Development of physiologically based gut absorption model for probabilistic prediction of environmental chemical bioavailability

Main Article Content

Hsing-Chieh Lin, Weihsueh A. Chiu
[show affiliations]


Absorption in the gastrointestinal tract is a key factor determining the bioavailability of chemicals after oral exposure but is frequently assumed to have a conservative value of 100% for environmental chemicals, particularly in the context of high-throughput toxicokinetics for in vitro-to-in vivo extrapolation (IVIVE). For pharmaceutical compounds, the physiologically based advanced compartmental absorption and transit (ACAT) model has been used extensively to predict gut absorption but has not generally been applied to environmental chemicals. Here we develop a probabilistic environmental compart­mental absorption and transit (PECAT) model, adapting the ACAT model to environmental chemicals. We calibrated the model parameters to human in vivo, ex vivo, and in vitro datasets of drug permeability and fractional absorption by con­sidering two key factors: (1) differences between permeability in Caco-2 cells and in vivo permeability in the jejunum, and (2) differences in in vivo permeability across different gut segments. Incorporating these factors probabilistically, we found that given Caco-2 permeability measurements, predictions of the PECAT model are consistent with the (limited) available gut absorption data for environmental chemicals. However, the substantial chemical-to-chemical variability observed in the cal­ibration data often led to wide probabilistic confidence bounds in the predicted fraction absorbed and resulting steady state blood concentration. Thus, while the PECAT model provides a statistically rigorous, physiologically based approach for incor­porating in vitro data on gut absorption into toxicokinetic modeling and IVIVE, it also highlights the need for more accurate in vitro models and data for measuring gut segment-specific in vivo permeability of environmental chemicals.

Article Details

How to Cite
Lin, H.-C. and Chiu, W. A. (2023) “Development of physiologically based gut absorption model for probabilistic prediction of environmental chemical bioavailability”, ALTEX - Alternatives to animal experimentation, 40(3), pp. 471–484. doi: 10.14573/altex.2210031.

Agoram, B., Woltosz, W. S., and Bolger, M. B. (2001). Predicting the impact of physiological and biochemical processes on oral drug bioavailability. Adv Drug Deliv Rev 50, Suppl 1, S41-S67. doi:10.1016/S0169-409X(01)00179-X

Artursson, P. and Karlsson, J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem Biophys Res Commun 175, 880-885. doi:10.1016/0006-291X(91)91647-U

Bell, S. M., Chang, X., Wambaugh, J. F. et al. (2018). In vitro to in vivo extrapolation for high throughput prioritization and decision making. Toxicol In Vitro 47, 213-227. doi:10.1016/j.tiv.2017.11.016

Benet, L. Z., Broccatelli, F. and Oprea, T. I. (2011). BDDCS applied to over 900 drugs. AAPS J 13, 519-547. doi:10.1208/s12248-011-9290-9

Billat, P. A., Roger, E., Faure, S. et al. (2017). Models for drug absorption from the small intestine: Where are we and where are we going? Drug Discov Today 22, 761-775. doi:10.1016/j.drudis.2017.01.007

Bocci, G., Oprea, T. I. and Benet, L. Z. (2022). State of the art and uses for the biopharmaceutics drug disposition classification system (BDDCS): New additions, revisions, and citation references. AAPS J 24, 1-17. doi:10.1208/s12248-022-00687-0

Bock, U., Flötotto, T. and Haltner, E. (2004). Validation of cell culture models for the intestine and the blood-brain barrier and comparison of drug permeation. ALTEX 21, Suppl 2, 57-64.

Cabrera-Pérez, M. Á. and Pham-The, H. (2018). Computational modeling of human oral bioavailability: What will be next? Expert Opin Drug Discov 13, 509-521. doi:10.1080/17460441.2018.1463988

Chedik, L., Mias-Lucquin, D., Bruyere, A. et al. (2017). In silico prediction for intestinal absorption and brain penetration of chemical pesticides in humans. Int J Environ Res Public Health 14, 708. doi:10.3390/ijerph14070708

Cho, H. J., Kim, J. E., Kim, D. D. et al. (2014). In vitro-in vivo extrapolation (IVIVE) for predicting human intestinal absorption and first-pass elimination of drugs: Principles and applications. Drug Dev Ind Pharm 40, 989-998. doi:10.3109/03639045.2013.831439

