across approaches for risk assessment of nanomaterials. Int J Environ Res Public Health 12, 13415-13434. doi:10.3390/ijerph121013415

Patlewicz, G., Ball, N., Boogaard, P. J. et al. (2015). Building scientific confidence in the development and evaluation of read-across. Regul Toxicol Pharmacol 72, 117-133. doi:10.1016/j.yrtph.2015.03.015

Poland, C. A., Duffin, R., Kinloch, I. et al. (2008). Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology 3, 423-428. doi:10.1038/nnano.2008.111

Rittinghausen, S., Hackbarth, A., Creutzenberg, O. et al. (2014). The carcinogenic effect of various multi-walled carbon nanotubes (mwcnts) after intraperitoneal injection in rats. Part Fibre Toxicol 11, 59. doi:10.1186/s12989-014-0059-z

Selikoff, I. J., Churg, J. and Hammond, E. C. (1964). Asbestos exposure and neoplasia. JAMA 188, 22-26. doi:10.1001/jama.1964.03060270028006

Sellers, K., Deleebeeck, N., Messiaen, M. et al. (2015). Grouping nanomaterials - a strategy towards grouping and read-across. Vol.

Stayner, L., Welch, L. S. and Lemen, R. (2013). The worldwide pandemic of asbestos-related diseases. Annu Rev Public Health 34, 205-216. doi:10.1146/annurev-publhealth-031811-124704

Stone, V., Gottardo, S., Bleeker, E. A. J. et al. (2020). A framework for grouping and read-across of nanomaterials- supporting innovation and risk assessment. Nano Today 35, 100941. doi:10.1016/j.nantod.2020.100941

United Nations (2021). Globally Harmonized System of Classification and Labelling of Chemicals (GHS), 9th edition.

Verdon, R., Stone, V., Murphy, F. et al. (2022). The application of existing genotoxicity methodologies for grouping of nanomaterials: Towards an integrated approach to testing and assessment. Particle and Fibre Toxicology 19, 32. doi:10.1186/s12989-022-00476-9

Wagner, J. C., Sleggs, C. A. and Marchand, P. (1960). Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med 17, 260-271. doi:10.1136/oem.17.4.260