Dahlgren, D., Roos, C., Sjögren, E. et al. (2015). Direct in vivo human intestinal permeability (Peff) determined with different clinical perfusion and intubation methods. J Pharm Sci 104, 2702-2726. doi:10.1002/jps.24258

Gobeau, N., Stringer, R., De Buck, S. et al. (2016). Evaluation of the GastroPlus™ advanced compartmental and transit (ACAT) model in early discovery. Pharm Res 33, 2126-2139. doi:10.1007/s11095-016-1951-z

Hosey, C. M., Chan, R. and Benet, L. Z. (2016). BDDCS predictions, self-correcting aspects of BDDCS assignments, BDDCS assignment corrections, and classification for more than 175 additional drugs. AAPS J 18, 251-260. doi:10.1208/s12248-015-9845-2

Hsieh, N. H., Bois, F. Y., Tsakalozou, E. et al. (2021). A Bayesian population physiologically based pharmacokinetic absorption modeling approach to support generic drug development: Application to bupropion hydrochloride oral dosage forms. J Pharmacokinet Pharmacodyn 48, 893-908. doi:10.1007/s10928-021-09778-5

Lennernäs, H. (1998). Human intestinal permeability. Int J Pharm 87, 403-410. doi:10.1021/js970332a

Lennernäs, H. (2007). Intestinal permeability and its relevance for absorption and elimination. Xenobiotica 37, 1015-1051. doi:10.1080/00498250701704819

Lennernäs, H. (2014). Human in vivo regional intestinal permeability: Importance for pharmaceutical drug development. Mol Pharm 11, 12-23. doi:10.1021/mp4003392

Lentz, K. A., Hayashi, J., Lucisano, L. J. et al. (2000). Development of a more rapid, reduced serum culture system for Caco-2 monolayers and application to the biopharmaceutics classification system. Int J Pharm 200, 41-51. doi:10.1016/S0378-5173(00)00334-3

Marino, A. M., Yarde, M., Patel, H. et al. (2005). Validation of the 96 well Caco-2 cell culture model for high throughput permeability assessment of discovery compounds. Int J Pharm 297, 235-241. doi:10.1016/j.ijpharm.2005.03.008

Matsson, P., Bergström, C. A., Nagahara, N. et al. (2005). Exploring the role of different drug transport routes in permeability screening. J Med Chem 48, 604-613. doi:10.1021/jm049711o

Miret, S., Abrahamse, L. and de Groene, E. M. (2004). Comparison of in vitro models for the prediction of compound absorption across the human intestinal mucosa. SLAS Discov 9, 598-606. doi:10.1177/1087057104267162

NRC – National Research Council (2007). Toxicity Testing in the 21st Century: A Vision and a Strategy. Washington, DC, USA: The National Academies Press. doi:10.17226/11970

O’Hagan, S. and Kell, D. B. (2015). The apparent permeabilities of Caco-2 cells to marketed drugs: Magnitude, and independence from both biophysical properties and endogenite similarities. PeerJ 3, e1405. doi:10.7717/peerj.1405

Paixão, P., Gouveia, L. F. and Morais, J. A. (2010). Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks. Eur J Pharm Sci 41, 107-117. doi:10.1016/j.ejps.2010.05.014

Paixão, P., Gouveia, L. F. and Morais, J. A. (2012). Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically based absorption model. Int J Pharm 429, 84-98. doi:10.1016/j.ijpharm.2012.03.019

Parrott, N. and Lavé, T. (2002). Prediction of intestinal absorption: Comparative assessment of gastroplus™ and idea™. Eur J Pharm Sci 17, 51-61. doi:10.1016/S0928-0987(02)00132-X

Pearce, R. G., Setzer, R. W., Strope, C. L. et al. (2017). httk: R package for high-throughput toxicokinetics. J Stat Softw 79, 1-26. doi:10.18637/jss.v079.i04

Punt, A., Peijnenburg, A. A., Hoogenboom, R. L. et al. (2017). Non-animal approaches for toxicokinetics in risk evaluations of food chemicals. ALTEX 34, 501-514. doi:10.14573/altex.1702211

Punt, A., Louisse, J., Pinckaers, N. et al. (2022). Predictive performance of next generation physiologically based kinetic (PBK)-model predictions in rats based on in vitro and in silico input data. Toxicol Sci 186, 18-28. doi:10.1093/toxsci/kfab150

Ring, C. L., Pearce, R. G., Setzer, R. W. et al. (2017). Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability. Environ Int 106, 105-118. doi:10.1016/j.envint.2017.06.004

Rotroff, D. M., Wetmore, B. A., Dix, D. J. et al. (2010). Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening. Toxicol Sci 117, 348-358. doi:10.1093/toxsci/kfq220

Sjöberg, Å., Lutz, M., Tannergren, C. et al. (2013). Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci 48, 166-180. doi:10.1016/j.ejps.2012.10.007

Sjögren, E., Dahlgren, D., Roos, C. et al. (2015). Human in vivo regional intestinal permeability: Quantitation using site-specific drug absorption data. Mol Pharm 12, 2026-2039. doi:10.1021/mp500834v

Sun, D., Lennernäs, H., Welage, L. S. et al. (2002). Comparison of human duodenum and Caco-2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs. Pharm Res 19, 1400-1416. doi:10.1023/A:1020483911355

Turco, L., Catone, T., Caloni, F. et al. (2011). Caco-2/TC7 cell line characterization for intestinal absorption: How reliable is this in vitro model for the prediction of the oral dose fraction absorbed in human? Toxicol In Vitro 25, 13-20. doi:10.1016/j.tiv.2010.08.009

Vaessen, S. F., van Lipzig, M. M., Pieters, R. H. et al. (2017). Regional expression levels of drug transporters and metabolizing enzymes along the pig and human intestinal tract and comparison with Caco-2 cells. Drug Metab Dispos 45, 353-360. doi:10.1124/dmd.116.072231

Varma, M. V., Gardner, I., Steyn, S. J. et al. (2012). pH-dependent solubility and permeability criteria for provisional biopharmaceutics classification (BCS and BDDCS) in early drug discovery. Mol Pharm 9, 1199-1212. doi:10.1021/mp2004912

Volpe, D. A., Faustino, P. J., Ciavarella, A. B. et al. (2007). Classification of drug permeability with a Caco-2 cell monolayer assay. Clin Res Regul Aff 24, 39-47. doi:10.1080/10601330701273669

Wambaugh, J. F., Wang, A., Dionisio, K. L. et al. (2014). High throughput heuristics for prioritizing human exposure to environmental chemicals. Environ Sci Technol 48, 12760-12767. doi:10.1021/es503583j

Wambaugh, J. F., Wetmore, B. A., Pearce, R. et al. (2015). Toxicokinetic triage for environmental chemicals. Toxicol Sci 147, 55-67. doi:10.1093/toxsci/kfv118

Wambaugh, J. F., Hughes, M. F., Ring, C. L. et al. (2018). Evaluating in vitro-in vivo extrapolation of toxicokinetics. Toxicol Sci 163, 152-169. doi:10.1093/toxsci/kfy020

Wetmore, B. A., Wambaugh, J. F., Ferguson, S. S. et al. (2012). Integration of dosimetry, exposure, and high-throughput screening data in chemical toxicity assessment. Toxicol Sci 125, 157-174. doi:10.1093/toxsci/kfr254

Wetmore, B. A., Wambaugh, J. F., Allen, B. et al. (2015). Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing. Toxicol Sci 148, 121-136. doi:10.1093/toxsci/kfv171

Wilkinson, G. R. and Shand, D. G. (1975). A physiological approach to hepatic drug clearance. Clin Pharmacol Ther 18, 377-390. doi:10.1002/cpt1975184377

Wu, C. Y. and Benet, L. Z. (2005). Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22, 11-23. doi:10.1007/s11095-004-9004-4

Yim, D. S., Choi, S. and Bae, S. H. (2020). Predicting human pharmacokinetics from preclinical data: Absorption. Transl Clin Pharmacol 28, 126-135. doi:10.12793/tcp.2020.28.e14

Youhanna, S., and Lauschke, V. M. (2021). The past, present and future of intestinal in vitro cell systems for drug absorption studies. J Pharm Sci 110, 50-65. doi:10.1016/j.xphs.2020.07.001

Yu, L. X. and Amidon, G. L. (1999). A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm 186, 119-125. doi:10.1016/S0378-5173(99)00147-7

Most read articles by the same author(s)